1
|
Arenaza‐Urquijo EM, Boyle R, Casaletto K, Anstey KJ, Vila‐Castelar C, Colverson A, Palpatzis E, Eissman JM, Kheng Siang Ng T, Raghavan S, Akinci M, Vonk JMJ, Machado LS, Zanwar PP, Shrestha HL, Wagner M, Tamburin S, Sohrabi HR, Loi S, Bartrés‐Faz D, Dubal DB, Vemuri P, Okonkwo O, Hohman TJ, Ewers M, Buckley RF. Sex and gender differences in cognitive resilience to aging and Alzheimer's disease. Alzheimers Dement 2024; 20:5695-5719. [PMID: 38967222 PMCID: PMC11350140 DOI: 10.1002/alz.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 07/06/2024]
Abstract
Sex and gender-biological and social constructs-significantly impact the prevalence of protective and risk factors, influencing the burden of Alzheimer's disease (AD; amyloid beta and tau) and other pathologies (e.g., cerebrovascular disease) which ultimately shape cognitive trajectories. Understanding the interplay of these factors is central to understanding resilience and resistance mechanisms explaining maintained cognitive function and reduced pathology accumulation in aging and AD. In this narrative review, the ADDRESS! Special Interest Group (Alzheimer's Association) adopted a multidisciplinary approach to provide the foundations and recommendations for future research into sex- and gender-specific drivers of resilience, including a sex/gender-oriented review of risk factors, genetics, AD and non-AD pathologies, brain structure and function, and animal research. We urge the field to adopt a sex/gender-aware approach to resilience to advance our understanding of the intricate interplay of biological and social determinants and consider sex/gender-specific resilience throughout disease stages. HIGHLIGHTS: Sex differences in resilience to cognitive decline vary by age and cognitive status. Initial evidence supports sex-specific distinctions in brain pathology. Findings suggest sex differences in the impact of pathology on cognition. There is a sex-specific change in resilience in the transition to clinical stages. Gender and sex factors warrant study: modifiable, immune, inflammatory, and vascular.
Collapse
Affiliation(s)
- Eider M. Arenaza‐Urquijo
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Rory Boyle
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kaitlin Casaletto
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kaarin J. Anstey
- University of New South Wales Ageing Futures InstituteSydneyNew South WalesAustralia
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Psychology, University of New South WalesSidneyNew South WalesAustralia
| | | | - Aaron Colverson
- University of Florida Center for Arts in Medicine Interdisciplinary Research LabUniversity of Florida, Center of Arts in MedicineGainesvilleFloridaUSA
| | - Eleni Palpatzis
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Jaclyn M. Eissman
- Vanderbilt Memory and Alzheimer's Center, Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ted Kheng Siang Ng
- Rush Institute for Healthy Aging and Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | | | - Muge Akinci
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Jet M. J. Vonk
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Luiza S. Machado
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, FarroupilhaPorto AlegreBrazil
| | - Preeti P. Zanwar
- Jefferson College of Population Health, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- The Network on Life Course and Health Dynamics and Disparities, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Maude Wagner
- Rush Alzheimer's Disease Center, Rush University Medical CenterChicagoIllinoisUSA
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Hamid R. Sohrabi
- Centre for Healthy AgeingHealth Future InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Psychology, Murdoch UniversityMurdochWestern AustraliaAustralia
| | - Samantha Loi
- Neuropsychiatry Centre, Royal Melbourne HospitalParkvilleVictoriaAustralia
- Department of PsychiatryUniversity of MelbourneParkvilleVictoriaAustralia
| | - David Bartrés‐Faz
- Department of MedicineFaculty of Medicine and Health Sciences & Institut de NeurociènciesUniversity of BarcelonaBarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques (IDIBAPS)BarcelonaBarcelonaSpain
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de BarcelonaBadalonaBarcelonaSpain
| | - Dena B. Dubal
- Department of Neurology and Weill Institute of NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Biomedical and Neurosciences Graduate ProgramsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Ozioma Okonkwo
- Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's Center, Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Michael Ewers
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig Maximilians Universität (LMU)MunichGermany
- German Center for Neurodegenerative Diseases (DZNE, Munich)MunichGermany
| | - Rachel F. Buckley
