2
|
Utianski RL, Botha H, Martin PR, Schwarz CG, Duffy JR, Clark HM, Machulda MM, Butts AM, Lowe VJ, Jack CR, Senjem ML, Spychalla AJ, Whitwell JL, Josephs KA. Clinical and neuroimaging characteristics of clinically unclassifiable primary progressive aphasia. BRAIN AND LANGUAGE 2019; 197:104676. [PMID: 31419589 PMCID: PMC6726500 DOI: 10.1016/j.bandl.2019.104676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/01/2019] [Accepted: 08/04/2019] [Indexed: 05/12/2023]
Abstract
Many patients who meet core/root criteria for Primary Progressive Aphasia (PPA) are not classifiable as a recognized variant and are often excluded from neuroimaging studies. Here, we detail neurological, neuropsychological, speech and language assessments, and anatomic and molecular neuroimaging (MRI, PiB-PET, and FDG-PET) for fifteen (8 female) clinically unclassifiable PPA patients. Median age of onset was 64 years old with median 3 years disease duration at exam. Three patients were amyloid positive on PiB-PET. 14/15 patients had abnormal FDG-PETs with left predominant hypometabolism, affecting frontal, temporal, parietal, and even occipital lobes. Patients had mild to severe clinical presentations. Visualization of the FDG-PETs principal component analysis revealed patterns of hypometabolism similar to those seen in the PPA variants and suggests the brain regions affected in unclassifiable PPA patients are no different from those who are more easily classifiable. These findings may inform future modifications to the diagnostic criteria to improve diagnostic classification.
Collapse
Affiliation(s)
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Peter R Martin
- Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | | | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Mary M Machulda
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
3
|
Routier A, Habert MO, Bertrand A, Kas A, Sundqvist M, Mertz J, David PM, Bertin H, Belliard S, Pasquier F, Bennys K, Martinaud O, Etcharry-Bouyx F, Moreaud O, Godefroy O, Pariente J, Puel M, Couratier P, Boutoleau-Bretonnière C, Laurent B, Migliaccio R, Dubois B, Colliot O, Teichmann M. Structural, Microstructural, and Metabolic Alterations in Primary Progressive Aphasia Variants. Front Neurol 2018; 9:766. [PMID: 30279675 PMCID: PMC6153366 DOI: 10.3389/fneur.2018.00766] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/23/2018] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging studies have described the brain alterations in primary progressive aphasia (PPA) variants (semantic, logopenic, nonfluent/agrammatic). However, few studies combined T1, FDG-PET, and diffusion MRI techniques to study atrophy, hypometabolism, and tract alterations across the three PPA main variants. We therefore explored a large early-stage cohort of semantic, logopenic and nonfluent/agrammatic variants (N = 86) and of 23 matched healthy controls with anatomical MRI (cortical thickness), FDG PET (metabolism) and diffusion MRI (white matter tracts analyses), aiming at identifying cortical and sub-cortical brain alterations, and confronting these alterations across imaging modalities and aphasia variants. In the semantic variant, there was cortical thinning and hypometabolism in anterior temporal cortices, with left-hemisphere predominance, extending toward posterior temporal regions, and affecting tracts projecting to the anterior temporal lobes (inferior longitudinal fasciculus, uncinate fasciculus) and tracts projecting to or running nearby posterior temporal cortices: (superior longitudinal fasciculus, inferior frontal-occipital fasciculus). In the logopenic variant metabolic alterations were more extensive than atrophy affecting mainly the left temporal-parietal junction and extending toward more anterior temporal cortices. Metabolic and tract data were coherent given the alterations of the left superior and inferior longitudinal fasciculus and the left inferior frontal-occipital fasciculus. In the nonfluent/agrammatic variant cortical thinning and hypometabolism were located in the left frontal cortex but Broca's area was only affected on metabolic measures. Metabolic and tract alterations were coherent as reflected by damage to the left uncinate fasciculus connecting with Broca's area. Our findings provide a full-blown statistically robust picture of brain alterations in early-stage variants of primary progressive aphasia which has implications for diagnosis, classification and future therapeutic strategies. They demonstrate that in logopenic and semantic variants patterns of brain damage display a non-negligible overlap in temporal regions whereas they are substantially distinct in the nonfluent/agrammatic variant (frontal regions). These results also indicate that frontal networks (combinatorial syntax/phonology) and temporal networks (lexical/semantic representations) constitute distinct anatomo-functional entities with differential vulnerability to degenerative processes in aphasia variants. Finally, the identification of the specific damage patterns could open an avenue for trans-cranial stimulation approaches by indicating the appropriate target-entry into the damaged language system.
