1
|
Su R, Liu R, Sun Y, Su H, Xing W. Rat copper transport protein 2 (CTR2) is involved in fertilization through interaction with IZUMO1 and JUNO. Theriogenology 2024; 231:160-170. [PMID: 39454481 DOI: 10.1016/j.theriogenology.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
In mammalian reproduction, testis-specific protein IZUMO1 and its receptor JUNO on the oocyte surface are essential for sperm-oocyte recognition, binding, and membrane fusion. However, these factors alone are insufficient to accomplish cytoplasmic membrane fusion. It is believed that other gametic proteins interact with them to facilitate sperm-oocyte interaction on the head and mid-tail of rat spermatozoa as well as on the surface of oocytes. In this study, Copper Transport Protein 2 (CTR2) has been identified on the head and mid-tail of rat spermatozoa as well as on the surface of oocytes. CTR2 directly interacts with both IZUMO1 and JUNO, colocalizing with IZUMO1 on the sperm head and with JUNO on the oocyte membrane. Treatment of the capacitated sperm and zona pellucida-free oocytes with anti-CTR2 antibody resulted in a significant decrease in fertilization rates in IVF experiments. These findings suggest that CTR2 plays an important role in mammalian fertilization by interacting with IZUMO1 and JUNO, providing new insights into the molecular mechanisms of mammalian sperm-oocyte adhesion and fusion.
Collapse
Affiliation(s)
- Rina Su
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Ruizhuo Liu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Yangyang Sun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Huimin Su
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China.
| | - Wanjin Xing
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China.
| |
Collapse
|
2
|
van Tol Amaral Guerra SM, Cordeiro Koppe de França L, Neto da Silva K, Scolari Grotto F, Glaser V. Copper dyshomeostasis and its relationship to AMPK activation, mitochondrial dynamics, and biogenesis of mitochondria: A systematic review of in vivo studies. J Trace Elem Med Biol 2024; 86:127549. [PMID: 39427561 DOI: 10.1016/j.jtemb.2024.127549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Copper dyshomeostasis can be related to an increase in copper levels, resulting in toxicity, or to a decrease in tissues levels, impairing cuproenzyme activities. Inside cells, copper can be found in the cytoplasm and inside organelles, and the main organelle that compartmentalizes copper is the mitochondrion. This organelle can form networks and may fuse or fission from this, determining the mitochondrial fusion and fission processes, respectively. Together with mitophagy (autophagy of mitochondria) and mitochondrial biogenesis, mitochondrial fusion and fission (denominated mitochondrial dynamics) determine the number of mitochondria in a cell. A master regulator of mitochondrial dynamics and biogenesis of new mitochondria is AMPK. Considering that both a decrease and an increase in copper levels can influence mitochondrial turnover, especially in diseases related to copper dyshomeostasis, the objective of this systematic review was to verify the current knowledge on the influence of copper homeostasis on AMPK activation, mitochondrial dynamics, and biogenesis of new mitochondria in vivo. METHODS PubMed (MEDLINE), Embase, and Web of Science databases were used to search for articles in the literature. Data about the effects of a decrease or an increase in copper levels on the expression of proteins involved in mitochondrial dynamics or biogenesis, and data about AMPK and p-AMPK levels were extracted. RESULTS Meta-analysis has demonstrated that high copper levels increase mitochondrial fission and inhibit mitochondrial fusion. Additionally, an increase in copper levels results in AMPK activation. Few studies have analyzed the effects of high copper levels on proteins related to mitochondrial biogenesis, as well as the impact of a decrease in this metal on mitochondrial dynamics and biogenesis, and on AMPK activation. CONCLUSIONS Despite the results gathered in this review, other studies are necessary to completely understand the role of copper in regulating AMPK activation, mitochondrial dynamics, and the biogenesis of new mitochondria, since the cell response to a copper dyshomeostasis could be different depending on the species and tissues analyzed.
Collapse
Affiliation(s)
| | | | - Katriane Neto da Silva
- Cell Biology Lab, Biological and Agronomic Sciences Department, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Fabielly Scolari Grotto
- Cell Biology Lab, Biological and Agronomic Sciences Department, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Viviane Glaser
- Cell Biology Lab, Biological and Agronomic Sciences Department, Federal University of Santa Catarina, Curitibanos, SC, Brazil.
| |
Collapse
|
3
|
Martineta M, Siregar Y, Ahmad H. Association between Blood Copper Levels and the Incidence of Ischemic Heart Disease. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Ischemic heart disease is one of the interrelated disease amongst cardiovascular disease group. Pathophysiological model of ischemic heart disease and myocardial ischemia are caused by obstructive atherosclerotic plaque, which involves the narrowing of small blood vessels that oxygenate the heart muscle by the build-up of plaque. Diet plays an important role in ischemic heart disease. Copper, an essential trace metal micronutrient, is required for myocardial angiogenesis action. Copper deficiency leads to cardiac mitochondrial structural defect and interference in oxidative phosphorylation.
Aims: This study aims to examine the association between blood copper levels amd the incidence of ischemic heart disease.
Methods: A total of 30 patients in cardiovascular clinic in Universitas Sumatera Utara Hospital in Medan, Indonesia from September 2021 until January 2022 were included in this cross-sectional study, with descriptive analytics. Demographic data, smoking behavior, supplement consumption, anthropometry measurements, body mass index, medical history were collected. Food frequency questionnaire (semiquantitative FFQ) was used to obtain food recall data. Blood level of copper were analysed in Prodia Clinical Laboratory.
Results: Out of 30 patients in this study, 70% were male with a mean age of 60.6 years old. Research subjects who had risk factor of smoking were as much as 33.3%. Comorbidities such as dyslipidemia and diabetes mellitus were apparent, which were 63.3% and 30%, respectively. Sixty percent of the subjects were sedentary with mean body mass index 25.9 kg/m2. Median level of copper consumed daily was 1400 mcg/day and mean blood copper level was 1034,5 mg/L. Based on the blood copper level analysis of the subjects, we found an insignificant negative correlation between blood copper level with the incidence of ischemic heart disease (r = -0.050; p <0.795).
Conclusion: This study found no association between blood copper levels and the incidence of ischemic heart disease.
Collapse
|
4
|
Liu Y, Miao J. An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients 2022; 14:nu14030700. [PMID: 35277059 PMCID: PMC8838622 DOI: 10.3390/nu14030700] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/02/2023] Open
Abstract
Copper is an essential trace metal element that significantly affects human physiology and pathology by regulating various important biological processes, including mitochondrial oxidative phosphorylation, iron mobilization, connective tissue crosslinking, antioxidant defense, melanin synthesis, blood clotting, and neuron peptide maturation. Increasing lines of evidence obtained from studies of cell culture, animals, and human genetics have demonstrated that dysregulation of copper metabolism causes heart disease, which is the leading cause of mortality in the US. Defects of copper homeostasis caused by perturbed regulation of copper chaperones or copper transporters or by copper deficiency resulted in various types of heart disease, including cardiac hypertrophy, heart failure, ischemic heart disease, and diabetes mellitus cardiomyopathy. This review aims to provide a timely summary of the effects of defective copper homeostasis on heart disease and discuss potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China;
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ji Miao
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
5
|
Malekahmadi M, Firouzi S, Rezayi M, Ghazizadeh H, Ranjbar G, Ferns GA, Mobarhan MG. Association of Zinc and Copper Status with Cardiovascular Diseases and their Assessment Methods: A Review Study. Mini Rev Med Chem 2021; 20:2067-2078. [PMID: 32727323 DOI: 10.2174/1389557520666200729160416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality, morbidity, and financial losses and has a high prevalence across the world. Several studies have investigated the association between various CVD types with zinc and copper status as the essential minerals for the human body, proposing contradictory and similar results. This narrative review aimed to survey the correlations between zinc and copper status in the human body and some risk factors of CVD, as well as the assessment methods of zinc and copper status in the human body. According to the reviewed articles, zinc and copper deficiency may increase the risk of coronary heart disease, valvular regurgitation, and myocardial lesions, cardiac hypertrophy. Furthermore, it could lead to the expanded mitochondrial compartments of the heart, acute and chronic heart failure, and elevation of inflammation markers, such as interleukin-1 (IL-1) and IL-6. Two methods are primarily used for the assessment of zinc and copper in the human body, including the direct method (measurement of their concentrations) and indirect method (determining the activity of zinc- and copper-containing enzymes). Both these methods are considered reliable for the assessment of the zinc and copper levels in healthy individuals. Serum or plasma levels of these elements are also commonly used for the assessment of the correlation between zinc and copper status and CVD. But, which one is a more accurate indicator in relation to CVD is not yet clear; therefore, further studies are required in this field.
Collapse
Affiliation(s)
- Mahsa Malekahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safieh Firouzi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Ghazizadeh
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Golnaz Ranjbar
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Yamane R, Tanaka M, Kikugawa N, Yasui H, Takei K, Harada M, Kaneda S. Mesh-like vascular changes in copper deficiency-induced rat cardiomyopathy. J Toxicol Pathol 2020; 34:127-133. [PMID: 33627955 PMCID: PMC7890173 DOI: 10.1293/tox.2020-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022] Open
Abstract
The pathological effects of copper deficiency (COD) are well known. However, the pathogenesis of cardiomyopathy resulting from COD remains unclear. In this study, aimed to elucidate the pathogenesis of COD-induced cardiomyopathy by examining the morphology of the cardiovascular system in copper-deficient rats using histopathology, immunohistochemistry, and scanning and transmission electron microscopy. Changes detected in the myocardium and interstitium were consistent with those reported for COD. Morphological changes included mesh-like changes in the capillary endothelial cells that appear to be a novel finding in COD-induced cardiomyopathy. These changes are hypothesized to result from abnormal vascular remodeling following damage to the basement membrane and due to the mechanical effects of myocardial contractions. Although cardiomyopathy may be associated with microcirculatory disorders arising from these lesions, further investigations are necessary to demonstrate a causal relationship between the pathogenesis of cardiomyopathy and the contribution of these lesions to disease progression.