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
2
|
Tian J, Jia K, Wang T, Guo L, Xuan Z, Michaelis EK, Swerdlow RH, Du H. Hippocampal transcriptome-wide association study and pathway analysis of mitochondrial solute carriers in Alzheimer's disease. Transl Psychiatry 2024; 14:250. [PMID: 38858380 PMCID: PMC11164935 DOI: 10.1038/s41398-024-02958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
The etiopathogenesis of late-onset Alzheimer's disease (AD) is increasingly recognized as the result of the combination of the aging process, toxic proteins, brain dysmetabolism, and genetic risks. Although the role of mitochondrial dysfunction in the pathogenesis of AD has been well-appreciated, the interaction between mitochondrial function and genetic variability in promoting dementia is still poorly understood. In this study, by tissue-specific transcriptome-wide association study (TWAS) and further meta-analysis, we examined the genetic association between mitochondrial solute carrier family (SLC25) genes and AD in three independent cohorts and identified three AD-susceptibility genes, including SLC25A10, SLC25A17, and SLC25A22. Integrative analysis using neuroimaging data and hippocampal TWAS-predicted gene expression of the three susceptibility genes showed an inverse correlation of SLC25A22 with hippocampal atrophy rate in AD patients, which outweighed the impacts of sex, age, and apolipoprotein E4 (ApoE4). Furthermore, SLC25A22 downregulation demonstrated an association with AD onset, as compared with the other two transcriptome-wide significant genes. Pathway and network analysis related hippocampal SLC25A22 downregulation to defects in neuronal function and development, echoing the enrichment of SLC25A22 expression in human glutamatergic neurons. The most parsimonious interpretation of the results is that we have identified AD-susceptibility genes in the SLC25 family through the prediction of hippocampal gene expression. Moreover, our findings mechanistically yield insight into the mitochondrial cascade hypothesis of AD and pave the way for the future development of diagnostic tools for the early prevention of AD from a perspective of precision medicine by targeting the mitochondria-related genes.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Kun Jia
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Tienju Wang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Elias K Michaelis
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Russell H Swerdlow
- Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Heng Du
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA.
- Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
3
|
Yang Q, Chen G, Yang Z, Raviv TR, Gao Y. Fine hippocampal morphology analysis with a multi-dataset cross-sectional study on 2911 subjects. Neuroimage Clin 2024; 43:103620. [PMID: 38823250 PMCID: PMC11168486 DOI: 10.1016/j.nicl.2024.103620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/18/2024] [Indexed: 06/03/2024]
Abstract
CA1 subfield and subiculum of the hippocampus contain a series of dentate bulges, which are also called hippocampus dentation (HD). There have been several studies demonstrating an association between HD and brain disorders. Such as the number of hippocampal dentation correlates with temporal lobe epilepsy. And epileptic hippocampus have a lower number of dentation compared to contralateral hippocampus. However, most studies rely on subjective assessment by manual searching and counting in HD areas, which is time-consuming and labor-intensive to process large amounts of samples. And to date, only one objective method for quantifying HD has been proposed. Therefore, to fill this gap, we developed an automated and objective method to quantify HD and explore its relationship with neurodegenerative diseases. In this work, we performed a fine-scale morphological characterization of HD in 2911 subjects from four different cohorts of ADNI, PPMI, HCP, and IXI to quantify and explore differences between them in MR T1w images. The results showed that the degree of right hippocampal dentation are lower in patients with Alzheimer's disease than samples in mild cognitive impairment or cognitively normal, whereas this change is not significant in Parkinson's disease progression. The innovation of this paper that we propose a quantitative, robust, and fully automated method. These methodological innovation and corresponding results delineated above constitute the significance and novelty of our study. What's more, the proposed method breaks through the limitations of manual labeling and is the first to quantitatively measure and compare HD in four different brain populations including thousands of subjects. These findings revealed new morphological patterns in the hippocampal dentation, which can help with subsequent fine-scale hippocampal morphology research.
