1
|
Kamagata K, Andica C, Uchida W, Takabayashi K, Saito Y, Lukies M, Hagiwara A, Fujita S, Akashi T, Wada A, Hori M, Kamiya K, Zalesky A, Aoki S. Advancements in Diffusion MRI Tractography for Neurosurgery. Invest Radiol 2024; 59:13-25. [PMID: 37707839 DOI: 10.1097/rli.0000000000001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
ABSTRACT Diffusion magnetic resonance imaging tractography is a noninvasive technique that enables the visualization and quantification of white matter tracts within the brain. It is extensively used in preoperative planning for brain tumors, epilepsy, and functional neurosurgical procedures such as deep brain stimulation. Over the past 25 years, significant advancements have been made in imaging acquisition, fiber direction estimation, and tracking methods, resulting in considerable improvements in tractography accuracy. The technique enables the mapping of functionally critical pathways around surgical sites to avoid permanent functional disability. When the limitations are adequately acknowledged and considered, tractography can serve as a valuable tool to safeguard critical white matter tracts and provides insight regarding changes in normal white matter and structural connectivity of the whole brain beyond local lesions. In functional neurosurgical procedures such as deep brain stimulation, it plays a significant role in optimizing stimulation sites and parameters to maximize therapeutic efficacy and can be used as a direct target for therapy. These insights can aid in patient risk stratification and prognosis. This article aims to discuss state-of-the-art tractography methodologies and their applications in preoperative planning and highlight the challenges and new prospects for the use of tractography in daily clinical practice.
Collapse
Affiliation(s)
- Koji Kamagata
- From the Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan (K.K., C.A., W.U., K.T., Y.S., A.H., S.F., T.A., A.W., S.A.); Faculty of Health Data Science, Juntendo University, Chiba, Japan (C.A., S.A.); Department of Radiology, Alfred Health, Melbourne, Victoria, Australia (M.L.); Department of Radiology, University of Tokyo, Tokyo, Japan (S.F.); Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan (M.H., K.K.); Melbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Victoria, Australia (A.Z.); and Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia (A.Z.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Song S, Jean S, Deng D, Dai Y, Fang X, Wei X, Chen W, Shi S, Jiang R. Diffusion spectrum imaging based semi-automatic optic radiation tractography for vision preservation in SEEG-guided radiofrequency thermocoagulation. Seizure 2024; 114:61-69. [PMID: 38056030 DOI: 10.1016/j.seizure.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE To assess the efficacy and safety of stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RFTC), using diffusion spectrum imaging (DSI) tractography to preoperatively delineate the optic radiation (OR) and reduce the risk of visual field defects (VFDs) where the epileptogenic zones (EZs) are located in or close to the eloquent visual areas. METHODS We prospectively followed up twenty-four consecutive patients (12 males and 12 females) who underwent SEEG-guided RFTC in or near the OR pathway. A distance of ≥ 3.5 mm away from the OR on the targeted electrodes contacts that exhibited relevant ictal onset patterns, IEDs and EES during SEEG recordings, was required as our selection criterion prior to performing RFTC, enough to theoretically prevent VFDs. Using default tracking parameters, the optic radiation was tracked semi-automatically in DSI-studio. RESULTS There were 12 male and 12 female patients ranging in age from 6 to 57 years, with follow-up period ranging from 6 to 37 months. Nineteen patients responded to RFTC (R+, 79.16 %), and 5 patients did not benefit from RFTC (R-, 20.83 %). The preoperative application of DSI semi-automatic based OR tractography was successful in the protection of the OR in all 24 patients. Three patients experienced a neurologic deficit following RFTC, and five patients had a partial quadrant visual field deficit prior to surgery that did not worsen, and none of the remaining nineteen patients had a quadrant visual field deficit. CONCLUSION Our study validates the safety and efficacy of SEEG-RFTC as a viable therapeutic approach for epileptic foci situated in or adjacent to the visual eloquent regions. We demonstrate that DSI-based tractography offers superior precision in delineating the OR compared to DTI. We establish that implementing a criterion of a minimum distance of ≥ 3.5 mm in radius from the OR on the targeted electrode contacts prior to conducting RFTC can effectively mitigate the risk of VFDs.
Collapse
Affiliation(s)
- Shiwei Song
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Stéphane Jean
- Department of Neurosurgery, Fuzhou Children's Hospital, Fuzhou, 350001, China
| | - Donghuo Deng
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yihai Dai
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xinrong Fang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiaoqiang Wei
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Weitao Chen
- Department of Neurosurgery, Fuzhou Children's Hospital, Fuzhou, 350001, China
| | - Songsheng Shi
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Rifeng Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
3
|
Herlin B, Uszynski I, Chauvel M, Poupon C, Dupont S. Cross-subject variability of the optic radiation anatomy in a cohort of 1065 healthy subjects. Surg Radiol Anat 2023:10.1007/s00276-023-03161-4. [PMID: 37195302 DOI: 10.1007/s00276-023-03161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Optic radiations are tracts of particular interest for neurosurgery, especially for temporal lobe resection, because their lesion is responsible for visual field defects. However, histological and MRI studies found a high inter-subject variability of the optic radiation anatomy, especially for their most rostral extent inside the Meyer's temporal loop. We aimed to better assess inter-subject anatomical variability of the optic radiations, in order to help to reduce the risk of postoperative visual field deficiencies. METHODS Using an advanced analysis pipeline relying on a whole-brain probabilistic tractography and fiber clustering, we processed the diffusion MRI data of the 1065 subjects of the HCP cohort. After registration in a common space, a cross-subject clustering on the whole cohort was performed to reconstruct the reference optic radiation bundle, from which all optic radiations were segmented on an individual scale. RESULTS We found a median distance between the rostral tip of the temporal pole and the rostral tip of the optic radiation of 29.2 mm (standard deviation: 2.1 mm) for the right side and 28.8 mm (standard deviation: 2.3 mm) for the left side. The difference between both hemispheres was statistically significant (p = 1.10-8). CONCLUSION We demonstrated inter-individual variability of the anatomy of the optic radiations on a large-scale study, especially their rostral extension. In order to better guide neurosurgical procedures, we built a MNI-based reference atlas of the optic radiations that can be used for fast optic radiation reconstruction from any individual diffusion MRI tractography.
Collapse
Affiliation(s)
- B Herlin
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France.
- AP-HP, Epilepsy Unit, GH Pitié-Salpêtrière-Charles Foix, 47-83 Boulevard de L'Hôpital, 75013, Paris, France.
- Sorbonne Université, Paris, France.
| | - I Uszynski
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - M Chauvel
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - C Poupon
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - S Dupont
- AP-HP, Epilepsy Unit, GH Pitié-Salpêtrière-Charles Foix, 47-83 Boulevard de L'Hôpital, 75013, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Reisch LM, Wegrzyn M, Mielke M, Mehlmann A, Woermann FG, Bien CG, Kissler J. Face processing and efficient recognition of facial expressions are impaired following right but not left anteromedial temporal lobe resections: Behavioral and fMRI evidence. Neuropsychologia 2022; 174:108335. [PMID: 35863496 DOI: 10.1016/j.neuropsychologia.2022.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
Anteromedial temporal lobe structures seem to support processing of faces and facial expressions. However, differential effects of unilateral left or right temporal lobe resections (TLR) on face processing, recognition of facial expressions, and on BOLD response to faces in intact brain areas are not yet fully understood. Therefore, we compared 39 patients with unilateral TLR (18 left, 21 right) and 20 healthy controls regarding recognition of facial identity and emotional facial expressions as well as BOLD response to fearful and neutral faces. We found impaired recognition of facial identity following right TLR, which was paralleled by reduced BOLD response to faces irrespective of expression in the right fusiform and lingual gyrus in postsurgical fMRI. Right TLR patients also exhibited subtle impairments of emotion recognition as they needed higher intensity of facial expressions for correct responses in a morphing task. Accuracy of emotion recognition and subjective appraisals of facial expressions did not differ between groups. There was no specific reduction of BOLD response to fearful versus neutral faces in either patient group. Our results underline the specific role of the right anteromedial temporal lobe in processing of faces and facial expressions by showing changes in face processing following right TLR in behavioral as well as imaging data.
Collapse
Affiliation(s)
- Lea Marie Reisch
- Department of Psychology, Bielefeld University, Bielefeld, Germany; Department of Epileptology (Krankenhaus Mara), Bielefeld University, Campus Bielefeld-Bethel, Bielefeld, Germany.
| | - Martin Wegrzyn
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| | - Malena Mielke
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| | | | - Friedrich G Woermann
- Department of Epileptology (Krankenhaus Mara), Bielefeld University, Campus Bielefeld-Bethel, Bielefeld, Germany
| | - Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Bielefeld University, Campus Bielefeld-Bethel, Bielefeld, Germany
| | - Johanna Kissler
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
5
|
Michele R, Ivana S, Maria DV, Luca B, Domenico L, Maria ZF, Alessandro DB, Silvio S, Khalid AO, Valeria M, Pietro A. Tracing in vivo the dorsal loop of the optic radiation: convergent perspectives from tractography and electrophysiology compared to a neuroanatomical ground truth. Brain Struct Funct 2022; 227:1357-1370. [PMID: 35320828 DOI: 10.1007/s00429-021-02430-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/12/2021] [Indexed: 01/18/2023]
Abstract
The temporo-parietal junction (TPJ) is a cortical area contributing to a multiplicity of visual, language-related, and cognitive functions. In line with this functional richness, also the organization of the underlying white matter is highly complex and includes several bundles. The few studies tackling the outcome and neurological burdens of surgical operations addressing TPJ document the presence of language disturbances and visual field damages, with the latter hardly recovered in time. This observation advocates for identifying and functionally monitoring the optic radiation (OR) bundles that cross the white matter below the TPJ. In the present study, we adopted a multimodal approach to address the anatomo-functional correlates of the OR's dorsal loop. In particular, we combined cadavers' dissection with tractographic and electrophysiological data collected in drug-resistant epileptic patients explored by stereoelectroencephalography (SEEG). Cadaver dissection allowed us to appreciate the course and topography of the dorsal loop. More surprisingly, both tractographic and electrophysiological observations converged on a unitary picture highly coherent with the data obtained by neuroanatomical observation. The combination of diverse and multimodal observations allows overcoming the limitations intrinsic to single methodologies, defining a unitary picture which makes it possible to investigate the dorsal loop both presurgically and at the individual patient level, ultimately contributing to limit the postsurgical damages. Notwithstanding, such a combined approach could serve as a model of investigation for future neuroanatomical inquiries tackling white matter fibers anatomy and function through SEEG-derived neurophysiological data.