Collapse
Affiliation(s)
- Rina Yamane
- Naruto Research Laboratory, Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima 772-8601, Japan
| | - Makoto Tanaka
- Naruto Research Laboratory, Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima 772-8601, Japan
| | - Nao Kikugawa
- Naruto Research Laboratory, Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima 772-8601, Japan
| | - Hideki Yasui
- Naruto Research Laboratory, Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima 772-8601, Japan
| | - Kenta Takei
- Naruto Research Laboratory, Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima 772-8601, Japan
| | - Miwa Harada
- Naruto Research Laboratory, Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima 772-8601, Japan
| | - Shinya Kaneda
- Naruto Research Laboratory, Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima 772-8601, Japan
| |
Collapse
|
7
|
Copper Does Not Induce Tenogenic Differentiation but Promotes Migration and Increases Lysyl Oxidase Activity in Adipose-Derived Mesenchymal Stromal Cells. Stem Cells Int 2020; 2020:9123281. [PMID: 32148523 PMCID: PMC7053469 DOI: 10.1155/2020/9123281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 01/08/2023] Open
Abstract
Background Copper belongs to the essential trace metals that play a key role in the course of cellular processes maintaining the whole body's homeostasis. As there is a growing interest in transplanting mesenchymal stromal cells (MSCs) into the site of injury to improve the regeneration of damaged tendons, the purpose of the study was to verify whether copper supplementation may have a positive effect on the properties of human adipose tissue-derived MSCs (hASCs) which potentially can contribute to improvement of tendon healing. Results Cellular respiration of hASCs decreased with increasing cupric sulfate concentrations after 5 days of incubation. The treatment with CuSO4 did not positively affect the expression of genes associated with tenogenesis (COL1α1, COL3α1, MKX, and SCX). However, the level of COL1α1 protein, whose transcript was decreased in comparison to a control, was elevated after a 5-day exposition to 25 μM CuSO4. The content of the MKX and SCX protein in hASCs exposed to cupric sulfate was reduced compared to that of untreated control cells, and the level of the COL3α1 protein, whose transcript was decreased in comparison to a control, was elevated after a 5-day exposition to 25 μM CuSO4. The content of the MKX and SCX protein in hASCs exposed to cupric sulfate was reduced compared to that of untreated control cells, and the level of the COL3. Conclusion Copper sulfate supplementation can have a beneficial effect on tendon regeneration not by inducing tenogenic differentiation, but by improving the recruitment of MSCs to the site of injury, where they can secrete growth factors, cytokines and chemokines, and prevent the effects of oxidative stress at the site of inflammation, as well as improve the stabilization of collagen fibers, thereby accelerating the process of tendon healing.
Collapse
|
8
|
Zhang S, Liu H, Amarsingh GV, Cheung CCH, Wu D, Narayanan U, Zhang L, Cooper GJS. Restoration of myocellular copper-trafficking proteins and mitochondrial copper enzymes repairs cardiac function in rats with diabetes-evoked heart failure. Metallomics 2019; 12:259-272. [PMID: 31821401 DOI: 10.1039/c9mt00223e] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diabetes impairs systemic copper regulation, and acts as a major independent risk factor for heart failure (HF) wherein mitochondrial dysfunction is a key pathogenic process. Here we asked whether diabetes might alter mitochondrial structure/function and thus impair cardiac performance by damaging myocellular pathways that mediate cell-copper homeostasis. We measured activity of major mitochondria-resident copper-enzymes cytochrome c oxidase (mt-Cco) and superoxide dismutase 1 (mt-Sod1); expression of three main mitochondrial copper-chaperones [Cco copper chaperone 17 (Cox17), Cox11, and mitochondria-resident copper chaperone for Sod1 (mt-Ccs)]; of copper-dependent Cco-assembly protein Sco1; and regulation of mitochondrial biogenesis, in left-ventricular (LV) tissue from groups of non-diabetic-control, untreated-diabetic, and divalent-copper-selective chelator-treated diabetic rats. Diabetes impaired LV pump function; ∼halved LV-copper levels; substantively decreased myocellular expression of copper chaperones, and enzymatic activity of mt-Cco and mt-Sod1. Divalent-copper chelation with triethylenetetramine improved cardiac pump function, restored levels of myocardial copper, the copper chaperones, and Sco1; and enzymatic activity of mt-Cco and mt-Sod1. Copper chelation also restored expression of the key mitochondrial biogenesis regulator, peroxisome-proliferator-activated receptor gamma co-activator-1α (Pgc-1α). This study shows for the first time that altered myocardial copper-trafficking is a key pathogenic process in diabetes-evoked HF. We also describe a novel therapeutic effect of divalent-copper-selective chelation, namely restoration of myocellular copper trafficking, which is thus revealed as a potentially tractable target for novel pharmacological intervention to improve cardiac function.
Collapse
Affiliation(s)
- Shaoping Zhang
- School of Biological Sciences, University of Auckland, Private Bag 92 019, Auckland 1010, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Effect of low dose gamma rays on certain essential metals and oxidative stress in different rat organs. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2013.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Logeman BL, Thiele DJ. Reconstitution of a thermophilic Cu + importer in vitro reveals intrinsic high-affinity slow transport driving accumulation of an essential metal ion. J Biol Chem 2018; 293:15497-15512. [PMID: 30131336 PMCID: PMC6177576 DOI: 10.1074/jbc.ra118.004802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/09/2018] [Indexed: 01/01/2023] Open
Abstract
Acquisition of the trace element copper (Cu) is critical to drive essential eukaryotic processes such as oxidative phosphorylation, iron mobilization, peptide hormone biogenesis, and connective tissue maturation. The Ctr1/Ctr3 family of Cu importers, first discovered in fungi and conserved in mammals, are critical for Cu+ movement across the plasma membrane or mobilization from endosomal compartments. Whereas ablation of Ctr1 in mammals is embryonic lethal, and Ctr1 is critical for dietary Cu absorption, cardiac function, and systemic iron distribution, little is known about the intrinsic contribution of Ctr1 for Cu+ permeation through membranes or its mechanism of action. Here, we identify three members of a Cu+ importer family from the thermophilic fungus Chaetomium thermophilum: Ctr3a and Ctr3b, which function on the plasma membrane, and Ctr2, which likely functions in endosomal Cu mobilization. All three proteins drive Cu and isoelectronic silver (Ag) uptake in cells devoid of Cu+ importers. Transport activity depends on signature amino acid motifs that are conserved and essential for all Ctr1/3 transporters. Ctr3a is stable and amenable to purification and was incorporated into liposomes to reconstitute an in vitro Ag+ transport assay characterized by stopped-flow spectroscopy. Ctr3a has intrinsic high-affinity metal ion transport activity that closely reflects values determined in vivo, with slow turnover kinetics. Given structural models for mammalian Ctr1, Ctr3a likely functions as a low-efficiency Cu+ ion channel. The Ctr1/Ctr3 family may be tuned to import essential yet potentially toxic Cu+ ions at a slow rate to meet cellular needs, while minimizing labile intracellular Cu+ pools.
Collapse
Affiliation(s)
| | - Dennis J Thiele
- From the Departments of Pharmacology and Cancer Biology,
- Biochemistry, and
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
11
|
Fukai T, Ushio-Fukai M, Kaplan JH. Copper transporters and copper chaperones: roles in cardiovascular physiology and disease. Am J Physiol Cell Physiol 2018; 315:C186-C201. [PMID: 29874110 DOI: 10.1152/ajpcell.00132.2018] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Copper (Cu) is an essential micronutrient but excess Cu is potentially toxic. Its important propensity to cycle between two oxidation states accounts for its frequent presence as a cofactor in many physiological processes through Cu-containing enzymes, including mitochondrial energy production (via cytochrome c-oxidase), protection against oxidative stress (via superoxide dismutase), and extracellular matrix stability (via lysyl oxidase). Since free Cu is potentially toxic, the bioavailability of intracellular Cu is tightly controlled by Cu transporters and Cu chaperones. Recent evidence reveals that these Cu transport systems play an essential role in the physiological responses of cardiovascular cells, including cell growth, migration, angiogenesis and wound repair. In response to growth factors, cytokines, and hypoxia, their expression, subcellular localization, and function are tightly regulated. Cu transport systems and their regulators have also been linked to various cardiovascular pathophysiologies such as hypertension, inflammation, atherosclerosis, diabetes, cardiac hypertrophy, and cardiomyopathy. A greater appreciation of the central importance of Cu transporters and Cu chaperones in cell signaling and gene expression in cardiovascular biology offers the possibility of identifying new therapeutic targets for cardiovascular disease.
Collapse
Affiliation(s)
- Tohru Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia.,Departments of Pharmacology and Toxicology, Medical College of Georgia at Augusta University , Augusta, Georgia.,Charlie Norwood Veterans Affairs Medical Center , Augusta Georgia
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia.,Department of Medicine (Cardiology), Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Jack H Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine , Chicago, Illinois
| |
Collapse
|
12
|
Wang T, Xiang P, Ha JH, Wang X, Doguer C, Flores SRL, Kang YJ, Collins JF. Copper supplementation reverses dietary iron overload-induced pathologies in mice. J Nutr Biochem 2018; 59:56-63. [PMID: 29960117 DOI: 10.1016/j.jnutbio.2018.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 02/05/2023]
Abstract
Dietary iron overload in rodents impairs growth and causes cardiac hypertrophy, serum and tissue copper depletion, depression of serum ceruloplasmin (Cp) activity and anemia. Notably, increasing dietary copper content to ~25-fold above requirements prevents the development of these physiological perturbations. Whether copper supplementation can reverse these high-iron-related abnormalities has, however, not been established. The current investigation was thus undertaken to test the hypothesis that supplemental copper will mitigate negative outcomes associated with dietary iron loading. Weanling mice were thus fed AIN-93G-based diets with high (>100-fold in excess) or adequate (~80 ppm) iron content. To establish the optimal experimental conditions, we first defined the time course of iron loading, and assessed the impact of supplemental copper (provided in drinking water) on the development of high-iron-related pathologies. Copper supplementation (20 mg/L) for the last 3 weeks of a 7-week high-iron feeding period reversed the anemia, normalized serum copper levels and Cp activity, and restored tissue copper concentrations. Growth rates, cardiac copper concentrations and heart size, however, were only partially normalized by copper supplementation. Furthermore, high dietary iron intake reduced intestinal 64Cu absorption (~60%) from a transport solution provided to mice by oral, intragastric gavage. Copper supplementation of iron-loaded mice enhanced intestinal 64Cu transport, thus allowing sufficient assimilation of dietary copper to correct many of the noted high-iron-related physiological perturbations. We therefore conclude that high- iron intake increases the requirement for dietary copper (to overcome the inhibition of intestinal copper absorption).