Collapse
Affiliation(s)
- Qinzhu Yang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Guojing Chen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Zhi Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Tammy Riklin Raviv
- The School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Yi Gao
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen, China; Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
4
|
Guo X, Ding Y, Xu W, Wang D, Yu H, Lin Y, Chang S, Zhang Q, Zhang Y. Predicting brain age gap with radiomics and automl: A Promising approach for age-Related brain degeneration biomarkers. J Neuroradiol 2024; 51:265-273. [PMID: 37722591 DOI: 10.1016/j.neurad.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The Brain Age Gap (BAG), which refers to the difference between chronological age and predicted neuroimaging age, is proposed as a potential biomarker for age-related brain degeneration. However, existing brain age prediction models usually rely on a single marker and can not discover meaningful hidden information in radiographic images. This study focuses on the application of radiomics, an advanced imaging analysis technique, combined with automated machine learning to predict BAG. Our methods achieve a promising result with a mean absolute error of 1.509 using the Alzheimer's Disease Neuroimaging Initiative dataset. Furthermore, we find that the hippocampus and parahippocampal gyrus play a significant role in predicting age with interpretable method called SHapley Additive exPlanations. Additionally, our investigation of age prediction discrepancies between patients with Alzheimer's disease (AD) and those with mild cognitive impairment (MCI) reveals a notable correlation with clinical cognitive assessment scale scores. This suggests that BAG has the potential to serve as a biomarker to support the diagnosis of AD and MCI. Overall, this study presents valuable insights into the application of neuroimaging models in the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoliang Guo
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yanhui Ding
- School of Information Science and Engineering, Shandong Normal University, Jinan, China.
| | - Weizhi Xu
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Dong Wang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunication, Beijing, China
| | - Huiying Yu
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yongkang Lin
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Shulei Chang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Qiqi Zhang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yongxin Zhang
- School of Mathematics and Statistics, Shandong Normal University, Jinan, China.
| |
Collapse
|
5
|
Xiao Y, Liao L, Huang K, Yao S, Gao L. Coupling Between Hippocampal Parenchymal Fraction and Cortical Grey Matter Atrophy at Different Stages of Cognitive Decline. J Alzheimers Dis 2023; 93:791-801. [PMID: 37092228 PMCID: PMC10200204 DOI: 10.3233/jad-230124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Hippocampal atrophy is a significant brain marker of pathology in Alzheimer's disease (AD). The hippocampal parenchymal fraction (HPF) was recently developed to better assess the hippocampal volumetric integrity, and it has been shown to be a sensitive measure of hippocampal atrophy in AD. OBJECTIVE To investigate the clinical relevance of hippocampal volumetric integrity as measured by the HPF and the coupling between the HPF and brain atrophy during AD progression. METHODS We included data from 143 cognitively normal (CN), 101 mild cognitive impairment (MCI), and 125 AD participants. We examined group differences in the HPF, associations between HPF and cognitive ability, and coupling between the HPF and cortical grey matter volume in the CN, MCI, and AD groups. RESULTS We observed progressive decreases in HPF from CN to MCI and from MCI to AD, and increases in the asymmetry of HPF, with the lowest asymmetry index (AI) in the CN group and the highest AI in the AD group. There was a significant association between HPF and cognitive ability across participants. The coupling between HPF and cortical regions was observed in bilateral hippocampus, parahippocampal gyrus, temporal, frontal, and occipital regions, thalamus, and amygdala in CN, MCI, and AD groups, with a greater involvement of temporal, occipital, frontal, and subcortical regions in MCI and AD patients, especially in AD patients. CONCLUSION This study provides novel evidence for the neuroanatomical basis of cognitive decline and brain atrophy during AD progression, which may have important clinical implications for the prognosis of AD.