Collapse
Affiliation(s)
- Rizzi Michele
- "C.Munari" Epilepsy Surgery Centre, ASST GOM Niguarda, Piazza Dell'Ospedale Maggiore, 20162, Milan, Italy
| | - Sartori Ivana
- "C.Munari" Epilepsy Surgery Centre, ASST GOM Niguarda, Piazza Dell'Ospedale Maggiore, 20162, Milan, Italy.
| | - Del Vecchio Maria
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Berta Luca
- Department of Medical Physics, ASST GOM Niguarda, Milan, Italy
| | - Lizio Domenico
- Department of Medical Physics, ASST GOM Niguarda, Milan, Italy
| | - Zauli Flavia Maria
- "C.Munari" Epilepsy Surgery Centre, ASST GOM Niguarda, Piazza Dell'Ospedale Maggiore, 20162, Milan, Italy
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - De Benedictis Alessandro
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sarubbo Silvio
- Department of Neurosurgery, Ospedale Santa Chiara, Trento, Italy
| | - Al-Orabi Khalid
- "C.Munari" Epilepsy Surgery Centre, ASST GOM Niguarda, Piazza Dell'Ospedale Maggiore, 20162, Milan, Italy
| | - Mariani Valeria
- Neurology and Stroke Unit, ASST Sette Laghi-Ospedale di Circolo, Varese, Italy
| | - Avanzini Pietro
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| |
Collapse
|
6
|
Taoka T, Ito R, Nakamichi R, Kamagata K, Sakai M, Kawai H, Nakane T, Abe T, Ichikawa K, Kikuta J, Aoki S, Naganawa S. Reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) for evaluating interstitial fluid diffusivity and glymphatic function: CHanges in Alps index on Multiple conditiON acquIsition eXperiment (CHAMONIX) study. Jpn J Radiol 2022; 40:147-158. [PMID: 34390452 PMCID: PMC8803717 DOI: 10.1007/s11604-021-01187-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE The diffusion tensor image analysis along the perivascular space (DTI-ALPS) method was developed to evaluate the brain's glymphatic function or interstitial fluid dynamics. This study aimed to evaluate the reproducibility of the DTI-ALPS method and the effect of modifications in the imaging method and data evaluation. MATERIALS AND METHODS Seven healthy volunteers were enrolled in this study. Image acquisition was performed for this test-retest study using a fixed imaging sequence and modified imaging methods which included the placement of region of interest (ROI), imaging plane, head position, averaging, number of motion-proving gradients, echo time (TE), and a different scanner. The ALPS-index values were evaluated for the change of conditions listed above. RESULTS This test-retest study by a fixed imaging sequence showed very high reproducibility (intraclass coefficient = 0.828) for the ALPS-index value. The bilateral ROI placement showed higher reproducibility. The number of averaging and the difference of the scanner did not influence the ALPS-index values. However, modification of the imaging plane and head position impaired reproducibility, and the number of motion-proving gradients affected the ALPS-index value. The ALPS-index values from 12-axis DTI and 3-axis diffusion-weighted image (DWI) showed good correlation (r = 0.86). Also, a shorter TE resulted in a larger value of the ALPS-index. CONCLUSION ALPS index was robust under the fixed imaging method even when different scanners were used. ALPS index was influenced by the imaging plane, the number of motion-proving gradient axes, and TE in the imaging sequence. These factors should be uniformed in the planning ALPS method studies. The possibility to develop a 3-axis DWI-ALPS method using three axes of the motion-proving gradient was also suggested.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan.
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Mayuko Sakai
- Canon Medical Systems Corporation, Otawara, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Takashi Abe
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Kazushige Ichikawa
- Department of Radiological Technology, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Junko Kikuta
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
7
|
Atar M, Kızmazoglu C, Kaya I, Cıngoz ID, Uzunoglu I, Kalemcı O, Eroglu A, Pusat S, Atabey C, Yuceer N. The importance of preoperative planning to perform safely temporal lobe surgery. J Clin Neurosci 2021; 93:61-69. [PMID: 34656263 DOI: 10.1016/j.jocn.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/11/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
Neurosurgeons should know the anatomy required for safe temporal lobe surgery approaches. The present study aimed to determine the angles and distances necessary to reach the temporal stem and temporal horn in surgical approaches for safe temporal lobe surgery by using a 3.0 T magnetic resonance imaging technique in post-mortem human brain hemispheres fixed by the Klingler method. In our study, 10 post-mortem human brain hemisphere specimens were fixed according to the Klingler method. Magnetic resonance images were obtained using a 3.0 T magnetic resonance imaging scanner after fixation. Surgical measurements were conducted for the temporal stem and temporal horn by magnetic resonance imaging, and dissection was then performed under a surgical microscope for the temporal stem. Each stage of dissection was achieved in high-quality three-dimensional images. The angles and distances to reach the temporal stem and temporal horn were measured in transcortical T1, trans-sulcal T1-2, transcortical T2, trans-sulcal T2-3, transcortical T3, and subtemporal trans-collateral sulcus approaches. The safe maximum posterior entry point for anterior temporal lobectomy was measured as 47.16 ± 5.00 mm. Major white-matter fibers in this region and their relations with each other are shown. The distances to the temporal stem and temporal horn, which are important in temporal lobe surgical interventions, were measured radiologically, and safe borders were determined. Surgical strategy and preoperative planning should consider the relationship of the lesion and white-matter pathways.
Collapse
Affiliation(s)
- Murat Atar
- Sultan Abdulhamid Han Training and Research Hospital, Department of Neurosurgery , Istanbul, Turkey.
| | - Ceren Kızmazoglu
- Dokuz Eylul University School of Medicine, Department of Neurosurgery, Izmir, Turkey
| | - Ismail Kaya
- Usak University School of Medicine, Department of Neurosurgery, Usak, Turkey
| | - Ilker Deniz Cıngoz
- Usak University School of Medicine, Department of Neurosurgery, Usak, Turkey
| | - Inan Uzunoglu
- Izmir Katip Celebi University Ataturk Training and Research Hospital, Department of Neurosurgery, Izmir, Turkey
| | - Orhan Kalemcı
- Dokuz Eylul University School of Medicine, Department of Neurosurgery, Izmir, Turkey
| | - Ahmet Eroglu
- Sultan Abdulhamid Han Training and Research Hospital, Department of Neurosurgery , Istanbul, Turkey
| | - Serhat Pusat
- Sultan Abdulhamid Han Training and Research Hospital, Department of Neurosurgery , Istanbul, Turkey
| | - Cem Atabey
- Sultan Abdulhamid Han Training and Research Hospital, Department of Neurosurgery , Istanbul, Turkey
| | - Nurullah Yuceer
- Izmir Katip Celebi University Ataturk Training and Research Hospital, Department of Neurosurgery, Izmir, Turkey
| |
Collapse
|
8
|
Jang SH, Kim SH, Seo YS. Injury of the optic radiation in patients with mild TBI: A DTT study. Transl Neurosci 2020; 11:335-340. [PMID: 33335773 PMCID: PMC7718621 DOI: 10.1515/tnsci-2020-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/02/2020] [Accepted: 08/23/2020] [Indexed: 11/15/2022] Open
Abstract
Objectives We investigated injuries of the optic radiations (ORs) in patients with mild traumatic brain injury (TBI) by using diffusion tensor tractography (DTT). Methods Fifty-two consecutive patients who complained of visual problems showed abnormal visual evoked potential (VEP) latency but no abnormality on conventional brain MRI after mild TBI, and fifty normal control subjects were recruited for this study. Subjects' ORs were reconstructed using DTT, and three DTT parameters (fractional anisotropy [FA], apparent diffusion coefficient [ADC], and tract volume) were measured for each OR. Results Mean FA value and tract volume of the OR were significantly lower in the patient group than in the control group (p < 0.05). However, there was no significant difference in the ADC values of the OR between the patient and control groups (p > 0.05). A weak negative correlation was detected between VEP latency and OR fiber number (r = 0.204, p < 0.05). Conclusions DTT revealed that OR injuries were not detected on the conventional brain MRI scans of patients who complained of visual problems and had abnormal VEP latency after mild TBI. Our results suggest that DTT would be a useful technique for detecting OR injury in patients with mild TBI.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, 317-1, Daemyungdong, Namku, Taegu, 705-717, Republic of Korea
| | - Seong Ho Kim
- Department of Neurosurgery, College of Medicine Yeungnam University, 317-1, Daemyungdong, Namku, Taegu, 705-717, Republic of Korea
| | - You Sung Seo
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, 317-1, Daemyungdong, Namku, Taegu, 705-717, Republic of Korea
| |
Collapse
|
9
|
Jang SH, Seo YS. Recovery of Injured Optic Radiations in a Patient with Hypoxic-Ischaemic Brain Injury. Neuroophthalmology 2020; 44:270-273. [PMID: 33012915 DOI: 10.1080/01658107.2019.1676263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The introduction of diffusion tensor tractography (DTT) has made three-dimensional reconstruction of the optic radiation (OR) possible in the human brain. A 19-year-old female patient underwent conservative management for hypoxic-ischaemic brain injury. Four months after onset she was transferred to the rehabilitation department of our university hospital. The patient was in a vegetative state with a coma recovery scale-revised (CRS-R) score of nine. She underwent comprehensive rehabilitation, which included medications, physical therapy, and occupational therapy. Transcranial direct current stimulation was applied to the upper occipital area. After one month of rehabilitation, she had recovered to a minimally conscious state with a CRS-R score of 15. Some recovery of the injured ORs was demonstrated by DTT.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - You Sung Seo
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
10
|
Choi EB, Jang SH. Diffusion Tensor Imaging Studies on Recovery of Injured Optic Radiation: A Minireview. Neural Plast 2020; 2020:8881224. [PMID: 32587609 PMCID: PMC7301249 DOI: 10.1155/2020/8881224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/03/2022] Open
Abstract
The optic radiation (OR) is a visual neural fiber pathway for the transfer of visual information from the lateral geniculate body of the thalamus to the primary visual cortex. To demonstrate the recovery of an OR injury, quantification and visualization of changes to the injured OR are necessary. Diffusion tensor imaging (DTI) allows determination of the state of an OR by assessing the obtained DTI parameters. In particular, diffusion tensor tractography (DTT), which is derived from DTI data, allows three-dimensional visualization of the OR. Thus, recovery of an injured OR can be demonstrated by examining changes in DTI parameters and/or configuration on follow-up DTI scans or via DTT of the injured OR. Herein, we review nine DTI-based studies that demonstrated recovery of OR injuries. The results reported in these studies suggest that an OR injury has a potential for recovery. Moreover, the results of these studies can form a basis for elucidating the recovery mechanisms of injured OR. These studies have suggested two recovery mechanisms for OR injury: recovery via the original OR pathway or via the transcallosal fibers of the corpus callosum. However, only nine studies on this topic have been conducted to date and six of those nine studies were case reports. Therefore, further studies involving larger numbers of subjects and reporting precise evaluations of changes in OR injury during recovery are warranted.
Collapse
Affiliation(s)
- Eun Bi Choi
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daemyungdong, Namku, Daegu 705-717, Republic of Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daemyungdong, Namku, Daegu 705-717, Republic of Korea
| |
Collapse
|
11
|
Ashmore J, Pemberton HG, Crum WD, Jarosz J, Barker GJ. Implementation of clinical tractography for pre-surgical planning of space occupying lesions: An investigation of common acquisition and post-processing methods compared to dissection studies. PLoS One 2020; 15:e0231440. [PMID: 32287298 PMCID: PMC7156092 DOI: 10.1371/journal.pone.0231440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/04/2020] [Indexed: 11/19/2022] Open
Abstract
Background and purpose There is limited standardization of acquisition and processing methods in diffusion tractography for pre-surgical planning, leading to a range of approaches. In this study, a number of representative acquisition variants and post processing methods are considered, to assess their importance when implementing a clinical tractography program. Methods Diffusion MRI was undertaken in ten healthy volunteers, using protocols typical of clinical and research scanning: a 32-direction diffusion acquisition with and without peripheral gating, and a non-gated 64 diffusion direction acquisition. All datasets were post-processed using diffusion tensor reconstruction with streamline tractography, and with constrained spherical deconvolution (CSD) with both streamline and probabilistic tractography, to delineate the cortico-spinal tract (CST) and optic radiation (OR). The accuracy of tractography results was assessed against a histological atlas using a novel probabilistic Dice overlap technique, together with direct comparison to tract volumes and distance of Meyer’s loop to temporal pole (ML-TP) from dissections studies. Three clinical case studies of patients with space occupying lesions were also investigated. Results Tracts produced by CSD with probabilistic tractography provided the greatest overlap with the histological atlas (overlap scores of 44% and 52% for the CST and OR, respectively) and best matched tract volume and ML-TP distance from dissection studies. The acquisition protocols investigated had limited impact on the accuracy of the tractography. In all patients, the CSD based probabilistic tractography created tracts with greatest anatomical plausibility, although in one case anatomically plausible pathways could not be reconstructed without reducing the probabilistic threshold, leading to an increase in false positive tracts. Conclusions Advanced post processing techniques such as CSD with probabilistic tractography are vital for pre-surgical planning. However, overall accuracy relative to dissection studies remains limited.