Collapse
Affiliation(s)
- Tao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Ping Xiang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA; School of the Environment, Nanjing University, Nanjing, China
| | - Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Xiaoyu Wang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Shireen R L Flores
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Yujian James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Abstract
Heart failure places an enormous burden on health and economic systems worldwide. It is a complex disease that is profoundly influenced by both genetic and environmental factors. Neither the molecular mechanisms underlying heart failure nor effective prevention strategies are fully understood. Fortunately, relevant aspects of human heart failure can be experimentally studied in tractable model animals, including the fruit fly, Drosophila, allowing the in vivo application of powerful and sophisticated molecular genetic and physiological approaches. Heart failure in Drosophila, as in humans, can be classified into dilated cardiomyopathies and hypertrophic cardiomyopathies. Critically, many genes and cellular pathways directing heart development and function are evolutionarily conserved from Drosophila to humans. Studies of molecular mechanisms linking aging with heart failure have revealed that genes involved in aging-associated energy homeostasis and oxidative stress resistance influence cardiac dysfunction through perturbation of IGF and TOR pathways. Importantly, ion channel proteins, cytoskeletal proteins, and integrins implicated in aging of the mammalian heart have been shown to play significant roles in heart failure. A number of genes previously described having roles in development of the Drosophila heart, such as genes involved in Wnt signaling pathways, have recently been shown to play important roles in the adult fly heart. Moreover, the fly model presents opportunities for innovative studies that cannot currently be pursued in the mammalian heart because of technical limitations. In this review, we discuss progress in our understanding of genes, proteins, and molecular mechanisms that affect the Drosophila adult heart and heart failure.
Collapse
Affiliation(s)
- Shasha Zhu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhe Han
- Center for Cancer and Immunology Research, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Yan Luo
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yulin Chen
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Qun Zeng
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xiushan Wu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Wuzhou Yuan
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| |
Collapse
|
14
|
Hu Frisk JM, Kjellén L, Kaler SG, Pejler G, Öhrvik H. Copper Regulates Maturation and Expression of an MITF:Tryptase Axis in Mast Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:4132-4141. [PMID: 29127151 PMCID: PMC5728160 DOI: 10.4049/jimmunol.1700786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/16/2017] [Indexed: 12/28/2022]
Abstract
Copper has previously been implicated in the regulation of immune responses, but the impact of this metal on mast cells is poorly understood. In this article, we address this issue and show that copper starvation of mast cells causes increased granule maturation, as indicated by higher proteoglycan content, stronger metachromatic staining, and altered ultrastructure in comparison with nontreated cells, whereas copper overload has the opposite effects. In contrast, copper status did not impact storage of histamine in mast cells, nor did alterations in copper levels affect the ability of mast cells to degranulate in response to IgER cross-linking. A striking finding was decreased tryptase content in mast cells with copper overload, whereas copper starvation increased tryptase content. These effects were associated with corresponding shifts in tryptase mRNA levels, suggesting that copper affects tryptase gene regulation. Mechanistically, we found that alterations in copper status affected the expression of microphthalmia-associated transcription factor, a transcription factor critical for driving tryptase expression. We also found evidence supporting the concept that the effects on microphthalmia-associated transcription factor are dependent on copper-mediated modulation of MAPK signaling. Finally, we show that, in MEDNIK syndrome, a condition associated with low copper levels and a hyperallergenic skin phenotype, including pruritis and dermatitis, the number of tryptase-positive mast cells is increased. Taken together, our findings reveal a hitherto unrecognized role for copper in the regulation of mast cell gene expression and maturation.
Collapse
Affiliation(s)
- Jun Mei Hu Frisk
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Stephen G Kaler
- Section on Translational Neuroscience, Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Helena Öhrvik
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden;
| |
Collapse
|
15
|
Logeman BL, Wood LK, Lee J, Thiele DJ. Gene duplication and neo-functionalization in the evolutionary and functional divergence of the metazoan copper transporters Ctr1 and Ctr2. J Biol Chem 2017; 292:11531-11546. [PMID: 28507097 PMCID: PMC5500815 DOI: 10.1074/jbc.m117.793356] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/12/2017] [Indexed: 11/06/2022] Open
Abstract
Copper is an essential element for proper organismal development and is involved in a range of processes, including oxidative phosphorylation, neuropeptide biogenesis, and connective tissue maturation. The copper transporter (Ctr) family of integral membrane proteins is ubiquitously found in eukaryotes and mediates the high-affinity transport of Cu+ across both the plasma membrane and endomembranes. Although mammalian Ctr1 functions as a Cu+ transporter for Cu acquisition and is essential for embryonic development, a homologous protein, Ctr2, has been proposed to function as a low-affinity Cu transporter, a lysosomal Cu exporter, or a regulator of Ctr1 activity, but its functional and evolutionary relationship to Ctr1 is unclear. Here we report a biochemical, genetic, and phylogenetic comparison of metazoan Ctr1 and Ctr2, suggesting that Ctr2 arose over 550 million years ago as a result of a gene duplication event followed by loss of Cu+ transport activity. Using a random mutagenesis and growth selection approach, we identified amino acid substitutions in human and mouse Ctr2 proteins that support copper-dependent growth in yeast and enhance copper accumulation in Ctr1-/- mouse embryonic fibroblasts. These mutations revert Ctr2 to a more ancestral Ctr1-like state while maintaining endogenous functions, such as stimulating Ctr1 cleavage. We suggest key structural aspects of metazoan Ctr1 and Ctr2 that discriminate between their biological roles, providing mechanistic insights into the evolutionary, biochemical, and functional relationships between these two related proteins.
Collapse
Affiliation(s)
| | - L Kent Wood
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710 and
| | - Jaekwon Lee
- the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - Dennis J Thiele
- From the Departments of Pharmacology and Cancer Biology,
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710 and
- Biochemistry, and
| |
Collapse
|
16
|
Medeiros DM. Perspectives on the Role and Relevance of Copper in Cardiac Disease. Biol Trace Elem Res 2017; 176:10-19. [PMID: 27444302 DOI: 10.1007/s12011-016-0807-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/07/2016] [Indexed: 01/24/2023]
Abstract
Cardiac hypertrophy as a result of dietary copper deficiency has been studied for 40 plus years and is the subject of this review. While connective tissue anomalies occur, a hallmark pathology is cardiac hypertrophy, increased mitochondrial biogenesis, with disruptive cristae, vacuolization of mitochondria, and deposition of lipid droplets. Electrocardiogram abnormalities have been demonstrated along with biochemical changes especially as it relates to the copper-containing enzyme cytochrome c oxidase. The master controller of mitochondrial biogenesis, PGC1-α expression and protein, along with other proteins and transcriptional factors that play a role are upregulated. Nitric oxide, vascular endothelial growth factor, and cytochrome c oxidase all may enhance the upregulation of mitochondrial biogenesis. Marginal copper intakes reveal similar pathologies in the absence of cardiac hypertrophy. Reversibility of the copper-deficient rat heart with a copper-replete diet has resulted in mixed results, depending on both the animal model used and temporal relationships. New information has revealed that copper supplementation may rescue cardiac hypertrophy induced by pressure overload.
Collapse
Affiliation(s)
- Denis M Medeiros
- Division of Biochemistry and Molecular Biology, School of Graduate Studies, University of Missouri Kansas City, 300F Administrative Center, 5115 Oak Street, Kansas City, MO, 64110-2499, USA.
| |
Collapse
|
17
|
Elsherif L, Jiang Y, Saari JT, Kang YJ. Dietary Copper Restriction-Induced Changes in Myocardial Gene Expression and the Effect of Copper Repletion. Exp Biol Med (Maywood) 2016. [DOI: 10.1177/153537020422900705] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dietary copper (Cu) restriction leads to cardiac hypertrophy and failure in mice, and Cu repletion (CuR) reverses the hypertrophy and prevents the transition to heart failure. The present study was undertaken to determine changes in myocardial gene expression involved in Cu deficient (CuD) cardiomyopathy and its reversal by CuR. Analysis was performed on three groups of mice: 4-week-old CuD mice that exhibited signs of cardiac failure, their age-matched copper-adequate (CuA) controls, and the CuD mice that were re-fed adequate Cu for 2 weeks. Total RNA was isolated from hearts and subjected to cDNA microarray and real-time reverse transcription-polymerase chain reaction analysis. Dietary CuD caused a decrease in cardiac mRNA of β-MHC, L-type Ca2+ channel, K-dependent NCX, MMP-2, -8, and -13, NF-κB, and VEGF. The mRNA levels of ET-1, TGF-β, TNF-α, and procollagen-l-α1 and III-α1 were increased in the CuD cardiac tissue. Copper repletion resulted in cardiac mRNA levels of most of the genes examined returning to control levels, although the K-dependent NCX and MMP-2 values did not reach those of the CuA control. In addition, CuR caused an increase in β-MHC, L-type Ca2+channel, MMP-13 to levels surpassing those of CuA control, and a decrease in ET-1, and TNF-at mRNA levels. In summary, changes in gene expression of elements involved in contractility, Ca2+ cycling, and inflammation and fibrosis may account for the altered cardiac function found in CuD mice. The return to normal cardiac function by CuR may be a result of the favorable regression in gene expression of these critical components in myocardial tissue.