Collapse
Affiliation(s)
- Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Liangjun Liao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Kaiyu Huang
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | |
Collapse
|
6
|
Kannappan B, Gunasekaran TI, te Nijenhuis J, Gopal M, Velusami D, Kothandan G, Lee KH. Polygenic score for Alzheimer’s disease identifies differential atrophy in hippocampal subfield volumes. PLoS One 2022; 17:e0270795. [PMID: 35830443 PMCID: PMC9278752 DOI: 10.1371/journal.pone.0270795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
Hippocampal subfield atrophy is a prime structural change in the brain, associated with cognitive aging and neurodegenerative diseases such as Alzheimer’s disease. Recent developments in genome-wide association studies (GWAS) have identified genetic loci that characterize the risk of hippocampal volume loss based on the processes of normal and abnormal aging. Polygenic risk scores are the genetic proxies mimicking the genetic role of the pre-existing vulnerabilities of the underlying mechanisms influencing these changes. Discriminating the genetic predispositions of hippocampal subfield atrophy between cognitive aging and neurodegenerative diseases will be helpful in understanding the disease etiology. In this study, we evaluated the polygenic risk of Alzheimer’s disease (AD PGRS) for hippocampal subfield atrophy in 1,086 individuals (319 cognitively normal (CN), 591 mild cognitively impaired (MCI), and 176 Alzheimer’s disease dementia (ADD)). Our results showed a stronger association of AD PGRS effect on the left hemisphere than on the right hemisphere for all the hippocampal subfield volumes in a mixed clinical population (CN+MCI+ADD). The subfields CA1, CA4, hippocampal tail, subiculum, presubiculum, molecular layer, GC-ML-DG, and HATA showed stronger AD PGRS associations with the MCI+ADD group than with the CN group. The subfields CA3, parasubiculum, and fimbria showed moderately higher AD PGRS associations with the MCI+ADD group than with the CN group. Our findings suggest that the eight subfield regions, which were strongly associated with AD PGRS are likely involved in the early stage ADD and a specific focus on the left hemisphere could enhance the early prediction of ADD.
Collapse
Affiliation(s)
- Balaji Kannappan
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
| | - Tamil Iniyan Gunasekaran
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
| | - Jan te Nijenhuis
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
- * E-mail: (JN); (KHL)
| | - Muthu Gopal
- Health Systems Research & MRHRU, ICMR-National Institute of Epidemiology, Tirunelveli, Tamil Nadu, India
| | - Deepika Velusami
- Department of Physiology, Sri Manakula Vinayagar Medical College and Hospital, Puducherry, Tamil Nadu, India
| | - Gugan Kothandan
- Biopolymer Modeling and Protein Chemistry Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Kun Ho Lee
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
- Korea Brain Research Institute, Daegu, Republic of Korea
- * E-mail: (JN); (KHL)
| | | |
Collapse
|
7
|
Drouin SM, McFall GP, Potvin O, Bellec P, Masellis M, Duchesne S, Dixon RA. Data-Driven Analyses of Longitudinal Hippocampal Imaging Trajectories: Discrimination and Biomarker Prediction of Change Classes. J Alzheimers Dis 2022; 88:97-115. [PMID: 35570482 PMCID: PMC9277685 DOI: 10.3233/jad-215289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hippocampal atrophy is a well-known biomarker of neurodegeneration, such as that observed in Alzheimer's disease (AD). Although distributions of hippocampal volume trajectories for asymptomatic individuals often reveal substantial heterogeneity, it is unclear whether interpretable trajectory classes can be objectively detected and used for prediction analyses. OBJECTIVE To detect and predict hippocampal trajectory classes in a computationally competitive context using established AD-related risk factors/biomarkers. METHODS We used biomarker/risk factor and longitudinal MRI data in asymptomatic adults from the AD Neuroimaging Initiative (n = 351; Mean = 75 years; 48.7% female). First, we applied latent class growth analyses to left (LHC) and right (RHC) hippocampal trajectory distributions to identify distinct classes. Second, using random forest analyses, we tested 38 multi-modal biomarkers/risk factors for their relative importance in discriminating the lower (potentially elevated atrophy risk) from the higher (potentially reduced risk) class. RESULTS For both LHC and RHC trajectory distribution analyses, we observed three distinct trajectory classes. Three biomarkers/risk factors predicted membership in LHC and RHC lower classes: male sex, higher education, and lower plasma Aβ1-42. Four additional factors selectively predicted membership in the lower LHC class: lower plasma tau and Aβ1-40, higher depressive symptomology, and lower body mass index. CONCLUSION Data-driven analyses of LHC and RHC trajectories detected three classes underlying the heterogeneous distributions. Machine learning analyses determined three common and four unique biomarkers/risk factors discriminating the higher and lower LHC/RHC classes. Our sequential analytic approach produced evidence that the dynamics of preclinical hippocampal trajectories can be predicted by AD-related biomarkers/risk factors from multiple modalities.