Collapse
Affiliation(s)
- Jonathan Ashmore
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Institute of Psychiatry, London, England, United Kingdom
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, England, United Kingdom
- * E-mail:
| | - Hugh G. Pemberton
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Institute of Psychiatry, London, England, United Kingdom
| | - William D. Crum
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Institute of Psychiatry, London, England, United Kingdom
| | - Jozef Jarosz
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, England, United Kingdom
| | - Gareth J. Barker
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Institute of Psychiatry, London, England, United Kingdom
| |
Collapse
|
12
|
Shan YZ, Wang ZM, Fan XT, Zhang HQ, Ren LK, Wei PH, Zhao GG. Automatic labeling of the fanning and curving shape of Meyer's loop for epilepsy surgery: an atlas extracted from high-definition fiber tractography. BMC Neurol 2019; 19:302. [PMID: 31779601 PMCID: PMC6882219 DOI: 10.1186/s12883-019-1537-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Visual field defects caused by injury to Meyer's loop (ML) are common in patients undergoing anterior temporal lobectomy during epilepsy surgery. Evaluation of the anatomical shapes of the curving, fanning and sharp angles of ML to guide surgeries is important but still challenging for diffusion tensor imaging. We present an advanced diffusion data-based ML atlas and labeling protocol to reproduce anatomical features in individuals within a short time. METHODS Thirty Massachusetts General Hospital-Human Connectome Project (MGH-HCP) diffusion datasets (ultra-high magnetic gradient & 512 directions) were warped to standard space. The resulting fibers were projected together to create an atlas. The anatomical features and the tractography correspondence rates were evaluated in 30 MGH-HCP individuals and local diffusion spectrum imaging data (eight healthy subjects and six hippocampal sclerosis patients). RESULTS In the atlas, features of curves, sharp angles and fanning shapes were adequately reproduced. The distances from the anterior tip of the temporal lobe to the anterior ridge of Meyer's loop were 23.1 mm and 26.41 mm on the left and right sides, respectively. The upper and lower divisions of the ML were revealed to be twisting. Eighty-eight labeled sides were achieved, and the correspondence rates were 87.44% ± 6.92, 80.81 ± 10.62 and 72.83% ± 14.03% for MGH-HCP individuals, DSI-healthy individuals and DSI-patients, respectively. CONCLUSION Atlas-labeled ML is comparable to high angular resolution tractography in healthy or hippocampal sclerosis patients. Therefore, rapid identification of the ML location with a single modality of T1 is practical. This protocol would facilitate functional studies and visual field protection during neurosurgery.
Collapse
Affiliation(s)
- Yong-Zhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing, 100053, China
| | - Zhen-Ming Wang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiao-Tong Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing, 100053, China
| | - Hua-Qiang Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing, 100053, China
| | - Lian-Kun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Peng-Hu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing, 100053, China.
| | - Guo-Guang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing, 100053, China.
| |
Collapse
|
13
|
Jang SH, Lee HD. Diagnostic Approach to Traumatic Axonal Injury of the Optic Radiation in Mild Traumatic Brain Injury. Am J Phys Med Rehabil 2019; 98:e92-e96. [PMID: 31318757 DOI: 10.1097/phm.0000000000001078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We describe a diffusion tensor tractography-based diagnostic approach to traumatic axonal injury of the optic radiation in a patient who showed visual field defect after mild traumatic brain injury. A 43-yr-old female patient experienced head trauma during a motor vehicle accident. After the head trauma, she noticed visual disturbance. Peripheral field defects were detected in both eyes on the Humphrey visual field test. After diffusion tensor tractography-based reconstruction of the optic radiation, We determined the fractional anisotropy and fiber number of each whole optic radiation. Four regions of interest were placed on the optic radiations based on diffusion tensor tractography configuration. The right optic radiation showed narrowing, and the left optic radiation revealed partial tearing in the posterior portion. The fiber number of the right optic radiation was more than two standard deviations lower than the control mean. The fractional anisotropy values of the regions of interest 2 (the narrowed area of the right optic radiation) and regions of interest 3 (the partially torn area of the left optic radiation) were more than two standard deviations lower than the control mean. Our results suggest that analysis of the configuration and parameters of the optic radiation based on three-dimensionally reconstructed diffusion tensor tractography results is a useful technique in the detection of traumatic axonal injury of the optic radiation in individual patients with mild traumatic brain injury.
Collapse
Affiliation(s)
- Sung Ho Jang
- From the Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Taegu, Republic of Korea
| | | |
Collapse
|
14
|
Costabile JD, Alaswad E, D'Souza S, Thompson JA, Ormond DR. Current Applications of Diffusion Tensor Imaging and Tractography in Intracranial Tumor Resection. Front Oncol 2019; 9:426. [PMID: 31192130 PMCID: PMC6549594 DOI: 10.3389/fonc.2019.00426] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
In the treatment of brain tumors, surgical intervention remains a common and effective therapeutic option. Recent advances in neuroimaging have provided neurosurgeons with new tools to overcome the challenge of differentiating healthy tissue from tumor-infiltrated tissue, with the aim of increasing the likelihood of maximizing the extent of resection volume while minimizing injury to functionally important regions. Novel applications of diffusion tensor imaging (DTI), and DTI-derived tractography (DDT) have demonstrated that preoperative, non-invasive mapping of eloquent cortical regions and functionally relevant white matter tracts (WMT) is critical during surgical planning to reduce postoperative deficits, which can decrease quality of life and overall survival. In this review, we summarize the latest developments of applying DTI and tractography in the context of resective surgery and highlight its utility within each stage of the neurosurgical workflow: preoperative planning and intraoperative management to improve postoperative outcomes.
Collapse
Affiliation(s)
- Jamie D Costabile
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Elsa Alaswad
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Shawn D'Souza
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - John A Thompson
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - D Ryan Ormond
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
15
|
Bopp MH, Pietruk PM, Nimsky C, Carl B. Fiber tractography of the optic radiations: impact of diffusion model, voxel shape and orientation. J Neurosurg Sci 2019; 65:494-502. [PMID: 30724054 DOI: 10.23736/s0390-5616.19.04622-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Reliable visualization of the optic radiations (OR) is of major importance in tumor surgery close to the OR to prevent permanent visual field deficits. Diffusion tensor imaging (DTI) based fiber tractography (FT) has become a standard tool to visualize major white matter tracts and to support the prevention of postoperative deficits. Nevertheless, FT of the OR is notoriously challenging due to its high neuroanatomical complexity. METHODS To improve FT of the OR we analyzed the effect of a more complex diffusion model and the effect of different voxel shapes and orientations. MRI data of 21 healthy subjects was acquired using isometric and anisometric voxel sizes and standard and adapted slice angulation. FT was performed using the DTI based approach and an orientation distribution function (ODF) based approach. Results were visually inspected, and fiber tract volumes were compared. RESULTS DTI based FT led to poor results, failing to reconstruct plausible tracts at all in up to 26.11 % of all cases. The ODF based approach resulted in more compound and solid tracts showing also significantly larger tract volumes. Voxel shape or orientation did not influence DTI but ODF based FT. Isometric or anisometric voxels with standard slice orientation revealed highest tract volumes. Adapted orientation in combination with anisometric voxels led to significantly smaller tract volumes. CONCLUSIONS Plausible tractography of the OR can be achieved using ODF based fiber tracking within a clinically feasible timeframe. Voxel shape and orientation seem to be of minor importance and might be kept to isometric voxel for flexible application of FT.
Collapse
Affiliation(s)
- Miriam H Bopp
- Department of Neurosurgery, University of Marburg, Marburg, Germany - .,Marburg Center for Mind, Brain and Behavior, Marburg, Germany -
| | - Peter M Pietruk
- Department of Neurosurgery, University of Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior, Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior, Marburg, Germany
| |
Collapse
|
16
|
Relation of Structural and Functional Changes in Auditory and Visual Pathways after Temporal Lobe Epilepsy Surgery. Behav Sci (Basel) 2018; 8:bs8100092. [PMID: 30322032 PMCID: PMC6210521 DOI: 10.3390/bs8100092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Auditory and visual pathways may be affected as a consequence of temporal lobe epilepsy surgery because of their anatomical relationships with this structure. The purpose of this paper is to correlate the results of the auditory and visual evoked responses with the parameters of tractography of the visual pathway, and with the state of connectivity between respective thalamic nuclei and primary cortices in both systems after the surgical resection of the epileptogenic zone in drug-resistant epileptic patients. Tractography of visual pathway and anatomical connectivity of auditory and visual thalamus-cortical radiations were evaluated in a sample of eight patients. In general, there was a positive relationship of middle latency response (MLR) latency and length of resection, while a negative correlation was found between MLR latency and the anatomical connection strength and anatomical connection probability of the auditory radiations. In the visual pathway, significant differences between sides were found with respect to the number and length of tracts, which was lower in the operated one. Anatomical connectivity variables and perimetry (visual field defect index) were particularly correlated with the latency of P100 wave which was obtained by quadrant stimulation. These results demonstrate an indirect functional modification of the auditory pathway and a direct traumatic lesion of the visual pathway after anterior temporal lobectomy in patients with drug resistant epilepsy.
Collapse
|
17
|
van Lanen RHGJ, Hoeberigs MC, Bauer NJC, Haeren RHL, Hoogland G, Colon A, Piersma C, Dings JTA, Schijns OEMG. Visual field deficits after epilepsy surgery: a new quantitative scoring method. Acta Neurochir (Wien) 2018; 160:1325-1336. [PMID: 29623432 PMCID: PMC5995984 DOI: 10.1007/s00701-018-3525-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 11/30/2022]
Abstract
Background Anterior temporal lobectomy (ATL) as a treatment for drug-resistant temporal lobe epilepsy (TLE) frequently causes visual field deficits (VFDs). Reported VFD encompasses homonymous contralateral upper quadrantanopia. Its reported incidence ranges from 15 to 90%. To date, a quantitative method to evaluate postoperative VFD in static perimetry is not available. A method to quantify postoperative VFD, which allows for comparison between groups of patients, was developed. Methods Fifty-five patients with drug-resistant TLE, who underwent ATL with pre- and postoperative perimetry, were included. Temporal lobe resection length was measured on postoperative MRI. Percentage VFD was calculated for the total visual field, contralateral upper quadrant, or other three quadrants combined. Results Patients were divided into groups by resection size (< 45 and ≥ 45 mm) and side of surgery (right and left). We found significant higher VFD in the ≥ 45 vs. < 45 mm group (2.3 ± 4.4 vs. 0.7 ± 2.4%,p = 0.04) for right-sided ATL. Comparing VFD in both eyes, we found more VFD in the right vs. left eye following left-sided ATL (14.5 ± 9.8 vs. 12.9 ± 8.3%, p = 0.03). We also demonstrated significantly more VFD in the < 45 mm group for left- vs. right-sided surgery (6.7 ± 6.7 vs. 13.1 ± 7.0%, p = 0.016). A significant quantitative correlation between VFD and resection size for right-sided ATL was shown (r = 0.52, p < 0.01). Conclusions We developed a new quantitative scoring method for the assessment of postoperative visual field deficits after temporal lobe epilepsy surgery and assessed its feasibility for clinical use. A significant correlation between VFD and resection size for right-sided ATL was confirmed.