Collapse
Affiliation(s)
| | - Youchun Jiang
- Departments of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Jack T. Saari
- U.S. Department of Agriculture, Human Nutrition Research Center, Grand Forks, North Dakota 58202
| | - Y. James Kang
- Departments of Pharmacology and Toxicology
- Departments of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
18
|
Xu J, Begley P, Church SJ, Patassini S, McHarg S, Kureishy N, Hollywood KA, Waldvogel HJ, Liu H, Zhang S, Lin W, Herholz K, Turner C, Synek BJ, Curtis MA, Rivers-Auty J, Lawrence CB, Kellett KAB, Hooper NM, Vardy ERLC, Wu D, Unwin RD, Faull RLM, Dowsey AW, Cooper GJS. Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer's disease: metabolic basis for dementia. Sci Rep 2016; 6:27524. [PMID: 27276998 DOI: 10.1038/srep27524] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/19/2016] [Indexed: 12/25/2022] Open
Abstract
Impairment of brain-glucose uptake and brain-copper regulation occurs in Alzheimer's disease (AD). Here we sought to further elucidate the processes that cause neurodegeneration in AD by measuring levels of metabolites and metals in brain regions that undergo different degrees of damage. We employed mass spectrometry (MS) to measure metabolites and metals in seven post-mortem brain regions of nine AD patients and nine controls, and plasma-glucose and plasma-copper levels in an ante-mortem case-control study. Glucose, sorbitol and fructose were markedly elevated in all AD brain regions, whereas copper was correspondingly deficient throughout (all P < 0.0001). In the ante-mortem case-control study, by contrast, plasma-glucose and plasma-copper levels did not differ between patients and controls. There were pervasive defects in regulation of glucose and copper in AD brain but no evidence for corresponding systemic abnormalities in plasma. Elevation of brain glucose and deficient brain copper potentially contribute to the pathogenesis of neurodegeneration in AD.
Collapse
Affiliation(s)
- Jingshu Xu
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Paul Begley
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Stephanie J Church
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Stefano Patassini
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Selina McHarg
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Nina Kureishy
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Katherine A Hollywood
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Henry J Waldvogel
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Hong Liu
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, New Zealand
| | - Shaoping Zhang
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, New Zealand
| | - Wanchang Lin
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Karl Herholz
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Clinton Turner
- Anatomical Pathology, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Beth J Synek
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.,Anatomical Pathology, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Jack Rivers-Auty
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Catherine B Lawrence
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Katherine A B Kellett
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Nigel M Hooper
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | | | - Donghai Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Richard D Unwin
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Richard L M Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Andrew W Dowsey
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Garth J S Cooper
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| |
Collapse
|
19
|
Öhrvik H, Logeman B, Turk B, Reinheckel T, Thiele DJ. Cathepsin Protease Controls Copper and Cisplatin Accumulation via Cleavage of the Ctr1 Metal-binding Ectodomain. J Biol Chem 2016; 291:13905-13916. [PMID: 27143361 DOI: 10.1074/jbc.m116.731281] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 11/06/2022] Open
Abstract
Copper is an essential metal ion for embryonic development, iron acquisition, cardiac function, neuropeptide biogenesis, and other critical physiological processes. Ctr1 is a high affinity Cu(+) transporter on the plasma membrane and endosomes that exists as a full-length protein and a truncated form of Ctr1 lacking the methionine- and histidine-rich metal-binding ectodomain, and it exhibits reduced Cu(+) transport activity. Here, we identify the cathepsin L/B endolysosomal proteases functioning in a direct and rate-limiting step in the Ctr1 ectodomain cleavage. Cells and mice lacking cathepsin L accumulate full-length Ctr1 and hyper-accumulate copper. As Ctr1 also transports the chemotherapeutic drug cisplatin via direct binding to the ectodomain, we demonstrate that the combination of cisplatin with a cathepsin L/B inhibitor enhances cisplatin uptake and cell killing. These studies identify a new processing event and the key protease that cleaves the Ctr1 metal-binding ectodomain, which functions to regulate cellular Cu(+) and cisplatin acquisition.
Collapse
Affiliation(s)
- Helena Öhrvik
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710.
| | - Brandon Logeman
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Freiburg 79104 Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104 Germany
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710; Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710.
| |
Collapse
|
20
|
Cheung CCH, Soon CY, Chuang CL, Phillips ARJ, Zhang S, Cooper GJS. Low-dose copper infusion into the coronary circulation induces acute heart failure in diabetic rats: New mechanism of heart disease. Biochem Pharmacol 2015. [PMID: 26208785 DOI: 10.1016/j.bcp.2015.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes impairs copper (Cu) regulation, causing elevated serum Cu and urinary Cu excretion in patients with established cardiovascular disease; it also causes cardiomyopathy and chronic cardiac impairment linked to defective Cu homeostasis in rats. However, the mechanisms that link impaired Cu regulation to cardiac dysfunction in diabetes are incompletely understood. Chronic treatment with triethylenetetramine (TETA), a Cu²⁺-selective chelator, improves cardiac function in diabetic patients, and in rats with heart disease; the latter displayed ∼3-fold elevations in free Cu²⁺ in the coronary effluent when TETA was infused into their coronary arteries. To further study the nature of defective cardiac Cu regulation in diabetes, we employed an isolated-perfused, working-heart model in which we infused micromolar doses of Cu²⁺ into the coronary arteries and measured acute effects on cardiac function in diabetic and non-diabetic-control rats. Infusion of CuCl₂ solutions caused acute dose-dependent cardiac dysfunction in normal hearts. Several measures of baseline cardiac function were impaired in diabetic hearts, and these defects were exacerbated by low-micromolar Cu²⁺ infusion. The response to infused Cu²⁺ was augmented in diabetic hearts, which became defective at lower infusion levels and underwent complete pump failure (cardiac output = 0 ml/min) more often (P < 0.0001) at concentrations that only moderately impaired function of control hearts. To our knowledge, this is the first report describing the acute effects on cardiac function of pathophysiological elevations in coronary Cu²⁺. The effects of Cu²⁺ infusion occur within minutes in both control and diabetic hearts, which suggests that they are not due to remodelling. Heightened sensitivity to the acute effects of small elevations in Cu²⁺ could contribute substantively to impaired cardiac function in patients with diabetes and is thus identified as a new mechanism of heart disease.
Collapse
Affiliation(s)
- Carlos Chun Ho Cheung
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Choong Yee Soon
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Chia-Lin Chuang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Anthony R J Phillips
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Shaoping Zhang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, The University of Auckland, Auckland, New Zealand; Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK; The Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK; The Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
21
|
Zheng L, Han P, Liu J, Li R, Yin W, Wang T, Zhang W, Kang YJ. Role of copper in regression of cardiac hypertrophy. Pharmacol Ther 2014; 148:66-84. [PMID: 25476109 DOI: 10.1016/j.pharmthera.2014.11.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023]
Abstract
Pressure overload causes an accumulation of homocysteine in the heart, which is accompanied by copper depletion through the formation of copper-homocysteine complexes and the excretion of the complexes. Copper supplementation recovers cytochrome c oxidase (CCO) activity and promotes myocardial angiogenesis, along with the regression of cardiac hypertrophy and the recovery of cardiac contractile function. Increased copper availability is responsible for the recovery of CCO activity. Copper promoted expression of angiogenesis factors including vascular endothelial growth factor (VEGF) in endothelial cells is responsible for angiogenesis. VEGF receptor-2 (VEGFR-2) is critical for hypertrophic growth of cardiomyocytes and VEGFR-1 is essential for the regression of cardiomyocyte hypertrophy. Copper, through promoting VEGF production and suppressing VEGFR-2, switches the VEGF signaling pathway from VEGFR-2-dependent to VEGFR-1-dependent, leading to the regression of cardiomyocyte hypertrophy. Copper is also required for hypoxia-inducible factor-1 (HIF-1) transcriptional activity, acting on the interaction between HIF-1 and the hypoxia responsible element and the formation of HIF-1 transcriptional complex by inhibiting the factor inhibiting HIF-1. Therefore, therapeutic targets for copper supplementation-induced regression of cardiac hypertrophy include: (1) the recovery of copper availability for CCO and other critical cellular events; (2) the activation of HIF-1 transcriptional complex leading to the promotion of angiogenesis in the endothelial cells by VEGF and other factors; (3) the activation of VEGFR-1-dependent regression signaling pathway in the cardiomyocytes; and (4) the inhibition of VEGFR-2 through post-translational regulation in the hypertrophic cardiomyocytes. Future studies should focus on target-specific delivery of copper for the development of clinical application.
Collapse
Affiliation(s)
- Lily Zheng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Pengfei Han
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiaming Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Rui Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wen Yin
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wenjing Zhang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
22
|
Marinescu V, McCullough PA. Nutritional and micronutrient determinants of idiopathic dilated cardiomyopathy: diagnostic and therapeutic implications. Expert Rev Cardiovasc Ther 2014; 9:1161-70. [DOI: 10.1586/erc.11.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Argüello G, Martinez P, Peña J, Chen O, Platt F, Zanlungo S, González M. Hepatic metabolic response to restricted copper intake in a Niemann–Pick C murine model. Metallomics 2014; 6:1527-39. [DOI: 10.1039/c4mt00056k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Niemann–Pick C disease (NPC) is a vesicular trafficking disorder primarily caused by mutations in theNpc1gene and characterized by liver dysfunction and neuropathology.