Collapse
Affiliation(s)
- Shannon M. Drouin
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - G. Peggy McFall
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Pierre Bellec
- Département de Psychologie, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Research Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Simon Duchesne
- CERVO Brain Research Centre, Quebec, QC, Canada
- Radiology and Nuclear Medicine Department, Université Laval, Quebec, QC, Canada
| | - Roger A. Dixon
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
8
|
Fraser MA, Walsh EI, Shaw ME, Anstey KJ, Cherbuin N. Longitudinal Effects of Physical Activity Change on Hippocampal Volumes over up to 12 Years in Middle and Older Age Community-Dwelling Individuals. Cereb Cortex 2021; 32:2705-2716. [PMID: 34671805 DOI: 10.1093/cercor/bhab375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
The objectives of this study were to investigate the long-term associations between changes in physical activity levels and hippocampal volumes over time, while considering the influence of age, sex, and APOE-ε4 genotype. We investigated the effects of change in physical activity on hippocampal volumes in 411 middle age (mean age = 47.2 years) and 375 older age (mean age = 63.1 years) adults followed up to 12 years. An annual volume decrease was observed in the left (middle age: 0.46%; older age: 0.51%) but not in the right hippocampus. Each additional 10 metabolic equivalents (METs, ~2 h of moderate exercise) increase in weekly physical activity was associated with 0.33% larger hippocampal volume in middle age (equivalent to ~1 year of typical aging). In older age, each additional MET was associated with 0.05% larger hippocampal volume; however, the effects declined with time by 0.005% per year. For older age APOE-ε4 carriers, each additional MET was associated with a 0.10% increase in hippocampal volume. No sex effects of physical activity change were found. Increasing physical activity has long-term positive effects on hippocampal volumes and appears especially beneficial for older APOE-ε4 carriers. To optimize healthy brain aging, physical activity programs should focus on creating long-term exercise habits.
Collapse
Affiliation(s)
- Mark A Fraser
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Erin I Walsh
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Population Health Exchange, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Marnie E Shaw
- ANU College of Engineering & Computer Science, Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Kaarin J Anstey
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Ageing Futures Institute, University of New South Wales, Sydney, New South Wales 2052, Australia.,Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
9
|
Sang F, Chen Y, Chen K, Dang M, Gao S, Zhang Z. Sex Differences in Cortical Morphometry and White Matter Microstructure During Brain Aging and Their Relationships to Cognition. Cereb Cortex 2021; 31:5253-5262. [PMID: 34148074 DOI: 10.1093/cercor/bhab155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023] Open
Abstract
Changes in brain structure are associated with aging, and accompanied by the gradual deterioration of cognitive functions, which manifests differently in males and females. Here, we quantify the age-related spatial aging patterns of brain gray and white matter structures, their volume reduction rate, their relationships with specific cognitive functions, as well as differences between males and females in a cross-sectional nondementia dataset. We found that both males and females showed extensive age-related decreases in the volumes of most gray matter and white matter regions. Females have larger regions where the volume decreases with age and a greater slope (females: 0.199%, males: 0.183%) of volume decrease in gray matter. For white matter, no significant sex differences were found in age-related regions, and the slope of volume decrease. More significant associations were identified between brain structures and cognition in males during aging than females. This study explored the age-related regional variations in gray matter and white matter, as well as the sex differences in a nondemented elderly population. This study helps to further understand the aging of the brain structure and sex differences in the aging of brain structures and provides new evidence for the aging of nondemented individuals.