Collapse
Affiliation(s)
- Alexandre Routier
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, FrontLab, Paris, France.,Inria, Aramis Project-Team, Paris, France
| | - Marie-Odile Habert
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Inserm U 1146, CNRS UMR, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Department of Nuclear Medicine, Paris, France.,Centre Acquisition et Traitement des Images, Paris, France
| | - Anne Bertrand
- Inria, Aramis Project-Team, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, AP-HP, Paris, France.,AP-HP, Hôpital Saint Antoine, Department of Radiology, Paris, France
| | - Aurélie Kas
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Inserm U 1146, CNRS UMR, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Department of Nuclear Medicine, Paris, France
| | - Martina Sundqvist
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, FrontLab, Paris, France.,Inria, Aramis Project-Team, Paris, France
| | | | - Pierre-Maxime David
- Department of Nuclear Medicine, European Hospital Georges Pompidou, Paris, France
| | - Hugo Bertin
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Inserm U 1146, CNRS UMR, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Department of Nuclear Medicine, Paris, France.,Centre Acquisition et Traitement des Images, Paris, France
| | - Serge Belliard
- Normandie University, UNICAEN, EPHE, INSERM, U1077, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Department of Neurology, Memory Research and Resource Center for Alzheimer's Disease, University Hospital Pontchaillou, Rennes, France
| | - Florence Pasquier
- Department of Neurology, University Hospital of Lille, Lille, France
| | - Karim Bennys
- Department of Neurology, Memory Research and Resource Center for Alzheimer's Disease, University Hospital of Montpellier, Montpellier, France
| | - Olivier Martinaud
- Normandie University, UNICAEN, EPHE, INSERM, U1077, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Department of Neurology, University Hospital of Rouen, Rouen, France
| | - Frédérique Etcharry-Bouyx
- Department of Neurology, Memory Research and Resource Center for Alzheimer's Disease, University Hospital of Angers, Angers, France
| | - Olivier Moreaud
- Department of Psychiatry, Neurology and Rehabilitation University Hospital of Grenoble, Memory Research and Resource Center for Alzheimer's Disease, Grenoble, France
| | - Olivier Godefroy
- Department of Neurology and Laboratory of Functional Neurosciences (EA 4559), University Hospital of Amiens, Amiens, France
| | - Jérémie Pariente
- CHU Toulouse, Neurology Department, Toulouse, France.,INSERM/UPS, UMR 1214-ToNIC, Toulouse NeuroImaging Center, University of Toulouse III, Toulouse, France
| | - Michèle Puel
- CHU Toulouse, Neurology Department, Toulouse, France
| | - Philippe Couratier
- Department of Neurology, University Hospital of Limoges, Limoges, France
| | | | - Bernard Laurent
- Department of Neurology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Raphaëlla Migliaccio
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, FrontLab, Paris, France.,Department of Neurology, Institute for Memory and Alzheimer's Disease, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Bruno Dubois
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, FrontLab, Paris, France.,Department of Neurology, Institute for Memory and Alzheimer's Disease, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.,National Reference Center for "PPA and rare dementias", Institute for Memory and Alzheimer's Disease, AP-HP, Paris, France
| | - Olivier Colliot
- Inria, Aramis Project-Team, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.,AP-HP, Departments of Neuroradiology and Neurology, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marc Teichmann
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, FrontLab, Paris, France.,Department of Neurology, Institute for Memory and Alzheimer's Disease, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.,National Reference Center for "PPA and rare dementias", Institute for Memory and Alzheimer's Disease, AP-HP, Paris, France
| |
Collapse
|
4
|
Matias-Guiu JA, Díaz-Álvarez J, Ayala JL, Risco-Martín JL, Moreno-Ramos T, Pytel V, Matias-Guiu J, Carreras JL, Cabrera-Martín MN. Clustering Analysis of FDG-PET Imaging in Primary Progressive Aphasia. Front Aging Neurosci 2018; 10:230. [PMID: 30108500 PMCID: PMC6079194 DOI: 10.3389/fnagi.2018.00230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/11/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Primary progressive aphasia (PPA) is a clinical syndrome characterized by the neurodegeneration of language brain systems. Three main clinical forms (non-fluent, semantic, and logopenic PPA) have been recognized, but applicability of the classification and the capacity to predict the underlying pathology is controversial. We aimed to study FDG-PET imaging data in a large consecutive case series of patients with PPA to cluster them into different subtypes according to regional brain metabolism. Methods: 122 FDG-PET imaging studies belonging to 91 PPA patients and 28 healthy controls were included. We developed a hierarchical agglomerative cluster analysis with Ward's linkage method, an unsupervised clustering algorithm. We conducted voxel-based brain mapping analysis to evaluate the patterns of hypometabolism of each identified cluster. Results: Cluster analysis confirmed the three current PPA variants, but the optimal number of clusters according to Davies-Bouldin index was 6 subtypes of PPA. This classification resulted from splitting non-fluent variant into three subtypes, while logopenic PPA was split into two subtypes. Voxel-brain mapping analysis displayed different patterns of hypometabolism for each PPA group. New subtypes also showed a different clinical course and were predictive of amyloid imaging results. Conclusion: Our study found that there are more than the three already recognized subtypes of PPA. These new subtypes were more predictive of clinical course and showed different neuroimaging patterns. Our results support the usefulness of FDG-PET in evaluating PPA, and the applicability of computational methods in the analysis of brain metabolism for improving the classification of neurodegenerative disorders.
Collapse
Affiliation(s)
- Jordi A Matias-Guiu
- Department of Neurology, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
| | - Josefa Díaz-Álvarez
- Department of Computer Architecture and Communications, Centro Universitario de Mérida, Universidad de Extremadura, Mérida, Spain
| | - José Luis Ayala
- Department of Computer Architecture and Automation, Universidad Complutense, Madrid, Spain
| | - José Luis Risco-Martín
- Department of Computer Architecture and Automation, Universidad Complutense, Madrid, Spain
| | - Teresa Moreno-Ramos
- Department of Neurology, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
| | - Vanesa Pytel
- Department of Neurology, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
| | - Jorge Matias-Guiu
- Department of Neurology, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
| | - José Luis Carreras
- Department of Nuclear Medicine, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
| | - María Nieves Cabrera-Martín
- Department of Nuclear Medicine, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
| |
Collapse
|