Collapse
Affiliation(s)
- Rick H G J van Lanen
- Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
- Department of Neurosurgery, Maastricht University Medical Centre, PO box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - M C Hoeberigs
- Department of Radiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - N J C Bauer
- Department of Ophthalmology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - R H L Haeren
- Department of Neurosurgery, Maastricht University Medical Centre, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - G Hoogland
- Department of Neurosurgery, Maastricht University Medical Centre, PO box 5800, 6202 AZ, Maastricht, The Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre and Kempenhaeghe, Maastricht/Heeze, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - A Colon
- Academic Centre for Epileptology, Maastricht University Medical Centre and Kempenhaeghe, Maastricht/Heeze, The Netherlands
| | - C Piersma
- Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - J T A Dings
- Department of Neurosurgery, Maastricht University Medical Centre, PO box 5800, 6202 AZ, Maastricht, The Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre and Kempenhaeghe, Maastricht/Heeze, The Netherlands
| | - O E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Centre, PO box 5800, 6202 AZ, Maastricht, The Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre and Kempenhaeghe, Maastricht/Heeze, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
18
|
Alonso-Vanegas MA, Freire Carlier ID, San-Juan D, Martínez AR, Trenado C. Parahippocampectomy as a New Surgical Approach to Mesial Temporal Lobe Epilepsy Caused By Hippocampal Sclerosis: A Pilot Randomized Comparative Clinical Trial. World Neurosurg 2017; 110:e1063-e1071. [PMID: 29229342 DOI: 10.1016/j.wneu.2017.11.170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE The parahippocampal gyrus plays an important role in the epileptogenic pathways of mesial temporal lobe epilepsy caused by hippocampal sclerosis (mTLE-HS); its resection could prevent epileptic seizures with fewer complications. This study evaluates the initial efficacy and safety of anterior temporal lobectomy (ATL), selective amygdalohipppocampectomy (SAH), and parahippocampectomy (PHC) surgical approaches in mTLE-HS. METHODS A randomized comparative pilot clinical trial (2008-2011) was performed that included patients with mTLE-HS who underwent ATL, trans-T3 SAH, and trans-T3 PHC. Their sociodemographic characteristics, visual field profiles, verbal and visual memory profiles, and Engel scale outcome at baseline and at 1 and 5 years are described, using descriptive statistics along with parametric and nonparametric tests. RESULTS Forty-three patients with a mean age of 35.2 years (18-56 years), 65% female, were analyzed: 14 underwent PHC, 14 ATL, and 15 SAH. The following percentages refer to those patients who were seizure free (Engel class IA) at 1-year and 5-year follow-up, respectively: 42.9% PHC, 71.4% ATL, and 60% SAH (P = 0.304); 28.6% PHC, 50% ATL, and 53.3% SAH (P = 0.353). Postoperative visual field deficits were 0% PHC, 85.7% ATL, and 46.7% SAH (P = 0.001). Verbal and/or visual memory worsening were present in 21.3% PHC, 42.8% ATL, and 33.4% SAH (P = 0.488) and preoperative and postoperative visual memory scores were significantly different in the SAH group only (P = 0.046). CONCLUSIONS PHC, ALT, and SAH show a preliminary similar efficacy in short-term seizure-free rates in patients with mTLE-HS. However, PHC efficacy in the long-term decreases compared with the other surgical techniques. PHC does not produce postoperative visual field deficits.
Collapse
Affiliation(s)
| | - Iván D Freire Carlier
- Department of Neurosurgery, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Daniel San-Juan
- Department of Clinical Neurophysiology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico.
| | - Alma Rosa Martínez
- Department of Neuropsychology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
Tatewaki Y, Mutoh T, Thyreau B, Omodaka K, Murata T, Sekiguchi A, Nakazawa T, Taki Y. Phase Difference-Enhanced Magnetic Resonance (MR) Imaging (PADRE) Technique for the Detection of Age-Related Microstructural Changes in Optic Radiation: Comparison with Diffusion Tensor Imaging (DTI). Med Sci Monit 2017; 23:5495-5503. [PMID: 29151112 PMCID: PMC5704509 DOI: 10.12659/msm.905571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background The optic radiation (OR) is a white-matter bundle connecting the lateral geniculate body and the visual cortex. Phase difference-enhanced imaging (PADRE) is a new MRI technique that is able to achieve precise delineation of the OR. The aim of this study was to investigate the effect of age on the volume and signal intensity of the OR using PADRE, and to establish a volumetric reference of the OR from a healthy population, compared with diffusion tensor imaging (DTI). Material/Methods Thirty-nine healthy volunteers underwent MR imaging with PADRE and DTI sequences on a 3.0-T scanner. For the volumetric analysis with PADRE, the OR corresponding to the external sagittal stratum was manually traced, while an automated thresholding method was used for the DTI-based volumetric analysis of the OR. Results The mean right and left OR volumes measured from the PADRE images were 1469.0±242.4 mm3 and 1372.6±310.2 mm3, respectively. Although OR volume showed no significant correlation with age, the normalized OR signal intensity showed a linear correlation with increasing age (r2=0.50–0.53; P<0.01). The OR signal intensity on PADRE and DTI-related quantitative parameters for the OR showed significant correlations (r2=0.46–0.49; P<0.01). Conclusions The PADRE technique revealed exceptional preservation of OR volume, even in later life. Moreover, PADRE was able to detect age-related changes in signal intensity of the OR and may contribute to future analyses of pathological neurodegeneration in patients with glaucoma and multiple sclerosis.
Collapse
Affiliation(s)
- Yasuko Tatewaki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan.,Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Tohoku, Japan.,Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Tohoku, Japan
| | - Tatsushi Mutoh
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Benjamin Thyreau
- Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Tohoku, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Tohoku, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Tohoku, Japan
| | - Takaki Murata
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Tohoku, Japan
| | - Atsushi Sekiguchi
- Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Tohoku, Japan.,Department of Psychosomatic Research, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Tohoku, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Tohoku, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan.,Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Tohoku, Japan
| |
Collapse
|
20
|
Schmeiser B, Daniel M, Kogias E, Böhringer D, Egger K, Yang S, Foit NA, Schulze-Bonhage A, Steinhoff BJ, Zentner J, Lagrèze WA, Gross NJ. Visual field defects following different resective procedures for mesiotemporal lobe epilepsy. Epilepsy Behav 2017; 76:39-45. [PMID: 28954709 DOI: 10.1016/j.yebeh.2017.08.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/15/2017] [Accepted: 08/26/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION One of the most common side effects of mesiotemporal lobe resection in patients with medically intractable epilepsy are visual field defects (VFD). While peripheral defects usually remain unnoticed by patients, extended VFD influence daily life activities and can, in particular, affect driving regulations. This study had been designed to evaluate frequency and extent of VFD following different surgical approaches to the mesiotemporal area with respect to the ability to drive. MATERIALS AND METHODS This study comprises a consecutive series of 366 patients operated at the Epilepsy Center in Freiburg for intractable mesiotemporal lobe epilepsy from 1998 to 2016. The following procedures were performed: standard anterior temporal lobectomy (ATL: n=134; 37%), anterior temporal or keyhole resection (KH: n=53; 15%), and selective amygdalohippocampectomy via the transsylvian (tsAHE: n=145; 40%) and the subtemporal (ssAHE: n=34; 9%) approach. Frequency and extent of postoperative VFD were evaluated in relation to different surgical procedures. According to the German driving guidelines, postoperative VFD were classified as driving-relevant VFD with the involvement of absolute, homonymous central scotoma within 20° and driving-irrelevant VFD with either none or exclusively minor VFD sparing the center. RESULTS Postoperative visual field examinations were available in 276 of 366 cases. Postoperative VFD were observed in 202 of 276 patients (73%) and were found to be driving-relevant in 133 of 276 patients (48%), whereas 69 patients (25%) showed VFD irrelevant for driving. Visual field defects were significantly less likely following ssAHE compared with other temporal resections, and if present, they were less frequently driving-relevant (p<0.05), irrespective of the side of surgery. CONCLUSION Subtemporal sAHE (ssAHE) caused significantly less frequently and less severely driving-relevant VFD compared with all other approaches to the temporal lobe, irrespective of the side of surgery.
Collapse
Affiliation(s)
- Barbara Schmeiser
- Department of Neurosurgery, Medical Center - University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany.
| | - Moritz Daniel
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Trust and UCL Institute of Ophthalmology, London, United Kingdom; Eye Center, Medical Center - University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Evangelos Kogias
- Department of Neurosurgery, Medical Center - University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany
| | - Daniel Böhringer
- Eye Center, Medical Center - University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, Medical Center - University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany
| | - Shan Yang
- Department of Neuroradiology, Medical Center - University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany
| | - Niels Alexander Foit
- Department of Neurosurgery, Medical Center - University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Department of Epileptology, Medical Center - University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany
| | | | - Josef Zentner
- Department of Neurosurgery, Medical Center - University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany
| | - Wolf Alexander Lagrèze
- Eye Center, Medical Center - University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Nikolai Johannes Gross
- Eye Center, Medical Center - University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| |
Collapse
|
21
|
Kawasaki K, Matsumoto M, Kase M, Nagano O, Aoyagi K, Kageyama T. Quantification of the radiation dose to the pyramidal tract using tractography in treatment planning for stereotactic radiosurgery. Radiol Phys Technol 2017; 10:507-514. [PMID: 28785993 DOI: 10.1007/s12194-017-0411-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 11/27/2022]
Abstract
In stereotactic radiosurgery for intracranial lesions, optimization of the dose to the at-risk organs is important to avoid neurological complications. We aimed to quantify the dose to the pyramidal tract (PT) and improve treatment planning for gamma knife radiosurgery by combining tractography. Pyramidal tractography images were depicted in 23 patients with lesions adjacent to the PT and fused with stereotactic magnetic resonance images. We regarded the PT as an at-risk organ and performed dose planning. To assess the efficacy of this process, we compared clinical parameters between plans with and without tractography. In the plans with tractography, the maximum PT dose was significantly reduced, although the irradiation time was prolonged by 3.5 min. There was no significant difference in the dose covering 95% of the lesion volume (D95). This result suggests that the PT dose can be reduced while maintaining the D95 with clinically acceptable prolongation of the irradiation time.