Collapse
Affiliation(s)
- Graciela Argüello
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR)
| | - Pablo Martinez
- Departamento de Gastroenterología
- Facultad de Medicina
- Pontificia Universidad Católica de Chile
- Santiago, Chile
| | - Juan Peña
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
| | - Oscar Chen
- Department of Pharmacology
- University of Oxford
- Oxford OX1 3QT, UK
| | - Frances Platt
- Department of Pharmacology
- University of Oxford
- Oxford OX1 3QT, UK
| | - Silvana Zanlungo
- FONDAP-Center of Genome Regulation (CGR)
- Santiago, Chile
- Departamento de Gastroenterología
- Facultad de Medicina
- Pontificia Universidad Católica de Chile
| | - Mauricio González
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR)
| |
Collapse
|
24
|
Ctr2 regulates biogenesis of a cleaved form of mammalian Ctr1 metal transporter lacking the copper- and cisplatin-binding ecto-domain. Proc Natl Acad Sci U S A 2013; 110:E4279-88. [PMID: 24167251 DOI: 10.1073/pnas.1311749110] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Copper is an essential catalytic cofactor for enzymatic activities that drive a range of metabolic biochemistry including mitochondrial electron transport, iron mobilization, and peptide hormone maturation. Copper dysregulation is associated with fatal infantile disease, liver, and cardiac dysfunction, neuropathy, and anemia. Here we report that mammals regulate systemic copper acquisition and intracellular mobilization via cleavage of the copper-binding ecto-domain of the copper transporter 1 (Ctr1). Although full-length Ctr1 is critical to drive efficient copper import across the plasma membrane, cleavage of the ecto-domain is required for Ctr1 to mobilize endosomal copper stores. The biogenesis of the truncated form of Ctr1 requires the structurally related, previously enigmatic copper transporter 2 (Ctr2). Ctr2(-/-) mice are defective in accumulation of truncated Ctr1 and exhibit increased tissue copper levels, and X-ray fluorescence microscopy demonstrates that copper accumulates as intracellular foci. These studies identify a key regulatory mechanism for mammalian copper transport through Ctr2-dependent accumulation of a Ctr1 variant lacking the copper- and cisplatin-binding ecto-domain.
Collapse
|
25
|
Bolognin S, Pasqualetto F, Mucignat-Caretta C, Scancar J, Milacic R, Zambenedetti P, Cozzi B, Zatta P. Effects of a copper-deficient diet on the biochemistry, neural morphology and behavior of aged mice. PLoS One 2012; 7:e47063. [PMID: 23071712 PMCID: PMC3468563 DOI: 10.1371/journal.pone.0047063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/07/2012] [Indexed: 12/20/2022] Open
Abstract
Copper dyshomeostasis has been suggested as an aetiological risk factor for some neurodegenerative diseases, such as Alzheimer’s disease. However, the precise mechanism at the base of this involvement is still obscure. In this work, we show the effects of a copper-deficient diet in aged CD1 mice and the influence of such a diet on: a) the concentration of various metal ions (aluminium, copper, iron, calcium, zinc) in the main organs and in different brain areas; b) the alteration of metallothioneins I-II and tyrosine hydroxylase immunopositivity in the brain; c) behavioural tests (open field, pole, predatory aggression, and habituation/dishabituation smell tests). Our data suggested that the copper-deficiency was able to produce a sort of “domino effect” which altered the concentration of the other tested metal ions in the main organs as well as in the brain, without, however, significantly affecting the animal behaviour.
Collapse
Affiliation(s)
- Silvia Bolognin
- CNR-Institute for Biomedical Technologies, Metalloproteins Unit, Department of Biology, University of Padova, Padova, Italy
| | - Federica Pasqualetto
- CNR-Institute for Biomedical Technologies, Metalloproteins Unit, Department of Biology, University of Padova, Padova, Italy
| | | | - Janez Scancar
- Department of Environmental Sciences, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Radmila Milacic
- Department of Environmental Sciences, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | - Bruno Cozzi
- Department of Experimental Veterinary Science, University of Padova, Legnaro (PD), Italy
- * E-mail: (PZ); (BC)
| | - Paolo Zatta
- CNR-Institute for Biomedical Technologies, Metalloproteins Unit, Department of Biology, University of Padova, Padova, Italy
- * E-mail: (PZ); (BC)
| |
Collapse
|
26
|
Gybina AA, Prohaska JR. Variable response of selected cuproproteins in rat choroid plexus and cerebellum following perinatal copper deficiency. GENES AND NUTRITION 2012; 1:51-9. [PMID: 18850220 DOI: 10.1007/bf02829936] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 03/16/2006] [Indexed: 11/28/2022]
Abstract
Recent immunohistochemical characterization of the copper transport protein, Ctr1, reported enriched levels in mouse choroid plexus, and enhancement by copper deficiency. To extend and confirm this, experiments were conducted with Holtzman rats. Following perinatal copper deficiency there was an 80% reduction in brain copper of 24-27 day old copper-deficient (Cu-) rat pups compared to copper-adequate (Cu+) controls. Choroid plexus immunoblot analysis with rabbit anti-hCtr1 demonstrated a 50% higher Ctr1 protein expression in Cu-samples. However, levels of copper chaperone for superoxide dismutase (CCS) were unchanged, suggesting that Ctr1 buffers the choroid plexus against copper deficiency, since CCS normally is much higher in Cu-tissues. There were 13% lower levels of cytochrome c oxidase subunit IV (COX IV) detected in Cuchoroid plexus. In contrast, in cerebellum of Cu-rats CCS was 2-fold higher and COXIV 1.7-fold lower than Cu+ rats consistent with severe copper deficiency. Brain mitochondria from Cu-rats had severe reductions in COXIV content and CCO activity and modest but significant elevations in CCS and reductions in Cu, Zn-superoxide dismutase. COXIV may be a more sensitive marker for copper deficiency than CCS and may prove useful to assess copper status.
Collapse
Affiliation(s)
- Anna A Gybina
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School Duluth, 1035 University Drive, 55812, Duluth, MN
| | | |
Collapse
|
27
|
Ischemia-induced Copper Loss and Suppression of Angiogenesis in the Pathogenesis of Myocardial Infarction. Cardiovasc Toxicol 2012; 13:1-8. [DOI: 10.1007/s12012-012-9174-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Response to the Letter to the Editor: “Gastric Bypass and Copper-Deficiency: A Possible Overlooked Consequence” by Prof. Denis M. Medeiros. Obes Surg 2011. [DOI: 10.1007/s11695-011-0466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Kang YJ. Copper and homocysteine in cardiovascular diseases. Pharmacol Ther 2010; 129:321-31. [PMID: 21130114 DOI: 10.1016/j.pharmthera.2010.11.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 11/08/2010] [Indexed: 02/05/2023]
Abstract
High blood copper (Cu) and homocysteine (Hcy) concentrations have been independently reported as risk factors for cardiovascular diseases. When they are simultaneously measured, a concomitant increase in both parameters in association with vascular dysfunction has been observed. Cu chelator penicillamine can significantly diminish the inhibitory effect of Hcy on endothelial function, which has led to the interpretation that Cu mediates the deleterious effect of Hcy. However, Cu itself has been shown to be beneficial to the cardiovascular system. In particular, Cu promotion of angiogenesis has been well documented. Cu stimulates endothelial cell proliferation and differentiation and promotes microtubule formation in cultured saphenous veins. High levels of Hcy do not affect the process of microtubule formation, but the combination of Cu and Hcy leads to a significant inhibitory effect. Under other conditions, Cu does not affect, but Hcy inhibits, the endothelium-dependent relaxation of blood vessels and the combination of both augments the inhibition. Why does Cu produce adverse effects when it co-exists with Hcy? Cu forms complexes with Hcy and the Cu-Hcy complexes possess a deleterious potential due to their redox properties. Cu chelation can remove Cu from the Cu-Hcy complexes, but leaves behind high levels of Hcy and produces Cu deficiency. An alternative approach should focus on the reduction of Hcy, but maintenance of Cu, making detrimental Cu beneficial. A comprehensive understanding of Cu speciation and a development of selective modulation of Cu coordination to Cu-binding molecules to avoid Cu-Hcy complex formation would effectively improve the condition of cardiovascular disease.
Collapse
Affiliation(s)
- Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
30
|
Kim BE, Turski ML, Nose Y, Casad M, Rockman HA, Thiele DJ. Cardiac copper deficiency activates a systemic signaling mechanism that communicates with the copper acquisition and storage organs. Cell Metab 2010; 11:353-63. [PMID: 20444417 PMCID: PMC2901851 DOI: 10.1016/j.cmet.2010.04.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 02/05/2010] [Accepted: 04/05/2010] [Indexed: 12/15/2022]
Abstract
Copper (Cu) is an essential cofactor for a variety of metabolic functions, and the regulation of systemic Cu metabolism is critical to human health. Dietary Cu is absorbed through the intestine, stored in the liver, and mobilized into the circulation; however, systemic Cu homeostasis is poorly understood. We generated mice with a cardiac-specific knockout of the Ctr1 Cu transporter (Ctr1(hrt/hrt)), resulting in cardiac Cu deficiency and severe cardiomyopathy. Unexpectedly, Ctr1(hrt/hrt) mice exhibited increased serum Cu levels and a concomitant decrease in hepatic Cu stores. Expression of the ATP7A Cu exporter, thought to function predominantly in intestinal Cu acquisition, was strongly increased in liver and intestine of Ctr1(hrt/hrt) mice. These studies identify ATP7A as a candidate for hepatic Cu mobilization in response to peripheral tissue demand, and illuminate a systemic regulation in which the Cu status of the heart is signaled to organs that take up and store Cu.
Collapse
Affiliation(s)
- Byung-Eun Kim
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Michelle L. Turski
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yasuhiro Nose
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Michelle Casad
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
- Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
- Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
- correspondence should be addressed to D.J. Thiele ()
| |
Collapse
|
31
|
Shokrzadeh M, Ghaemian A, Salehifar E, Aliakbari S, Saravi SSS, Ebrahimi P. Serum zinc and copper levels in ischemic cardiomyopathy. Biol Trace Elem Res 2009; 127:116-23. [PMID: 18953508 DOI: 10.1007/s12011-008-8237-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
Changes in the copper (Cu) and zinc (Zn) concentrations have been reported previously in ischemic cardiomyopathy (ISCMP). Due to controversial results, the aims of this study were to compare levels of Cu, Zn, and Zn/Cu ratio of ISCMP patients with healthy volunteers and also to investigate the possible relationship between trace elements status in ISCMP patients with the severity of clinical disease based on the New York Heart Association (NYHA) classification. The subjects of this study consisted of 30 ISCMP and 27 healthy volunteers. ISCMP was diagnosed with a history of previous myocardial infarction and also coronary artery disease was confirmed by coronary angiography. Exclusion criteria were renal or hepatic insufficiency, alcohol usage, and intake of supplements containing Cu or Zn within 1 week. Cu and Zn levels have been assayed with atomic absorption spectrophotometry. Statistical analysis was performed with the SPSS 10 software using independent sample t test for comparing the levels of Cu and Zn between ISCMP and normal subjects. The mean Cu level of the ISCMP group (1.54 +/- 0.52 mg/L) was significantly more than the Cu levels of the healthy volunteers (1.31 +/- 0.24 mg/L; p = 0.048). The mean Zn levels of the ISCMP and healthy volunteers were 1.05 +/- 0.28 and 1.12 +/- 0.42, respectively, without any significant difference between groups. There was a trend for higher Cu level, lower Zn level, and lower Zn/Cu ratio in NYHA III patients in comparison with NYHA II group. Considering the results of this study, Cu may have a role in the development of ISCMP. Interventions such as administration of Cu chelators to relieve the symptoms or to decrease the progression of ISCMP is needed to be examined in large clinical trials. In this study, the Zn level of ISCMP patients was not significantly different in comparison with the healthy volunteers.