Collapse
Affiliation(s)
- Feng Sang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing 100875, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing 100875, China
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| | - Mingxi Dang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing 100875, China
| | - Shudan Gao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing 100875, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Sex-Dependent End-of-Life Mental and Vascular Scenarios for Compensatory Mechanisms in Mice with Normal and AD-Neurodegenerative Aging. Biomedicines 2021; 9:biomedicines9020111. [PMID: 33498895 PMCID: PMC7911097 DOI: 10.3390/biomedicines9020111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Life expectancy decreases with aging, with cardiovascular, mental health, and neurodegenerative disorders strongly contributing to the total disability-adjusted life years. Interestingly, the morbidity/mortality paradox points to females having a worse healthy life expectancy. Since bidirectional interactions between cardiovascular and Alzheimer’s diseases (AD) have been reported, the study of this emerging field is promising. In the present work, we further explored the cardiovascular–brain interactions in mice survivors of two cohorts of non-transgenic and 3xTg-AD mice, including both sexes, to investigate the frailty/survival through their life span. Survival, monitored from birth, showed exceptionally worse mortality rates in females than males, independently of the genotype. This mortality selection provided a “survivors” cohort that could unveil brain–cardiovascular interaction mechanisms relevant for normal and neurodegenerative aging processes restricted to long-lived animals. The results show sex-dependent distinct physical (worse in 3xTg-AD males), neuropsychiatric-like and cognitive phenotypes (worse in 3xTg-AD females), and hypothalamic–pituitary–adrenal (HPA) axis activation (higher in females), with higher cerebral blood flow and improved cardiovascular phenotype in 3xTg-AD female mice survivors. The present study provides an experimental scenario to study the suggested potential compensatory hemodynamic mechanisms in end-of-life dementia, which is sex-dependent and can be a target for pharmacological and non-pharmacological interventions.
Collapse
|
11
|
Cheng R, Chen L, Liu X, Luo T, Gong J, Jiang P. Changes in Gray Matter Asymmetries of the Fusiform and Parahippocampal Gyruses in Patients With Subcortical Ischemic Vascular Disease. Front Neurol 2021; 11:603977. [PMID: 33551966 PMCID: PMC7859431 DOI: 10.3389/fneur.2020.603977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: Changes in the normal asymmetry of the human brain often mean pathology. Current studies on the correlation between asymmetry and cognitive impairment have focused on Alzheimer's disease (AD) and AD-related mild cognitive impairment (MCI). The purpose of this study was to investigate changes in gray matter asymmetry and their relationship with cognitive impairment in patients with subcortical ischemic vascular disease (SIVD) by using voxel-based morphological measurements. Methods: Fifty-nine SIVD patients with (subcortical vascular cognitive impairment, SVCI, N = 30) and without (pre-SVCI, N = 29) cognitive impairment and 30 normal controls (NC, N = 30) underwent high-resolution structural MRI and neuropsychological examinations. The differences in gray matter asymmetry among the three groups were estimated by using one-way ANOVA. Moreover, partial correlation analysis was performed to explore the relationships between the asymmetry index (AI) values and cognitive assessments controlled for age, sex, and education. Results: The gray matter asymmetries in the fusiform and parahippocampal gyruses of the SVCI group were significantly different from those of the NC group and the pre-SVCI group, while no differences were found between the NC group and the pre-SVCI group in the same areas. More specifically, in the fusiform and parahippocampal gyruses, the SVCI group displayed a dramatic rightward asymmetry, whereas the NC group and pre-SVCI group exhibited a marked leftward asymmetry. The results of the correlation analysis showed that the "mean AI" in significant cluster was strongly correlated with the changes in cognitive outcomes. Conclusion: This study demonstrated different lateralization in the fusiform and parahippocampal gyruses of SIVD patients with cognitive impairment compared to healthy subjects and SIVD patients without cognitive decline. Our findings may contribute to better understanding the possible mechanism of cognitive impairment in patients with SIVD, and they suggest the possibility of using gray matter asymmetry as a biomarker for disease progression.