Collapse
Affiliation(s)
- Kohei Kawasaki
- Department of Radiology, Chiba Cerebral and Cardiovascular Center, 575 Tsurumai, Ichihara, Chiba, 290-0512, Japan.
| | - Masanobu Matsumoto
- Department of Radiology, Chiba Cerebral and Cardiovascular Center, 575 Tsurumai, Ichihara, Chiba, 290-0512, Japan
| | - Masayuki Kase
- Department of Radiology, Chiba Cancer Center, 666-2 Nitonacyo Cyuo, Chiba, 260-8717, Japan
| | - Osamu Nagano
- Gamma Knife House, Department of Neurosurgery, Chiba Cerebral and Cardiovascular Center, 575 Tsurumai, Ichihara, Chiba, 290-0512, Japan
| | - Kyoko Aoyagi
- Gamma Knife House, Department of Neurosurgery, Chiba Cerebral and Cardiovascular Center, 575 Tsurumai, Ichihara, Chiba, 290-0512, Japan
| | - Takahiro Kageyama
- Department of Radiology, Chiba Cerebral and Cardiovascular Center, 575 Tsurumai, Ichihara, Chiba, 290-0512, Japan
| |
Collapse
|
22
|
Besson P, Bandt SK, Proix T, Lagarde S, Jirsa VK, Ranjeva JP, Bartolomei F, Guye M. Anatomic consistencies across epilepsies: a stereotactic-EEG informed high-resolution structural connectivity study. Brain 2017; 140:2639-2652. [DOI: 10.1093/brain/awx181] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/12/2017] [Indexed: 11/12/2022] Open
|
23
|
Essayed WI, Zhang F, Unadkat P, Cosgrove GR, Golby AJ, O'Donnell LJ. White matter tractography for neurosurgical planning: A topography-based review of the current state of the art. Neuroimage Clin 2017; 15:659-672. [PMID: 28664037 PMCID: PMC5480983 DOI: 10.1016/j.nicl.2017.06.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/17/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
We perform a review of the literature in the field of white matter tractography for neurosurgical planning, focusing on those works where tractography was correlated with clinical information such as patient outcome, clinical functional testing, or electro-cortical stimulation. We organize the review by anatomical location in the brain and by surgical procedure, including both supratentorial and infratentorial pathologies, and excluding spinal cord applications. Where possible, we discuss implications of tractography for clinical care, as well as clinically relevant technical considerations regarding the tractography methods. We find that tractography is a valuable tool in variable situations in modern neurosurgery. Our survey of recent reports demonstrates multiple potentially successful applications of white matter tractography in neurosurgery, with progress towards overcoming clinical challenges of standardization and interpretation.
Collapse
Affiliation(s)
- Walid I Essayed
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Fan Zhang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prashin Unadkat
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - G Rees Cosgrove
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren J O'Donnell
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Yin D, Thompson JA, Drees C, Ojemann SG, Nagae L, Pelak VS, Abosch A. Optic Radiation Tractography and Visual Field Deficits in Laser Interstitial Thermal Therapy for Amygdalohippocampectomy in Patients with Mesial Temporal Lobe Epilepsy. Stereotact Funct Neurosurg 2017; 95:107-113. [DOI: 10.1159/000454866] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/23/2016] [Indexed: 11/19/2022]
|
25
|
Sivakanthan S, Neal E, Murtagh R, Vale FL. The evolving utility of diffusion tensor tractography in the surgical management of temporal lobe epilepsy: a review. Acta Neurochir (Wien) 2016; 158:2185-2193. [PMID: 27566714 DOI: 10.1007/s00701-016-2910-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/27/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) is a relatively new imaging modality that has found many peri-operative applications in neurosurgery. METHODS A comprehensive survey of the applications of diffusion tensor imaging (DTI) in planning for temporal lobe epilepsy surgery was conducted. The presentation of this literature is supplemented by a case illustration. RESULTS The authors have found that DTI is well utilized in epilepsy surgery, primarily in the tractography of Meyer's loop. DTI has also been used to demonstrate extratemporal connections that may be responsible for surgical failure as well as perioperative planning. The tractographic anatomy of the temporal lobe is discussed and presented with original DTI pictures. CONCLUSIONS The uses of DTI in epilepsy surgery are varied and rapidly evolving. A discussion of the technology, its limitations, and its applications is well warranted and presented in this article.
Collapse
Affiliation(s)
- Sananthan Sivakanthan
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 2 Tampa General Circle, 7th Floor, Tampa, FL, 33606, USA.
| | - Elliot Neal
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 2 Tampa General Circle, 7th Floor, Tampa, FL, 33606, USA
- Brainlab Inc, Westchester, IL, USA
| | - Ryan Murtagh
- Department of Radiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Fernando L Vale
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 2 Tampa General Circle, 7th Floor, Tampa, FL, 33606, USA
| |
Collapse
|
26
|
Hajiabadi M, Samii M, Fahlbusch R. A preliminary study of the clinical application of optic pathway diffusion tensor tractography in suprasellar tumor surgery: preoperative, intraoperative, and postoperative assessment. J Neurosurg 2016; 125:759-65. [DOI: 10.3171/2015.6.jns1546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
Visual impairments are the most common objective manifestations of suprasellar lesions. Diffusion tensor imaging (DTI) is a noninvasive MRI modality that depicts the subcortical white matter tracts in vivo. In this study the authors tested the value of visual pathway tractography in comparison with visual field and visual acuity analyses.
METHODS
This prospective study consisted of 25 patients with progressive visual impairment due to suprasellar mass lesions and 6 control patients with normal vision without such lesions. Visual acuity, visual field, and the optic fundus were examined preoperatively and repeated 1 week and 3 months after surgery. Visual pathway DTI tractography was performed preoperatively, intraoperatively immediately after tumor resection, and 1 week and 3 months after surgery.
RESULTS
In the control group, pre- and postoperative visual status were normal and visual pathway tractography revealed fibers crossing the optic chiasm without any alteration. In patients with suprasellar lesions, vision improved in 24 of 25. The mean distance between optic tracts in tractography decreased after tumor resection and detectable fibers crossing the optic chiasm increased from 12% preoperatively to 72% postoperatively 3 months after tumor resection, and undetectable fibers crossing the optic chiasm decreased from 88% preoperatively to 27% postoperatively 3 months after tumor resection. Visual improvement after tumor removal 1 week and 3 months after surgery was significantly correlated with the distance between optic tracts in intraoperative tractography (p < 0.01).
CONCLUSIONS
Visual pathway DTI tractography appears to be a promising adjunct to the standard clinical and paraclinical visual examinations in patients with suprasellar mass lesions. The intraoperative findings, in particular the distance between optic tract fibers, can predict visual outcome after tumor resection. Furthermore, postoperative application of this technique may be useful in following anterior optic pathway recovery.
Collapse
Affiliation(s)
- Mohamadreza Hajiabadi
- 1International Neuroscience Institute, Hannover, Germany
- 2Brain and Spinal Cord Injury Research Center, Neuroscience Institute, and
- 3Iranian International Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Madjid Samii
- 1International Neuroscience Institute, Hannover, Germany
| | | |
Collapse
|
27
|
Jang SH, Seo JP. Damage to the Optic Radiation in Patients With Mild Traumatic Brain Injury. J Neuroophthalmol 2016; 35:270-3. [PMID: 25887304 DOI: 10.1097/wno.0000000000000249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND There are known limitations of conventional computed tomography and magnetic resonance imaging in detecting neural injury in patients with mild traumatic brain injury (TBI). Diffusion tensor imaging (DTI) provides a method to further assess cerebral injury in this patient population. We report 2 patients with mild TBI who showed injury of the optic radiation (OR) as demonstrated by DTI. METHOD Two patients who complained of visual field loss after mild TBI and 9 age-matched normal control subjects were recruited for this study. Peripheral field defects were detected with automated perimetry in both patients. RESULTS Regarding the configuration of OR, the total volume of OR was decreased in the right OR of both patients compared with controls; in contrast, the left ORs were divided into 2 parts in both patients. The voxel numbers of both ORs in both patients were more than 2 standard deviations lower than that of normal control subjects. The apparent diffusion coefficient value of the right OR in patient 2 was more than 2 standard deviations higher than that of normal controls. CONCLUSIONS We demonstrated injury of the OR using DTI in 2 patients who showed visual field defects after mild TBI.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation (SHJ, JPS), College of Medicine, Yeungnam University, Daemyungdong, Namku, Taegu, Republic of Korea
| | | |
Collapse
|
28
|
Faust K, Vajkoczy P. Distinct displacements of the optic radiation based on tumor location revealed using preoperative diffusion tensor imaging. J Neurosurg 2016; 124:1343-52. [DOI: 10.3171/2015.3.jns141584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
Visual field defects (VFDs) due to optic radiation (OR) injury are a common complication of temporal lobe surgery. The authors analyzed whether preoperative visualization of the optic tract would reduce this complication by influencing the surgeon’s decisions about surgical approaches. The authors also determined whether white matter shifts caused by temporal lobe tumors would follow predetermined patterns based on the tumor’s topography.
METHODS
One hundred thirteen patients with intraaxial tumors of the temporal lobe underwent preoperative diffusion tensor imaging (DTI) fiber tracking. In 54 of those patients, both pre- and postoperative VFDs were documented using computerized perimetry. Brainlab’s iPlan 2.5 navigation software was used for tumor reconstruction and fiber visualization after the fusion of DTI studies with their respective magnetization-prepared rapid gradient-echo (MP-RAGE) images. The tracking algorithm was as follows: minimum fiber length 100 mm, fractional anisotropy threshold 0.1. The lateral geniculate body and the calcarine cortex were employed as tract seeding points. Shifts of the OR caused by tumor were visualized in comparison with the fiber tracking of the patient’s healthy hemisphere.
RESULTS
Temporal tumors produced a dislocation of the OR but no apparent fiber destruction. The shift of white matter tracts followed fixed patterns dependent on tumor location: Temporolateral tumors resulted in a medial fiber shift, and thus a lateral transcortical approach is recommended. Temporopolar tumors led to a posterior shift, always including Meyer’s loop; therefore, a pterional transcortical approach is recommended. Temporomesial tumors produced a lateral and superior shift; thus, a transsylvian-transcisternal approach will result in maximum sparing of the fibers. Temporocentric tumors also induced a lateral fiber shift. For those tumors, a transsylvian-transopercular approach is recommended. Tumors of the fusiform gyrus generated a superior (and lateral) shift; consequently, a subtemporal approach is recommended to avoid white matter injury. In applying the approaches recommended above, new or worsened VFDs occurred in 4% of the patient cohort. Total neurological and surgical morbidity were less than 10%. In 90% of patients, gross-total resection was accomplished.
CONCLUSIONS
Preoperative visualization of the OR may help in avoiding postoperative VFDs.
Collapse
|
29
|
Stylianou P, Hoffmann C, Blat I, Harnof S. Neuroimaging for patient selection for medial temporal lobe epilepsy surgery: Part 1 Structural neuroimaging. J Clin Neurosci 2015; 23:14-22. [PMID: 26362835 DOI: 10.1016/j.jocn.2015.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/27/2015] [Accepted: 04/05/2015] [Indexed: 11/19/2022]
Abstract
The objective of part one of this review is to present the structural neuroimaging techniques that are currently used to evaluate patients with temporal lobe epilepsy (TLE), and to discuss their potential to define patient eligibility for medial temporal lobe surgery. A PubMed query, using Medline and Embase, and subsequent review, was performed for all English language studies published after 1990, reporting neuroimaging methods for the evaluation of patients with TLE. The extracted data included demographic variables, population and study design, imaging methods, gold standard methods, imaging findings, surgical outcomes and conclusions. Overall, 56 papers were reviewed, including a total of 1517 patients. This review highlights the following structural neuroimaging techniques: MRI, diffusion-weighted imaging, tractography, electroencephalography and magnetoencephalography. The developments in neuroimaging during the last decades have led to remarkable improvements in surgical precision, postsurgical outcome, prognosis, and the rate of seizure control in patients with TLE. The use of multiple imaging methods provides improved outcomes, and further improvements will be possible with future studies of larger patient cohorts.