Collapse
Affiliation(s)
- Mohammad Shokrzadeh
- Department of Toxicology, Faculty of Pharmacy, Mazandaran Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | | | | | | | |
Collapse
|
32
|
Salehifar E, Shokrzadeh M, Ghaemian A, Aliakbari S, Saeedi Saravi SS. The study of Cu and Zn serum levels in idiopathic dilated cardiomyopathy (IDCMP) patients and its comparison with healthy volunteers. Biol Trace Elem Res 2008; 125:97-108. [PMID: 18716717 DOI: 10.1007/s12011-008-8151-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 04/22/2008] [Indexed: 10/21/2022]
Abstract
Changes in the cupper (Cu) and zinc (Zn) concentrations have been reported previously in idiopathic dilated cardiomyopathy (IDCMP). As a result of controversial results, the aim of this study was to compare the Zn and Cu concentrations and Zn/Cu ratio of IDCMP patients to healthy volunteers. In addition, the correlation of Cu and Zn levels with age has been evaluated. The study population consisted of 18 IDCMP patients and 27 healthy volunteers. IDCMP patients had normal angiography with echocardiography supporting cardiomyopathy without pericardial and valvular diseases. Exclusion criteria were renal or hepatic insufficiency, alcohol usage, and intake of supplements containing Cu or Zn within 1 week ago. Cu and Zn levels have been assayed with atomic absorption spectrophotometry. Statistical analysis was performed with SPSS 10 software with independent sample t test for comparing the level of Cu and Zn of IDCMP patients with normal subjects and Pearson correlation to determine the correlation between numeric data. P < 0.05 was considered as significant differences. There was a trend for a lower Zn level in IDCMP patients compared to healthy volunteers. (0.97 +/- 0.25 mg/l vs. 1.12 +/- 0.42 mg/l, respectively). The mean Cu levels of IDCMP and normal subjects were 1.33 +/- 0.20 mg/l and 1.31 +/- 0.23 mg/l, respectively. There was a significant difference in Zn/Cu ratio among patients based on the NYHA classification of heart failure (P = 0.003). Age was negatively correlated with Zn levels in IDCMP group (P = 0.037) and positively with Cu levels in healthy volunteers (P = 0.012). A lower Zn level in IDCMP patients compared to healthy volunteers and specially a significant difference in Zn/Cu ratio of patients based on their NYHA classification would suggest a critical role of zinc and Cu imbalance in development of IDCMP.
Collapse
Affiliation(s)
- E Salehifar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | | | | | | | | |
Collapse
|
33
|
Kang YJ, Wu H, Saari JT. Alterations in Hypertrophic Gene Expression by Dietary Copper Restriction in Mouse Heart. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1525-1373.2000.22340.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Johnson WT, Anderson CM. Cardiac cytochrome C oxidase activity and contents of subunits 1 and 4 are altered in offspring by low prenatal copper intake by rat dams. J Nutr 2008; 138:1269-73. [PMID: 18567746 DOI: 10.1093/jn/138.7.1269] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been reported previously that the offspring of rat dams consuming low dietary copper (Cu) during pregnancy and lactation experience a deficiency in cardiac cytochrome c oxidase (CCO) characterized by reduced catalytic activity and mitochondrial and nuclear subunit content after postnatal d 10. The present study was undertaken to determine whether the cardiac CCO deficiency was caused directly by low postnatal Cu intake or whether it was a prenatal effect of low Cu intake by the dams that became manifest postnatally. Dams were fed either a Cu-adequate diet (6 mg Cu/kg) or Cu-deficient diet (1 mg Cu/kg) beginning 3 wk before conception and throughout gestation and lactation. One day following parturition, several litters from Cu-adequate dams were cross fostered to Cu-deficient dams and several litters from Cu-deficient dams were cross fostered to Cu-adequate dams. Litters that remained with their birth dams served as controls. CCO activity, the content of the mitochondrial-encoded CCO subunit 1 (COX1), and the content of the nuclear-encoded subunit COX4 in cardiac mitochondria were reduced in the 21-d-old offspring of Cu-deficient dams. COX1 content was normal in the 21-d-old cross-fostered offspring of Cu-deficient dams, but CCO activity and COX4 were reduced. Cross fostering the offspring of Cu-adequate dams to Cu-deficient dams did not significantly affect CCO activity, COX1 content, or COX4 content in cardiac mitochondria of 21-d-old offspring. These data indicate that low prenatal Cu intake by dams was the determinant of CCO activity in cardiac mitochondria of the 21-d-old offspring and may have led to the assembly of a less-than-fully active holoenzyme.
Collapse
Affiliation(s)
- W Thomas Johnson
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58202-9034, USA.
| | | |
Collapse
|
35
|
Klaahsen D, Ricklefs K, Medeiros DM. Differential expression of genes involved with apoptosis, cell cycle, connective tissue proteins, fuel substrate utilization, inflammation and mitochondrial biogenesis in copper-deficient rat hearts: implication of a role for Nfkappab1. J Nutr Biochem 2007; 18:719-26. [PMID: 17418555 DOI: 10.1016/j.jnutbio.2006.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/14/2006] [Accepted: 11/20/2006] [Indexed: 11/22/2022]
Abstract
We hypothesized that the increase in mitochondrial proliferation in hearts from copper-deficient rats is due to an increase in expression of the transcriptional factor peroxisomal-like proliferating related coactivator 1alpha (Ppargc1a), which regulates transcriptional activity for many of the genes that encode for mitochondrial proteins. In addition to several transcriptional factors implicated in mitochondrial biogenesis, we also looked at a number of genes involved in cell cycle regulation and fuel substrate utilization. Long-Evans rats were placed on either a copper-adequate (n=4) or copper-deficient (n=4) diet 3 days post weaning and remained on the diet for 5 weeks; their copper deficiency status was confirmed using previously established assays. Custom oligo arrays spotted with genes pertinent to mitochondrial biogenesis were hybridized with cRNA probes synthesized from the collected heart tissue. Chemiluminescent array images from both groups were analyzed for gene spot intensities and differential gene expression. Our results did not demonstrate any significant increase in Ppargc1a or its implicated targets, as we had predicted. However, consistent with previous data, an up-regulation of genes that encode for collagen type 3, fibronectin and elastin were found. Interestingly, there was also a significant increase in the expression of the transcriptional factor nuclear factor kappaB1 (Nfkappab1) in the copper-deficient treatment animals, compared to the control group, and this was confirmed by real time quantitative polymerase chain reaction. The results of this study merit the further investigation of the role of reactive oxidative species with regard to Nfkappab1 in the copper deficient rat heart.
Collapse
Affiliation(s)
- Darcey Klaahsen
- Department of Human Nutrition, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
36
|
Zeng H, Saari JT, Johnson WT. Copper deficiency decreases complex IV but not complex I, II, III, or V in the mitochondrial respiratory chain in rat heart. J Nutr 2007; 137:14-8. [PMID: 17182794 DOI: 10.1093/jn/137.1.14] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been documented that dietary copper (Cu) deficiency impairs mitochondrial respiratory function, which is catalyzed by 5 membrane-bound multiple protein complexes. However, there are few reports on the simultaneous analysis of Cu effect on the subunit protein expression on all 5 protein complexes. The present study was undertaken to determine the effect of Cu deficiency on each mitochondrial respiratory complex's protein expression in rat heart tissue with western-blot analysis. Male Sprague-Dawley rats were fed diets that were either Cu adequate (6.0 microg Cu/g diet, n = 5) or Cu deficient (0.3 microg Cu/g diet, n = 5) for 5 wk. The monoclonal antibody-based western-blot analysis suggested that the protein levels of 39-kDa and 30-kDa subunits in complex I; 70-kDa and 30-kDa subunits in complex II; core I and core II subunits in complex III; and alpha and beta subunits of F1 complex in complex V in both high-salt buffer (HSB) and low-salt buffer (LSB) protein fractions from heart tissue of Cu-deficient rats did not differ from those of Cu-adequate rats. However, the protein level of cytochrome c oxidase (CCO) subunit (COX) I, COX Vb, and COX VIb subunits in complex IV (CCO) in both HSB and LSB protein fractions from heart tissue of Cu-deficient rats was lower than those of Cu-adequate rats. Collectively, these data demonstrate that Cu deficiency decreases each tested subunit protein expression of complex IV but not those of complex I, II, III, and V in mitochondrial respiratory complexes.