Collapse
Affiliation(s)
- Runtian Cheng
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Chen
- The Department of Radiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoshuang Liu
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyou Luo
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junwei Gong
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peiling Jiang
- The Department of Radiology, The Second Affiliated Hospital of Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Poloni KM, Duarte de Oliveira IA, Tam R, Ferrari RJ. Brain MR image classification for Alzheimer’s disease diagnosis using structural hippocampal asymmetrical attributes from directional 3-D log-Gabor filter responses. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.07.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Hu S, Li CSR. Age-Related Structural and Functional Changes of the Hippocampus and the Relationship with Inhibitory Control. Brain Sci 2020; 10:brainsci10121013. [PMID: 33352718 PMCID: PMC7766783 DOI: 10.3390/brainsci10121013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Aging is associated with structural and functional changes in the hippocampus, and hippocampal dysfunction represents a risk marker of Alzheimer’s disease. Previously, we demonstrated age-related changes in reactive and proactive control in the stop signal task, each quantified by the stop signal reaction time (SSRT) and sequential effect computed as the correlation between the estimated stop signal probability and go trial reaction time. Age was positively correlated with the SSRT, but not with the sequential effect. Here, we explored hippocampal gray matter volume (GMV) and activation to response inhibition and to p(Stop) in healthy adults 18 to 72 years of age. The results showed age-related reduction of right anterior hippocampal activation during stop success vs. go trials, and the hippocampal activities correlated negatively with the SSRT. In contrast, the right posterior hippocampus showed higher age-related responses to p(Stop), but the activities did not correlate with the sequential effect. Further, we observed diminished GMVs of the anterior and posterior hippocampus. However, the GMVs were not related to behavioral performance or regional activities. Together, these findings suggest that hippocampal GMVs and regional activities represent distinct neural markers of cognitive aging, and distinguish the roles of the anterior and posterior hippocampus in age-related changes in cognitive control.
Collapse
Affiliation(s)
- Sien Hu
- Department of Psychology, State University of New York at Oswego, Oswego, NY 13126, USA
- Correspondence:
| | - Chiang-shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA;
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
14
|
Fraser MA, Walsh EI, Shaw ME, Abhayaratna WP, Anstey KJ, Sachdev PS, Cherbuin N. Longitudinal trajectories of hippocampal volume in middle to older age community dwelling individuals. Neurobiol Aging 2020; 97:97-105. [PMID: 33190123 DOI: 10.1016/j.neurobiolaging.2020.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/04/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Understanding heterogeneity in brain aging trajectories is important to estimate the extent to which aging outcomes can be optimized. Although brain changes in late life are well-characterized, brain changes in middle age are not well understood. In this study, we investigated hippocampal change in a generally healthy community-living population of middle (n = 421, mean age 47.2 years) and older age (n = 411, mean age 63.0 years) individuals, over a follow-up of up to 12 years. Manually traced hippocampal volumes were analyzed using multilevel models and latent class analysis to investigate longitudinal aging trajectories and laterality and sex effects, and to identify subgroups that follow different aging trajectories. Hippocampal volumes decreased on average by 0.18%/year in middle age and 0.3%/year in older age. Men tended to experience steeper declines than women in middle age only. Three subgroups of individuals following different trajectories were identified in middle age and 2 in older age. Contrary to expectations, the subgroup containing two-thirds of older age participants maintained stable hippocampal volumes across the follow-up.