Collapse
Affiliation(s)
- Petros Stylianou
- Department of Neurosurgery, The Chaim Sheba Medical Center, Nissim Aloni 16, Tel Aviv-Yafo 62919, Israel.
| | - Chen Hoffmann
- Department of Radiology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Ilan Blat
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Sagi Harnof
- Department of Neurosurgery, The Chaim Sheba Medical Center, Nissim Aloni 16, Tel Aviv-Yafo 62919, Israel
| |
Collapse
|
30
|
Cui Z, Ling Z, Pan L, Song H, Chen X, Shi W, Liu Z, Wang Q, Zhang Z, Li Y, Wang X, Qing Y, Xu X, Mao Z, Xu B, Yu X, Luan G. Optic radiation mapping reduces the risk of visual field deficits in anterior temporal lobe resection. Int J Clin Exp Med 2015; 8:14283-14295. [PMID: 26550412 PMCID: PMC4613097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/04/2015] [Indexed: 06/05/2023]
Abstract
Anterior temporal lobe resection (ATLR) is often complicated by superior quadrant visual field deficits (VFDs) because of damage to the anterior portion of the optic radiation (Meyer's loop). This study reports the evaluation of optic radiation mapping in protecting against VFDs in the ATLR. We retrospectively analyzed 52 patients with medically refractory temporal lobe epilepsy undergoing ATLR between January 2012 and December 2013. The surgical operations in Group I (n=32) were performed with the modified ATLR, and the operations in Group II (n=20) were aided by combining optic radiation mapping by diffusion tensor imaging, microscopic-based neuronavigation and the intraoperative magnetic resonance imaging (iMRI) technique. A t-test was used to compare the size of ATLR, and a chi square test was applied for the postoperative VFD and seizure outcomes. The optic radiation was reconstructed in all patients in Group II. The size of ATLR was 5.11±1.34 cm (3.3-8 cm), and 3.24±0.75 cm (2.2-4.8 cm) in Groups I and II, respectively; the size of ATLR was significantly smaller in Group II (F=9.803; P=0.00). The visual fields assessment by the Humphrey Field Analyser 30-2 test showed 27 patients (84.4%) in Group I suffered VFDs at 3 months post-operation, whereas only eight patients (40.0%) in Group II showed VFDs (Pearson chi square =11.01; P=0.001). The 6-month follow-up survey showed that 90.6% of patients in Group I achieved a good outcome (Engel class I-II), outperforming 85.0% in Group II, however, there was no statistically significant difference (chi square =0.382, P=0.581). This techniques of combining optic radiation mapping, microscopic-based neuronavigation and iMRI aided in precise mapping and hence reduction of the risk of visual field deficits in ATLR. The size of ATLR guided by optic radiation mapping was significantly smaller but the seizure outcome was not significantly affected.
Collapse
Affiliation(s)
- Zhiqiang Cui
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical SchoolBeijing 100853, China
| | - Zhipei Ling
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical SchoolBeijing 100853, China
| | - Longsheng Pan
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical SchoolBeijing 100853, China
| | - Huifang Song
- Department of Neurology, Hebei Province Luan County People’s Hospital063700, China
| | - Xiaolei Chen
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical SchoolBeijing 100853, China
| | - Wenjian Shi
- Department of Neurosurgery, Affiliated Tangshan People’s Hospital & Tangshan Cancer Hospital, Hebei United UniversityTangshan 063001, China
| | - Zhiqiang Liu
- Department of Neurosurgery, Affiliated Tangshan People’s Hospital & Tangshan Cancer Hospital, Hebei United UniversityTangshan 063001, China
| | - Qun Wang
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical SchoolBeijing 100853, China
| | - Zhizhong Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical SchoolBeijing 100853, China
| | - Ye Li
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical SchoolBeijing 100853, China
| | - Xuejie Wang
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical SchoolBeijing 100853, China
| | - Yeqing Qing
- Department of Radiology, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical SchoolBeijing 100853, China
| | - Xin Xu
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical SchoolBeijing 100853, China
| | - Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical SchoolBeijing 100853, China
| | - Bainan Xu
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical SchoolBeijing 100853, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical SchoolBeijing 100853, China
| | - Guoming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing Key Laboratory of EpilepsyBeijing 100093, China
| |
Collapse
|
31
|
Lilja Y, Ljungberg M, Starck G, Malmgren K, Rydenhag B, Nilsson DT. Tractography of Meyer's loop for temporal lobe resection—validation by prediction of postoperative visual field outcome. Acta Neurochir (Wien) 2015; 157:947-56; discussion 956. [PMID: 25845549 DOI: 10.1007/s00701-015-2403-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Postoperative visual field defects are common after temporal lobe resection because of injury to the most anterior part of the optic radiation, Meyer's loop. Diffusion tensor tractography is a promising technique for visualizing the optic radiation preoperatively. The aim of this study was to assess the anatomical accuracy of Meyer's loop, visualized by the two most common tractography methods—deterministic (DTG) and probabilistic tractography (PTG)—in patients who had undergone temporal lobe resection. METHODS Eight patients with temporal lobe resection for temporal lobe pathology were included. Perimetry and diffusion tensor imaging were performed pre- and postoperatively. Two independent operators analyzed the distance between the temporal pole and Meyer's loop (TP-ML) using DTG and PTG. Results were compared to each other, to data from previously published dissection studies and to postoperative perimetry results. For the latter, Spearman's rank correlation coefficient (r(s)) was used. RESULTS Median preoperative TP-ML distances for nonoperated sides were 42 and 35 mm, as determined by DTG and PTG, respectively. TP-ML assessed with PTG was a closer match to dissection studies. Intraclass correlation coefficients were 0.4 for DTG and 0.7 for PTG. Difference between preoperative TP-ML (by DTG and PTG, respectively) and resection length could predict the degree of postoperative visual field defects (DTG: r(s) = -0.86, p < 0.05; PTG: r(s) = -0.76, p < 0.05). CONCLUSION Both DTG and PTG could predict the degree of visual field defects. However, PTG was superior to DTG in terms of reproducibility and anatomical accuracy. PTG is thus a strong candidate for presurgical planning of temporal lobe resection that aims to minimize injury to Meyer's loop.
Collapse
|
32
|
Lilja Y, Nilsson DT. Strengths and limitations of tractography methods to identify the optic radiation for epilepsy surgery. Quant Imaging Med Surg 2015; 5:288-99. [PMID: 25853086 DOI: 10.3978/j.issn.2223-4292.2015.01.08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/22/2015] [Indexed: 11/14/2022]
Abstract
Diffusion tensor imaging (DTI) tractography (TG) can visualize Meyer's loop (ML), providing important information for the epilepsy surgery team, both for preoperative counseling and to reduce the frequency of visual field defects after temporal lobe resection (TLR). This review highlights significant steps in the TG process, specifically the processing of raw data including choice of TG algorithm and the interpretation and validation of results. A lack of standardization of TG of the optic radiation makes study comparisons challenging. We discuss results showing differences between studies and uncertainties large enough to be of clinical relevance and present implications of this technique for temporal lobe epilepsy surgery. Recent studies in temporal lobe epilepsy patients, employing TG intraoperatively, show promising results in reduction of visual field defects, with maintained seizure reduction.
Collapse
Affiliation(s)
- Ylva Lilja
- 1 Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ; 2 Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daniel T Nilsson
- 1 Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ; 2 Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
33
|
Dayan M, Kreutzer S, Clark CA. Tractography of the optic radiation: a repeatability and reproducibility study. NMR IN BIOMEDICINE 2015; 28:423-431. [PMID: 25703088 DOI: 10.1002/nbm.3266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/19/2014] [Accepted: 01/04/2015] [Indexed: 06/04/2023]
Abstract
Our main objective was to evaluate the repeatability and reproducibility of optic radiation (OR) reconstruction from diffusion MRI (dMRI) data. 14 adults were scanned twice with the same 60-direction dMRI sequence. Peaks in the diffusion profile were estimated with the single tensor (ST), Q-ball (QSH) and persistent angular structure (PAS) methods. Segmentation of the OR was performed by two experimenters with probabilistic tractography based on a manually drawn region-of-interest (ROI) protocol typically employed for OR segmentation, with both standard and extended sets of ROIs. The repeatability and reproducibility were assessed by calculating the intra-class correlation coefficient (ICC) of intra- and inter-rater experiments, respectively. ICCs were calculated for commonly used dMRI metrics (FA, MD, AD, RD) and anatomical dimensions of the optic radiation (distance from Meyer's loop to the temporal pole, ML-TP), as well as the Dice similarity coefficient (DSC) between the raters' OR segmentation. Bland-Altman plots were also calculated to investigate bias and variability in the reproducibility measurements. The OR was successfully reconstructed in all subjects by both raters. The ICC was found to be in the good to excellent range for both repeatability and reproducibility of the dMRI metrics, DSC and ML-TP distance. The Bland-Altman plots did not show any apparent systematic bias for any quantities. Overall, higher ICC values were found for the multi-fiber methods, QSH and PAS, and for the standard set of ROIs. Considering the good to excellent repeatability and reproducibility of all the quantities investigated, these findings support the use of multi-fiber OR reconstruction with a limited number of manually drawn ROIs in clinical applications utilizing either OR microstructure characterization or OR dimensions, as is the case in neurosurgical planning for temporal lobectomy.
Collapse
|
34
|
Lim JC, Phal PM, Desmond PM, Nichols AD, Kokkinos C, Danesh-Meyer HV, Kaye AH, Moffat BA. Probabilistic MRI tractography of the optic radiation using constrained spherical deconvolution: a feasibility study. PLoS One 2015; 10:e0118948. [PMID: 25742640 PMCID: PMC4351098 DOI: 10.1371/journal.pone.0118948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Background and Purpose Imaging the optic radiation (OR) is of considerable interest in studying diseases affecting the visual pathway and for pre-surgical planning of temporal lobe resections. The purpose of this study was to investigate the clinical feasibility of using probabilistic diffusion tractography based on constrained spherical deconvolution (CSD) to image the optic radiation. It was hypothesized that CSD would provide improved tracking of the OR compared with the widely used ball-and-stick model. Methods Diffusion weighted MRI (30 directions) was performed on twenty patients with no known visual deficits. Tractography was performed using probabilistic algorithms based on fiber orientation distribution models of local white matter trajectories. The performance of these algorithms was evaluated by comparing computational times and receiver operating characteristic results, and by correlation of anatomical landmark distances to dissection estimates. Results The results showed that it was consistently feasible to reconstruct individual optic radiations from clinically practical (4.5 minute acquisition) diffusion weighted imaging data sets using CSD. Tractography based on the CSD model resulted in significantly shorter computational times, improved receiver operating characteristic results, and shorter Meyer’s loop to temporal pole distances (in closer agreement with dissection studies) when compared to the ball-and-stick based algorithm. Conclusions Accurate tractography of the optic radiation can be accomplished using diffusion MRI data collected within a clinically practical timeframe. CSD based tractography was faster, more accurate and had better correlation with known anatomical landmarks than ball-and-stick tractography.