Collapse
Affiliation(s)
- Huawei Zeng
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota 58202-9034, USA.
| | | | | |
Collapse
|
37
|
Johnson WT, Newman SM. Hearts in adult offspring of copper-deficient dams exhibit decreased cytochrome c oxidase activity, increased mitochondrial hydrogen peroxide generation and enhanced formation of intracellular residual bodies. J Nutr Biochem 2006; 18:97-104. [PMID: 16713228 DOI: 10.1016/j.jnutbio.2006.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 02/27/2006] [Accepted: 03/08/2006] [Indexed: 11/15/2022]
Abstract
The long-term effects of low dietary copper (Cu) intake during pregnancy and lactation on cardiac mitochondria in first-generation adult rats was examined. Rat dams were fed diets containing either low (1 mg/kg Cu) or adequate (6 mg/kg Cu) levels of dietary Cu beginning 3 weeks before conception and ending 3 weeks after birth. Cytochrome c oxidase (CCO) activity was 51% lower in isolated cardiac mitochondria from 21-day-old offspring of Cu-deficient dams than in the offspring of Cu-adequate dams. CCO activities in the cardiac mitochondria of 63- and 290-day-old offspring were 22% lower and 14% lower, respectively, in the offspring of Cu-deficient dams after they had been repleted with adequate dietary Cu from the time they were 21 days old. Electron micrographs showed that the size of residual bodies and the cellular volume they occupied in cardiomyocytes rose significantly between 63 and 290 days in the Cu-repleted offspring of Cu-deficient dams, but not in the offspring of Cu-adequate dams. The rate of hydrogen peroxide generation by cardiac mitochondria also was 24% higher in the 290-day-old repleted offspring of Cu-deficient dams than in the offspring of Cu-adequate dams. The increase in hydrogen peroxide production by cardiac mitochondria and in the relative volume and size of dense deposits in cardiomyocytes is consistent with increased oxidative stress and damage resulting from prolonged reduction of CCO activity in the offspring of Cu-deficient dams.
Collapse
Affiliation(s)
- W Thomas Johnson
- Grand Forks Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Grand Forks, ND 58202-9034, USA.
| | | |
Collapse
|
38
|
Li Y, Wang L, Schuschke DA, Zhou Z, Saari JT, Kang YJ. Marginal dietary copper restriction induces cardiomyopathy in rats. J Nutr 2005; 135:2130-6. [PMID: 16140888 DOI: 10.1093/jn/135.9.2130] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prior studies have provided evidence of marginal dietary copper restriction in humans. The present study was undertaken to examine in a rat model the effect of a long-term marginal dietary Cu deficiency on the heart. Male adult Sprague-Dawley rats were fed AIN-76 diet containing 6.0 (control), 3.0, or 1.5 mg Cu/kg starting at 11 wk of age. Groups of rats were killed at 6, 9, 12, 15, or 18 mo after initiation of feeding, and the same experiment was repeated once. The only systemic change induced by marginal dietary Cu restriction (P < 0.05) was depression of organ Cu concentrations in rats fed 1.5 mg Cu/kg diet. Cardiac pathological manifestations in rats fed lower Cu diets were evidenced by histopathological, ultrastructural, and functional alterations. Myocyte hypertrophy and excessive collagen deposition in the heart occurred in rats fed 1.5 mg Cu/kg diet. Ultrastructural changes, including increased number and volume of mitochondria along with disruption of cristae structure, diastolic and systolic dysfunction, and electrocardiograph alterations, occurred in rats fed 1.5 or 3.0 mg Cu/kg diet. These results demonstrate that, in the absence of most indications of systemic Cu deficiency, heart morphology and function are sensitive to marginal Cu deficiency.
Collapse
Affiliation(s)
- Yan Li
- Department of Medicine, University of Louisville School of Medicine, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
39
|
Marginal copper intakes over a protracted period in genetically and nongenetically susceptible heart disease rats disturb electrocardiograms and enhance lipid deposition. Nutr Res 2005. [DOI: 10.1016/j.nutres.2005.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Elsherif L, Wang L, Saari JT, Kang YJ. Regression of dietary copper restriction-induced cardiomyopathy by copper repletion in mice. J Nutr 2004; 134:855-60. [PMID: 15051837 DOI: 10.1093/jn/134.4.855] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dietary copper deficiency (CuD)(3) leads to cardiac hypertrophy in various animal models. We showed recently that heart failure develops after hypertrophy in FVB mice fed a CuD diet. The present study was undertaken to determine whether CuD-induced cardiac failure is reversible upon copper repletion (CuR). Dams of FVB mice were fed a CuD diet (0.3 mg/kg) starting from d 3 postdelivery; the weanling pups were fed the same diet until CuR with 6.0 mg/kg Cu in the diet at 4 or 5 wk of age. CuR at 4 wk of age prevented the body weight loss; at 5 wk of age, it resulted in the regaining of the lost weight caused by CuD. A significant regression of CuD-induced cardiac hypertrophy was observed in the CuR mice. Histopathological examination revealed that CuR eliminated CuD-caused lipid deposition in the myocardium, and electron microscopy demonstrated that CuD-induced ultrastructural changes such as mitochondrial swelling and organelle structural disarray were all reversed in the CuR mice. Hemodynamic analysis showed that the CuD-depressed systolic and diastolic parameters such as the maximal rate of left ventricular pressure rise (+dP/dt) and decline (-dP/dt), and the contraction and relaxation times were completely recovered in the CuR mice. Furthermore, the CuD-blunted myocardial responses to the beta-adrenergic agonist, isoproterenol, were also restored in the CuR mice. This study thus demonstrates for the first time that CuR results in the regression of heart failure induced by CuD as demonstrated by the reversal of depressed cardiac hemodynamic and contractile function and the restored responsiveness to beta-adrenergic stimulation.
Collapse
Affiliation(s)
- Laila Elsherif
- Department of Pharmacology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
41
|
Elsherif L, Ortines RV, Saari JT, Kang YJ. Congestive heart failure in copper-deficient mice. Exp Biol Med (Maywood) 2003; 228:811-7. [PMID: 12876300 DOI: 10.1177/15353702-0322807-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Copper Deficiency (CuD) leads to hypertrophic cardiomyopathy in various experimental models. The morphological, electrophysiological, and molecular aspects of this hypertrophy have been under investigation for a long time. However the transition from compensated hypertrophy to decompensated heart failure has not been investigated in the study of CuD. We set out to investigate the contractile and hemodynamic parameters of the CuD mouse heart and to determine whether heart failure follows hypertrophy in the CuD heart. Dams of FVB mice were fed CuD or copper-adequate (CuA) diet starting from the third day post delivery and the weanling pups were fed the same diet for a total period of 5 weeks (pre- and postweanling). At week 4, the functional parameters of the heart were analyzed using a surgical technique for catheterizing the left ventricle. A significant decrease in left ventricle systolic pressure was observed with no significant change in heart rate, and more importantly contractility as measured by the maximal rate of left ventricular pressure rise (+dP/dt) and decline (-dP/dt) were significantly depressed in the CuD mice. However, left ventricle end diastolic pressure was elevated, and relaxation was impaired in the CuD animals; the duration of relaxation was prolonged. In addition to significant changes in the basal level of cardiac function, CuD hearts had a blunted response to the stimulation of the beta-adrenergic agonist isoproterenol. Furthermore, morphological analysis revealed increased collagen accumulation in the CuD hearts along with lipid deposition. This study shows that CuD leads to systolic and diastolic dysfunction in association with histopathological changes, which are indices commonly used to diagnose congestive heart failure.
Collapse
Affiliation(s)
- Laila Elsherif
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
42
|
Nielsen FH, Milne DB. Some magnesium status indicators and oxidative metabolism responses to low-dietary magnesium are affected by dietary copper in postmenopausal women. Nutrition 2003; 19:617-26. [PMID: 12831948 DOI: 10.1016/s0899-9007(02)01111-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE A study with human volunteers was conducted to ascertain whether a low intake of copper (Cu) would exacerbate the response to a deficient intake of magnesium (Mg). METHODS Nineteen postmenopausal women, age 47 to 78 y, completed a metabolic unit study as designed. For 162 d, nine women were fed a diet containing 1.0 mg of Cu/2000 kcal and 10 women were fed 3.0 mg of Cu/2000 kcal. Diets contained 99 or 399 mg of Mg/2000 kcal for 81 d in a randomized, double-blind, crossover design. Differences were considered significant when statistical analysis yielded P </= 0.05. RESULTS Magnesium balance was highly positive when the dietary magnesium was high but non-positive when dietary magnesium was low. Copper balance was more positive when dietary copper was high than when it was low. Plasma ionized magnesium was decreased by magnesium deprivation. Several variables measured indicated that low dietary copper affected the response to magnesium deprivation or vice-versa. Red blood cell magnesium was lower when dietary copper was low than when it was high. When dietary magnesium was low, serum copper was lower in the women fed marginal copper than in those fed luxuriant copper. When dietary magnesium was high, low dietary copper did not affect serum copper. Magnesium deprivation decreased red blood cell superoxide dismutase when dietary copper was luxuriant; when dietary copper was low, magnesium deprivation did not have much of an effect. Apolipoprotein A1 was lowest when dietary magnesium and copper were low. The order in which the magnesium restriction occurred affected the response of a number of variables to this treatment including concentrations of serum magnesium and total and low-density lipoprotein cholesterol. CONCLUSIONS The findings indicated that, in short-term magnesium depletion experiments, the response to depletion can be influenced by other dietary factors including copper intake and a high magnesium intake before depletion, and that 100 mg of Mg/d is inadequate for postmenopausal women.
Collapse
Affiliation(s)
- Forrest H Nielsen
- United States Department of Agriculture,Agricultural Research Service, Grand Forks Human Nutrition Center, Grand Forks, North Dakota, USA .
| | | |
Collapse
|
43
|
da Cunha S, Filho FMA, Antelo DS, de Souza MM. Serum sample levels of selenium and copper in healthy volunteers living in Rio de Janeiro city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2003; 301:51-54. [PMID: 12493184 DOI: 10.1016/s0048-9697(02)00290-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The objective of this study was to analyze the serum sample levels of selenium and copper in healthy volunteers living in the city Rio de Janeiro. Thirty individuals were submitted for nutritional assessment, electrocardiogram, echocardiogram, and serum selenium and copper analysis through hydride generation and flame atomic absorption spectrometry, respectively. The accuracy and precision of these methods were evaluated using certified reference materials. None of the studied individuals was undernourished; 53% were overweight and 13.3% were slightly obese. The mean serum selenium level was 73.18+/-9.9 microg/l (56.50-94.50 microg/l). Among women it was 76.28+/-8.7 microg/l and in men 72.23+/-10.24 microg/l (P=0.35). Among non-white individuals the mean was 73.12+/-12.57 microg/l and in the white individuals it was 73.20+/-9.11 microg/l (P=0.98). The mean serum level of copper was 1.09+/-0.39 mg/l (0.56-1.80 mg/l). The mean found in women was 0.99+/-0.22 mg/l and in the men 1.13+/-0.43 mg/l (P=0.42). In non-white individuals it was 1.36+/-0.48 mg/l and in white individuals was 1.00+/-0.31 mg/l (P=0.02). The authors concluded that selenium and copper serum levels observed in this study were similar to those found in other cities.