Collapse
Affiliation(s)
- Mark A Fraser
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Erin I Walsh
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia; Population Health Exchange, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Marnie E Shaw
- ANU College of Engineering & Computer Science, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Walter P Abhayaratna
- College of Health & Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kaarin J Anstey
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia; Ageing Futures Institute, University of New South Wales, Sydney, New South Wales, Australia; Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
15
|
Jacob A, Tward DJ, Resnick S, Smith PF, Lopez C, Rebello E, Wei EX, Ratnanather JT, Agrawal Y. Vestibular function and cortical and sub-cortical alterations in an aging population. Heliyon 2020; 6:e04728. [PMID: 32904672 PMCID: PMC7457317 DOI: 10.1016/j.heliyon.2020.e04728] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 08/12/2020] [Indexed: 01/26/2023] Open
Abstract
While it is well known that the vestibular system is responsible for maintaining balance, posture and coordination, there is increasing evidence that it also plays an important role in cognition. Moreover, a growing number of epidemiological studies are demonstrating a link between vestibular dysfunction and cognitive deficits in older adults; however, the exact pathways through which vestibular loss may affect cognition are unknown. In this cross-sectional study, we sought to identify relationships between vestibular function and variation in morphometry in brain structures from structural neuroimaging. We used a subset of 80 participants from the Baltimore Longitudinal Study of Aging, who had both brain MRI and vestibular physiological data acquired during the same visit. Vestibular function was evaluated through the cervical vestibular-evoked myogenic potential (cVEMP). The brain structures of interest that we analyzed were the hippocampus, amygdala, thalamus, caudate nucleus, putamen, insula, entorhinal cortex (ERC), trans-entorhinal cortex (TEC) and perirhinal cortex, as these structures comprise or are connected with the putative "vestibular cortex." We modeled the volume and shape of these structures as a function of the presence/absence of cVEMP and the cVEMP amplitude, adjusting for age and sex. We observed reduced overall volumes of the hippocampus and the ERC associated with poorer vestibular function. In addition, we also found significant relationships between the shape of the hippocampus (p = 0.0008), amygdala (p = 0.01), thalamus (p = 0.008), caudate nucleus (p = 0.002), putamen (p = 0.02), and ERC-TEC complex (p = 0.008) and vestibular function. These findings provide novel insight into the multiple pathways through which vestibular loss may impact brain structures that are critically involved in spatial memory, navigation and orientation.
Collapse
Affiliation(s)
- Athira Jacob
- Center for Imaging Science and Institute for Computational Medicine,
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD,
USA
| | - Daniel J. Tward
- Center for Imaging Science and Institute for Computational Medicine,
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD,
USA
| | - Susan Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging,
Baltimore, MD, USA
| | - Paul F. Smith
- Department Pharmacology and Toxicology, School of Medical Sciences, The
Brain Health Research Centre, University of Otago, New Zealand
| | - Christophe Lopez
- Aix Marseille Universite, Centre National de la Recherche Scientifique,
Marseille, France
| | - Elliott Rebello
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins
University School of Medicine, Baltimore, MD, USA
| | - Eric X. Wei
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins
University School of Medicine, Baltimore, MD, USA
| | - J. Tilak Ratnanather
- Center for Imaging Science and Institute for Computational Medicine,
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD,
USA
| | - Yuri Agrawal
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins
University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Ardekani BA, Izadi NO, Hadid SA, Meftah AM, Bachman AH. Effects of sex, age, and apolipoprotein E genotype on hippocampal parenchymal fraction in cognitively normal older adults. Psychiatry Res Neuroimaging 2020; 301:111107. [PMID: 32416384 DOI: 10.1016/j.pscychresns.2020.111107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Early detection of Alzheimer's disease (AD) is important for timely interventions and developing new treatments. Hippocampus atrophy is an early biomarker of AD. The hippocampal parenchymal fraction (HPF) is a promising measure of hippocampal structural integrity computed from structural MRI. It is important to characterize the dependence of HPF on covariates such as age and sex in the normal population to enhance its utility as a disease biomarker. We measured the HPF in 4239 structural MRI scans from 340 cognitively normal (CN) subjects aged 59-89 years from the AD Neuroimaging Initiative database, and studied its dependence on age, sex, apolipoprotein E (APOE) genotype, brain hemisphere, intracranial volume (ICV), and education using a linear mixed-effects model. In this CN cohort, HPF was inversely associated with ICV; was greater on the right hemisphere compared to left in both sexes with the degree of right > left asymmetry being slightly more pronounced in men; declined quadratically with age and faster in APOE ϵ4 carriers compared to non-carriers; and was significantly associated with cognitive ability. Consideration of HPF as an AD biomarker should be in conjunction with other subject attributes that are shown in this research to influence HPF levels in CN older individuals.
Collapse
Affiliation(s)
- Babak A Ardekani
- Center for Brain Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| | - Neema O Izadi
- Center for Brain Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Somar A Hadid
- Center for Brain Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Amir M Meftah
- Center for Brain Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Alvin H Bachman
- Center for Brain Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|