Collapse
Affiliation(s)
- Jeremy C. Lim
- Department of Radiology, The University of Melbourne, Victoria 3050, Australia
- Department of Radiology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Pramit M. Phal
- Department of Radiology, The University of Melbourne, Victoria 3050, Australia
- Department of Radiology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Patricia M. Desmond
- Department of Radiology, The University of Melbourne, Victoria 3050, Australia
- Department of Radiology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Andrew D. Nichols
- Department of Surgery, The University of Melbourne, Victoria 3050, Australia
- Department of Neurosurgery, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Chris Kokkinos
- Department of Radiology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Helen V. Danesh-Meyer
- Department of Surgery, The University of Melbourne, Victoria 3050, Australia
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Andrew H. Kaye
- Department of Surgery, The University of Melbourne, Victoria 3050, Australia
- Department of Neurosurgery, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Bradford A. Moffat
- Department of Radiology, The University of Melbourne, Victoria 3050, Australia
- Department of Radiology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
- * E-mail:
| |
Collapse
|
35
|
James JS, Radhakrishnan A, Thomas B, Madhusoodanan M, Kesavadas C, Abraham M, Menon R, Rathore C, Vilanilam G. Diffusion tensor imaging tractography of Meyer's loop in planning resective surgery for drug-resistant temporal lobe epilepsy. Epilepsy Res 2014; 110:95-104. [PMID: 25616461 DOI: 10.1016/j.eplepsyres.2014.11.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/09/2014] [Accepted: 11/19/2014] [Indexed: 11/24/2022]
Abstract
PURPOSE Whether Meyer's loop (ML) tracking using diffusion tensor imaging tractography (DTIT) can be utilized to avoid post-operative visual field deficits (VFD) after anterior temporal lobectomy (ATL) for drug-resistant temporal lobe epilepsy (TLE) using a large cohort of controls and patients. Also, we wanted to create a normative atlas of ML in normal population. METHODS DTIT was used to study ML in 75 healthy subjects and 25 patients with and without VFD following ATL. 1.5T MRI echo-planar DTI sequences with DTI data were processed in Nordic ICE using a probabilistic method; a multiple region of interest technique was used for reconstruction of optic radiation trajectory. Visual fields were assessed in patients pre- and post-operatively. RESULTS Results of ANOVA showed that the left ML-TP distance was less than right across all groups (p = 0.01). The average distance of ML from left temporal pole was 37.44 ± 4.7 mm (range: 32.2-46.6 mm) and from right temporal pole 39.08 ± 4.9 mm (range: 34.3-49.7 mm). Average distance of left and right temporal pole to tip of temporal horn was 28.32 ± 2.03 mm (range: 26.4-32.8 mm) and was 28.92 ± 2.09 mm, respectively (range: 25.9-33.3 mm). If the anterior limit of the Meyer's loop was ≤38 mm on the right and ≤35 mm on the left from the temporal pole, they are at a greater risk of developing VFDs. CONCLUSIONS DTIT is a novel technique to delineate ML and plays an important role in planning surgical resection in TLE to predict post-operative visual performance and disability.
Collapse
Affiliation(s)
- Jija S James
- Department of Imaging and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Ashalatha Radhakrishnan
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India.
| | - Bejoy Thomas
- Department of Imaging and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Mini Madhusoodanan
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Chandrashekharan Kesavadas
- Department of Imaging and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Mathew Abraham
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Ramshekhar Menon
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Chaturbhuj Rathore
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - George Vilanilam
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| |
Collapse
|
36
|
Tax CMW, Duits R, Vilanova A, ter Haar Romeny BM, Hofman P, Wagner L, Leemans A, Ossenblok P. Evaluating contextual processing in diffusion MRI: application to optic radiation reconstruction for epilepsy surgery. PLoS One 2014; 9:e101524. [PMID: 25077946 PMCID: PMC4117467 DOI: 10.1371/journal.pone.0101524] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/09/2014] [Indexed: 11/18/2022] Open
Abstract
Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning.
Collapse
Affiliation(s)
- Chantal M. W. Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands
- * E-mail:
| | - Remco Duits
- Department of Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anna Vilanova
- Department of Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Bart M. ter Haar Romeny
- Department of Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Paul Hofman
- Department of Function and Medical Technology, Epilepsy Center Kempenhaeghe, Heeze, The Netherlands
| | - Louis Wagner
- Department of Function and Medical Technology, Epilepsy Center Kempenhaeghe, Heeze, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pauly Ossenblok
- Department of Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Function and Medical Technology, Epilepsy Center Kempenhaeghe, Heeze, The Netherlands
| |
Collapse
|
37
|
Dreessen de Gervai P, Sboto-Frankenstein UN, Bolster RB, Thind S, Gruwel MLH, Smith SD, Tomanek B. Tractography of Meyer's Loop asymmetries. Epilepsy Res 2014; 108:872-82. [PMID: 24725809 DOI: 10.1016/j.eplepsyres.2014.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 01/24/2014] [Accepted: 03/16/2014] [Indexed: 11/20/2022]
Affiliation(s)
- Patricia Dreessen de Gervai
- National Research Council Institute for Biodiagnostics, Magnetic Resonance Technology, 435 Ellice Avenue, Winnipeg, MB R3B 1Y6, Canada
| | | | - R Bruce Bolster
- National Research Council Institute for Biodiagnostics, Magnetic Resonance Technology, 435 Ellice Avenue, Winnipeg, MB R3B 1Y6, Canada; Biopsychology Program, Department of Psychology, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| | - Sunny Thind
- National Research Council Institute for Biodiagnostics, Magnetic Resonance Technology, 435 Ellice Avenue, Winnipeg, MB R3B 1Y6, Canada
| | - Marco L H Gruwel
- National Research Council Aquatic and Crop Resource Development, 435 Ellice Avenue, Winnipeg, MB R3B 1Y6, Canada
| | - Stephen D Smith
- National Research Council Institute for Biodiagnostics, Magnetic Resonance Technology, 435 Ellice Avenue, Winnipeg, MB R3B 1Y6, Canada; Biopsychology Program, Department of Psychology, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| | - Boguslaw Tomanek
- Alberta Innovates Technology Futures, 435 Ellice Avenue, Winnipeg, MB R3B 1Y6, Canada; Multimodal and Functional Imaging Group, Central Europe Institute of Technology, Kamenice 753, Brno CZ-62500, Czech Republic
| |
Collapse
|
38
|
Application of diffusion tensor imaging and tractography of the optic radiation in anterior temporal lobe resection for epilepsy: a systematic review. Clin Neurol Neurosurg 2014; 124:59-65. [PMID: 25016240 DOI: 10.1016/j.clineuro.2014.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/08/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Approximately 50-100% of patients with temporal lobe epilepsy undergoing anterior temporal lobe resection (ATLR) will suffer a postoperative visual field defect (VFD) due to disruption of the optic radiation (OpR). OBJECTIVE We conducted a systematic review of the literature to examine the role of DTI and tractography in ATLR and its potential in reducing the incidence of postoperative VFD. METHODS We conducted an electronic literature search using PubMed, Embase, Web of Science and BMJ case report databases. Eligibility for study inclusion was determined on abstract screening using the following criteria: the study must have been (1) an original investigation or case report in humans; (2) investigating the OpR with DTI in cases of ATLR in temporal lobe epilepsy; (3) investigating postoperative VFD. All forms of ATLR and ways of assessing VFD were included to reflect clinical practice. RESULTS 13 studies (four case reports, eight prospective observational studies, one prospective comparative trial) were included in the review, 179 (mean±SD, 13.8±12.6; range, 1-48) subjects were investigated using DTI. The time of postoperative VFD measurement differed between the detected studies, ranging from two weeks to nine years following ATLR. A modest number of studies and insufficient statistical homogeneity precluded meta-analysis. However, DTI methods were consistently accurate at quantifying and predicting postoperative damage to the OpR. These methods revealed a correlation between the extent of OpR damage and the severity of postoperative VFD. The first and only trial with 15 subjects compared to 23 controls reported that using intraoperative tractography in ATLR significantly reduces the occurrence of postoperative VFD on comparison to conventional surgical planning. CONCLUSIONS DTI shows potential to be an effective method used in planning ATLR. Findings from a single modest sized study suggest that tractography may be employed as part of intraoperative navigation techniques in order to avoid injury to the OpR. Further research needs to be conducted to ensure the applicability and effectiveness of this technology before implementation in routine clinical practice.
Collapse
|
39
|
Visualizing Meyer's loop: A comparison of deterministic and probabilistic tractography. Epilepsy Res 2014; 108:481-90. [PMID: 24559840 DOI: 10.1016/j.eplepsyres.2014.01.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/29/2013] [Accepted: 01/14/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Diffusion tensor tractography of the anterior extent of the optic radiation - Meyer's loop - prior to temporal lobe resection (TLR) may reduce the risk for postoperative visual field defect. Currently there is no standardized way to perform tractography. OBJECTIVE To visualize Meyer's loop using deterministic (DTG) and probabilistic tractography (PTG) at different probability levels, with the primary aim to explore possible differences between methods, and the secondary aim to explore anatomical accuracy. METHODS Twenty-three diffusion tensor imaging exams (11 controls and 7 TLR-patients, pre- and post-surgical) were analyzed using DTG and PTG thresholded at probability levels 0.2%, 0.5%, 1%, 5% and 10%. The distance from the tip of the temporal lobe to the anterior limit of Meyer's loop (TP-ML) was measured in 46 optic radiations. Differences in TP-ML between the methods were compared. Results of the control group were compared to dissection studies and to a histological atlas. RESULTS For controls and patients together, there were statistically significant differences (p<0.01) for TP-ML between all methods thresholded at PTG ≤1% compared to all methods thresholded at PTG ≥5% and DTG. There were no statistically significant differences between PTG 0.2%, 0.5% and 1% or between PTG 5%, 10% and DTG. For the control group, PTG ≤1% showed a closer match to dissection studies and PTG 1% showed the best match to histological tracings of Meyer's loop. CONCLUSIONS Choice of tractography method affected the visualized location of Meyer's loop significantly in a heterogeneous, clinically relevant study group. For the controls, PTG at probability levels ≤1% was a closer match to dissection studies. To determine the anterior extent of Meyer's loop, PTG is superior to DTG and the probability level of PTG matters.
Collapse
|
40
|
Sajko T, Skoro I, Rotim K. How I do it - selective amygdalohippocampectomy via subtemporal approach. Acta Neurochir (Wien) 2013; 155:2381-7. [PMID: 23989995 DOI: 10.1007/s00701-013-1846-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/10/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Surgery is superior over medicamentous treatment of pharmacoresistant mesial temporal lobe epilepsy caused by hippocampal sclerosis. The armamentarium of surgical procedures comprises standard temporal lobectomy and more selective procedures. Selective amygdalohippocampectomy can be performed via transcortical, transsylvian or subtemporal approach. METHOD Describe the selective amygdalohippocampectomy through the subtemporal approach CONCLUSION After the detailed preoperative epilepsy evaluation, surgery can be offered to pharmacoresistant epilepsy patient with hippocampal sclerosis. Selective amygdalohippocampectomy can be safely performed through the subtemporal approach. The good knowledge of the mesial temporal lobe anatomy is necessary when performing this procedure.
Collapse
Affiliation(s)
- Tomislav Sajko
- Department of Neurosurgery, "Sestre milosrdnice" University Hospital Center, Vinogradska cesta 29, 10000, Zagreb, Croatia
| | | | | |
Collapse
|
41
|
Winston GP. Epilepsy surgery, vision, and driving: what has surgery taught us and could modern imaging reduce the risk of visual deficits? Epilepsia 2013; 54:1877-88. [PMID: 24199825 PMCID: PMC4030586 DOI: 10.1111/epi.12372] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2013] [Indexed: 11/29/2022]
Abstract
Up to 40% of patients with temporal lobe epilepsy (TLE) are refractory to medication. Surgery is an effective treatment but may cause new neurologic deficits including visual field deficits (VFDs). The ability to drive after surgery is a key goal, but a postoperative VFD precludes driving in 4-50% of patients even if seizure-free. VFDs are a consequence of damage to the most anterior portion of the optic radiation, Meyer's loop. Anatomic dissection reveals that the anterior extent of Meyer's loop is highly variable and may clothe the temporal horn, a key landmark entered during temporal lobe epilepsy surgery. Experience from surgery since the 1940s has shown that VFDs are common (48-100%) and that the degree of resection affects the frequency or severity of the deficit. The pseudowedge shape of the deficit has led to a revised retinotopic model of the organization of the optic radiation. Evidence suggests that the left optic radiation is more anterior and thus at greater risk. Alternative surgical approaches, such as selective amygdalo-hippocampectomy, may reduce this risk, but evidence is conflicting or lacking. The optic radiation can be delineated in vivo using diffusion tensor imaging tractography, which has been shown to be useful in predicting the postoperative VFDs and in surgical planning. These data are now being used for surgical guidance with the aim of reducing the severity of VFDs. Compensation for brain shift occurring during surgery can be performed using intraoperative magnetic resonance imaging (MRI), but the additional utility of this expensive technique remains unproven.
Collapse
Affiliation(s)
- Gavin P Winston
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
42
|
Nishi T, Yukawa E, Taoka T, Ogata N. Unilateral Optic Nerve Hypoplasia with Contralateral Optic Pathway Hypoplasia: A Case Report. Neuroophthalmology 2013; 37:116-119. [DOI: 10.3109/01658107.2013.785572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/09/2013] [Accepted: 02/18/2013] [Indexed: 11/13/2022] Open
|
43
|
Abstract
The potential utility of diffusion tensor (DT) imaging in clinical practice is broad, and new applications continue to evolve as technology advances. Clinical applications of DT imaging and tractography include tissue characterization, lesion localization, and mapping of white matter tracts. DT imaging metrics are sensitive to microstructural changes associated with central nervous system disease; however, further research is needed to enhance specificity so as to facilitate more widespread clinical application. Preoperative tract mapping, with either directionally encoded color maps or tractography, provides useful information to the neurosurgeon and has been shown to improve clinical outcomes.
Collapse
|
44
|
Benjamin CFA, Singh JM, Prabhu SP, Warfield SK. Optimization of tractography of the optic radiations. Hum Brain Mapp 2012; 35:683-97. [PMID: 23225566 DOI: 10.1002/hbm.22204] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/13/2012] [Accepted: 08/29/2012] [Indexed: 11/12/2022] Open
Abstract
Imaging and delineation of the optic radiations (OpRs) remains challenging, despite repeated attempts to achieve reliable validated tractography of this complex structure. Previous studies have used varying methods to generate representations of the OpR which differ markedly from one another and, frequently, from the OpR's known structure. We systematically examined the influence of a key variable that has differed across previous studies, the tractography seed region, in 13 adult participants (nine male; mean age 31 years; SD 8.7 years; range 16-47). First, we compared six seed regions at the lateral geniculate nucleus (LGN) and sagittal stratum based on the literature and known OpR anatomy. Three of the LGN regions seeded streamlines consistent with the OpR's three "bundles," whereas a fourth seeded streamlines consistent with each of the three bundles. The remaining two generated OpR streamlines unreliably and inconsistently. Two stratum regions seeded the radiations. This analysis identified a set of optimal regions of interest (ROI) for seeding OpR tractography and important inclusion and exclusion ROI. An optimized approach was then used to seed LGN regions to the stratum. The radiations, including streamlines consistent with Meyer's Loop, were streamlined in all cases. Streamlines extended 0.2 ± 2.4 mm anterior to the tip of the anterior horn of the lateral ventricle. These data suggest some existing approaches likely seed representations of the OpR that are visually plausible but do not capture all OpR components, and that using an optimized combination of regions seeded previously allows optimal mapping of this complex structure.
Collapse
Affiliation(s)
- Christopher F A Benjamin
- Harvard Medical School, Boston, Massachusetts; Department of Radiology, Boston Children's Hospital, Boston, Massachusetts; Semel institute, UCLA, Los Angeles, California
| | | | | | | |
Collapse
|
45
|
Wu W, Rigolo L, O'Donnell LJ, Norton I, Shriver S, Golby AJ. Visual pathway study using in vivo diffusion tensor imaging tractography to complement classic anatomy. Neurosurgery 2012; 70:145-56; discussion 156. [PMID: 21808220 DOI: 10.1227/neu.0b013e31822efcae] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Knowledge of the individual course of the optic radiations (ORs) is important to avoid postoperative visual deficits. Cadaveric studies of the visual pathways are limited because it has not been possible to separate the OR from neighboring tracts accurately and results may not apply to individual patients. Diffusion tensor imaging studies may be able to demonstrate the relationships between the OR and neighboring fibers in vivo in individual subjects. OBJECTIVE To use diffusion tensor imaging tractography to study the OR and the Meyer loop (ML) anatomy in vivo. METHODS Ten healthy subjects underwent magnetic resonance imaging with diffusion imaging at 3 T. With the use of a fiducial-based diffusion tensor imaging tractography tool (Slicer 3.3), seeds were placed near the lateral geniculate nucleus to reconstruct individual visual pathways and neighboring tracts. Projections of the ORs onto 3-dimensional brain models were shown individually to quantify relationships to key landmarks. RESULTS Two patterns of visual pathways were found. The OR ran more commonly deep in the whole superior and middle temporal gyri and superior temporal sulcus. The OR was closely surrounded in all cases by an inferior longitudinal fascicle and a parieto/occipito/temporo-pontine fascicle. The mean left and right distances between the tip of the OR and temporal pole were 39.8 ± 3.8 and 40.6 ± 5.7 mm, respectively. CONCLUSION Diffusion tensor imaging tractography provides a practical complementary method to study the OR and the Meyer loop anatomy in vivo with reference to individual 3-dimensional brain anatomy.
Collapse
Affiliation(s)
- Wentao Wu
- Brigham and Women's Hospital, Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
46
|
Ide S, Kakeda S, Korogi Y, Yoneda T, Nishimura J, Sato T, Hiai Y, Ohnari N, Takahashi M, Hachisuka K, Fujiwara H, Matsuyama A. Delineation of optic radiation and stria of Gennari on high-resolution phase difference enhanced imaging. Acad Radiol 2012; 19:1283-9. [PMID: 22854006 DOI: 10.1016/j.acra.2012.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/05/2012] [Accepted: 05/14/2012] [Indexed: 11/16/2022]
Abstract
RATIONALE AND OBJECTIVES Phase difference enhanced (PADRE) imaging technique can selectively enhanced the phase difference between the target and surrounding tissue. Our purpose is to assess the delineations of the optic radiation and primary visual cortex (stria of Gennari) using PADRE. MATERIALS AND METHODS The subjects were 6 healthy volunteers. Axial and coronal high-spatial resolution PADRE images were acquired covering the entire optic radiation using a 3T magnetic resonance system. Two radiologists evaluated the PADRE and susceptibility-weighted imaging (SWI)-like images for the delineation of four layers at the optic radiation (tapetum, internal sagittal stratum, external sagittal stratum, and adjacent white matter) on the basis of the anatomic appearances of the cadaveric specimens stained with Bodian's method and Kluver-Barrera method. The radiologists also assessed the delineations of the stria of Gennari on PADRE and SWI-like images. RESULTS In all 6 healthy subjects, the PADRE images clearly identified the four layers at the optic radiation, as well as the stria of Gennari, which were difficult to appreciate in SWI-like images. The anatomic appearances of the optic radiation on PADRE images were more similar to those seen in the specimens stained with Kluver-Barrera method than with Bodian's method. CONCLUSION The PADRE technique can delineate the four layers at the optic radiation and the stria of Gennari; the differences in myelin densities can also be enhanced. The PADRE technique may have the potential to reinforce the clinical utility of MRI in the diagnosis of diseases that affect the optic radiation and primary visual cortex.
Collapse
Affiliation(s)
- Satoru Ide
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mandelstam SA. Challenges of the anatomy and diffusion tensor tractography of the Meyer loop. AJNR Am J Neuroradiol 2012; 33:1204-10. [PMID: 22422189 DOI: 10.3174/ajnr.a2652] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review addresses the complex and often controversial anatomy of the anterior bundle of the OR, also known as the Meyer loop. Before the advent of MR imaging, 2 main types of studies attempted to ascertain the "safe" distance for anterior temporal lobe resection to avoid postsurgical VFDs. There were those based first on postoperative VFD correlation and second on anatomic dissection studies. In the past decade, noninvasive diffusion MR imaging-based tractography techniques have been developed in an attempt to elucidate white matter connectivity. Although many of these techniques are still experimental, there are some clinical situations for which they may prove to be very helpful if properly performed and validated. The motivation for this review was to improve the outcome of patients with TLE undergoing temporal lobectomy: Would having anatomic information about the OR available to the neurosurgeon decrease the risk of postsurgical VFDs?
Collapse
Affiliation(s)
- S A Mandelstam
- Florey Neuroscience and Brain Research Institutes, Melbourne Brain Centre, Heidelberg, Victoria, Australia.
| |
Collapse
|
48
|
Gras-Combe G, Moritz-Gasser S, Herbet G, Duffau H. Intraoperative subcortical electrical mapping of optic radiations in awake surgery for glioma involving visual pathways. J Neurosurg 2012; 117:466-73. [PMID: 22794319 DOI: 10.3171/2012.6.jns111981] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Preservation of the visual field in glioma surgery, especially avoidance of hemianopia, is crucial for patients' quality of life, particularly for driving. Recent studies used tractography or cortical occipital stimulation to try to avoid visual deficit. However, optic radiations have not been directly mapped intraoperatively. The authors present, for the first time to their knowledge, a consecutive series of awake surgeries for cerebral glioma with intrasurgical identification and preservation of visual pathways using subcortical electrical mapping. METHODS Fourteen patients underwent awake resection of a glioma (1 WHO Grade I, 11 WHO Grade II, 2 WHO Grade III) involving the optic radiations. The patients had no presurgical visual field deficit. Intraoperatively, a picture-naming task was used, with presentation of 2 objects situated diagonally on a screen divided into 4 quadrants. An image was presented in the quadrant to be saved and another image was presented in the opposite quadrant. Direct subcortical electrostimulation was repeatedly performed without the patient's knowledge, until optic radiations were identified (transient visual disturbances). All patients underwent an objective visual field assessment 3 months after surgery. RESULTS All patients experienced visual symptoms during stimulation. These disturbances led the authors to stop the tumor resection at that level. Postoperatively, only 1 patient had a permanent hemianopia, despite an expected quadrantanopia in 12 cases. The mean extent of resection was 93.6% (range 85%-100%). CONCLUSIONS Online identification of optic radiations by direct subcortical electrostimulation is a reliable and effective method to avoid permanent hemianopia in surgery for gliomas involving visual pathways.
Collapse
Affiliation(s)
- Guillaume Gras-Combe
- Department of Neurosurgery, Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| | | | | | | |
Collapse
|
49
|
Yeo SS, Kim SH, Kim OL, Kim MS, Jang SH. Optic radiation injury in a patient with traumatic brain injury. Brain Inj 2012; 26:891-5. [DOI: 10.3109/02699052.2012.661119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Corticoreticular pathway in the human brain: diffusion tensor tractography study. Neurosci Lett 2011; 508:9-12. [PMID: 22197953 DOI: 10.1016/j.neulet.2011.11.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 11/21/2022]
Abstract
The corticoreticular pathway (CRP) is involved in postural control and locomotor function. No study has been conducted for identification of the CRP in the human brain. In the current study, we attempted to identify the CRP in the human brain, using diffusion tensor tractography (DTT). We recruited 24 healthy volunteers for this study. Diffusion tensor images were scanned using 1.5-T. For reconstruction of the CRP, a seed region of interest (ROI) was placed on the reticular formation of the medulla. The first target ROI was placed on the midbrain tegmentum and the second target ROI was placed on the premotor cortex (Brodmann area 6). Values of fractional anisotropy, mean diffusivity, and tract volume of the CRP were measured. The CRP, which originated from the premotor cortex, descended through the corona radiata and the posterior limb of the internal capsule anterior to the corticospinal tract. In the midbrain and pons, it passed through the tegmentum and terminated at the pontomedullary reticular formation. No differences in terms of fractional anisotropy, mean diffusivity, and tract volume were observed between hemispheres (P>0.05). We identified the CRP in the human brain using DTT. These methods and results would be helpful to both clinicians and researchers in the neuroscience field.
Collapse
|