Collapse
Affiliation(s)
- Sérgio da Cunha
- Pedro Ernesto University Hospital, Rio de Janeiro State University, Rua Aquidabã, 184, Méier, CEP 20720-291 Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
44
|
Prohaska JR, Brokate B. Lower copper, zinc-superoxide dismutase protein but not mRNA in organs of copper-deficient rats. Arch Biochem Biophys 2001; 393:170-6. [PMID: 11516174 DOI: 10.1006/abbi.2001.2470] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Copper deficiency was induced in Sprague Dawley rats by dietary restriction to confirm and extend studies on copper, zinc-superoxide dismutase (Cu,Zn-SOD). Male rats restricted from copper in two models, a traditional postweanling model examining 50-day-old rats fed a low copper diet for 32 days (postnatal) and a gestational-lactational model examining 23-day-old male offspring of dams started on copper deficiency at day 7 of gestation (perinatal), showed signs of severe copper deficiency including anemia, and cardiac hypertrophy. Compared to control rats, copper-deficient rats exhibited lower copper concentrations in the liver, heart, brain, and kidney and lower Cu,Zn-SOD activity in the same organs with the exception of the brain in the postnatal model. In addition, there was a significant reduction in Cu,Zn-SOD protein detected by Western immunoblot proportional (r = 0.96) to the reduction in Cu,Zn-SOD activity. In the liver the reduction in Cu,Zn-SOD protein was approximately 50%. The reduction in Cu,Zn-SOD protein is likely due to a post-transcriptional mechanism as steady-state Cu,Zn-SOD mRNA levels measured by Northern hybridization were not altered by copper deficiency in any organ studied (liver, heart, and brain). Perhaps apo-Cu,Zn-SOD is degraded faster than fully metal-loaded enzyme. The loss of Cu,Zn-SOD activity and protein reduces the antioxidant defense capacity of copper-deficient organs.
Collapse
Affiliation(s)
- J R Prohaska
- Department of Biochemistry and Molecular Biology, University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| | | |
Collapse
|
45
|
Rossi L, Marchese E, Lombardo MF, Rotilio G, Ciriolo MR. Increased susceptibility of copper-deficient neuroblastoma cells to oxidative stress-mediated apoptosis. Free Radic Biol Med 2001; 30:1177-87. [PMID: 11369509 DOI: 10.1016/s0891-5849(01)00533-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Treatment of neuroblastoma cells with the copper chelator triethylene tetramine tetrahydrochloride induced intracellular decrease of copper content paralleled by diminished activity of the enzymes Cu, Zn superoxide dismutase, and cytochrome c oxidase. This effect appears to be specific for copper-enzymes and the treatment affects neither viability nor growth capability of cells. However, molecular markers of apoptosis Bcl-2, p53, and caspase-3 were slightly affected in these cells. When copper-deficient cells were challenged with oxidative stress generated by paraquat or puromycin, they underwent a higher degree of apoptosis with respect to copper-adequate control cells. The mechanism underlying paraquat-triggered apoptosis implies dramatic activation of caspase-3 and induction of the transcription factor p53. These results demonstrate that impairment of copper balance predisposes neuronal cells to apoptosis induced by oxidative stress. Overall findings represent a contribution to the comprehension of the link between copper-imbalance and neurodegeneration, which has recently been repeatedly suggested for the most invalidating pathologies of the central nervous system.
Collapse
Affiliation(s)
- L Rossi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | |
Collapse
|
46
|
Turley E, McKeown A, Bonham MP, O'Connor JM, Chopra M, Harvey LJ, Majsak-Newman G, Fairweather-Tait SJ, Bügel S, Sandström B, Rock E, Mazur A, Rayssiguier Y, Strain JJ. Copper supplementation in humans does not affect the susceptibility of low density lipoprotein to in vitro induced oxidation (FOODCUE project). Free Radic Biol Med 2000; 29:1129-34. [PMID: 11121720 DOI: 10.1016/s0891-5849(00)00409-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The oxidative modification of low-density lipoprotein cholesterol (LDL) has been implicated in the pathogenesis of atherosclerosis. Copper (Cu) is essential for antioxidant enzymes in vivo and animal studies show that Cu deficiency is accompanied by increased atherogenesis and LDL susceptibility to oxidation. Nevertheless, Cu has been proposed as a pro-oxidant in vivo and is routinely used to induce lipid peroxidation in vitro. Given the dual role of Cu as an in vivo antioxidant and an in vitro pro-oxidant, a multicenter European study (FOODCUE) was instigated to provide data on the biological effects of increased dietary Cu. Four centers, Northern Ireland (coordinator), England, Denmark, and France, using different experimental protocols, examined the effect of Cu supplementation (3 or 6 mg/d) on top of normal Cu dietary intakes or Cu-controlled diets (0.7/1.6/6.0 mg/d), on Cu-mediated and peroxynitrite-initiated LDL oxidation in apparently healthy volunteers. Each center coordinated its own supplementation regimen and all samples were subsequently transported to Northern Ireland where lipid peroxidation analysis was completed. The results from all centers showed that dietary Cu supplementation had no effect on Cu- or peroxynitrite-induced LDL susceptibility to oxidation. These data show that high intakes (up to 6 mg Cu) for extended periods do not promote LDL susceptibility to in vitro-induced oxidation.
Collapse
Affiliation(s)
- E Turley
- NICHE, University of Ulster, Northern, Coleraine, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Saari JT. Copper deficiency and cardiovascular disease: role of peroxidation, glycation, and nitration. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-054] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dietary copper deficiency causes a variety of cardiovascular deficits. Systemic effects include high blood pressure, enhancement of inflammation, anemia, reduced blood clotting, and possibly arteriosclerosis. Effects on specific organs or tissues include weakened structural integrity of the heart and blood vessels, impairment of energy use by the heart, reduced ability of the heart to contract, altered ability of blood vessels to control their diameter and grow, and altered structure and function of circulating blood cells. In some instances, the cause of a defect can be directly attributed to reduced activity of a specific copper-dependent enzyme. However, three nonspecific mechanisms of damage have been implicated in cardiovascular defects of copper deficiency. They are peroxidation, the interaction of oxygen-derived free radicals with lipids and proteins (possibly DNA); glycation, the nonenzymatic glycosylation of proteins; and nitration, the interaction of nitric oxide and its metabolites with peptides and proteins. Though independently these mechanisms present great potential for damage, the possibility that they may interact presents an added reason for concern. Furthermore, the fact that at least two of these mechanisms are associated with diabetes and aging suggests that copper deficiency may exacerbate deficits associated with these two conditions.Key words: copper, heart, circulation, peroxidation, glycation, nitric oxide.
Collapse
|
48
|
Mao S, Leone TC, Kelly DP, Medeiros DM. Mitochondrial transcription factor A is increased but expression of ATP synthase beta subunit and medium-chain acyl-CoA dehydrogenase genes are decreased in hearts of copper-deficient rats. J Nutr 2000; 130:2143-50. [PMID: 10958805 DOI: 10.1093/jn/130.9.2143] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanism(s) by which impaired mitochondrial respiratory function and the accumulation of lipid droplets and mitochondria in hearts of copper-deficient rats occur remains unclear. It is not known whether specific components of the regulatory pathway involved in mitochondrial biogenesis, such as mitochondrial transcription factor A (mtTFA) and nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2), are activated in copper deficiency. Little is known about gene expression of enzymes involved in fatty acid oxidation (FAO) in hearts of copper-deficient rats. Male weanling rats were fed copper-adequate (CuA), copper-deficient (CuD) or pair-fed (CuP) diets for 5 wk. Mitochondria and lipid droplet volume densities from electron micrographs were greater and there was an elevation in the mtTFA protein level in hearts of copper-deficient rats. DNA binding activities of NRF-1 and NRF-2 did not differ among the groups. Northern blot analysis of cardiac tissue revealed that transcripts of F(1)F(0)-ATP synthase subunit c were greater, but mRNA levels of ATP synthase beta subunit and the FAO enzyme, medium-chain acyl-CoA dehydrogenase (MCAD), were lower in hearts of copper-deficient rats. Long-chain acyl-CoA dehydrogenase (LCAD) mRNA levels did not differ among treatment groups. These results suggest that certain components of the mitochondrial biogenesis program are activated in hearts of copper-deficient rats. F(1)F(0)-ATP synthase beta subunit and MCAD transcript levels remain low, which may contribute to impaired mitochondrial respiratory function, decreased fatty acid utilization and lipid droplet accumulation in hearts of copper-deficient rats.
Collapse
Affiliation(s)
- S Mao
- Department of Human Nutrition and Food Management, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
49
|
Heller LJ, Mohrman DE, Prohaska JR. Decreased passive stiffness of cardiac myocytes and cardiac tissue from copper-deficient rat hearts. Am J Physiol Heart Circ Physiol 2000; 278:H1840-7. [PMID: 10843880 DOI: 10.1152/ajpheart.2000.278.6.h1840] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Passive stiffness characteristics of isolated cardiac myocytes, papillary muscles, and aortic strips from male Holtzman rats fed a copper-deficient diet for approximately 5 wk were compared with those of rats fed a copper-adequate diet to determine whether alterations in these characteristics might accompany the well-documented cardiac hypertrophy and high incidence of ventricular rupture characteristic of copper deficiency. Stiffness of isolated cardiac myocytes was assessed from measurements of cellular dimensional changes to varied osmotic conditions. Stiffness of papillary muscles and aortic strips was determined from resting length-tension analyses and included steady-state characteristics, dynamic viscoelastic stiffness properties, and maximum tensile strength. The primary findings were that copper deficiency resulted in cardiac hypertrophy with increased cardiac myocyte size and fragility, decreased cardiac myocyte stiffness, and decreased papillary muscle passive stiffness, dynamic stiffness, and tensile strength and no alteration in aortic connective tissue passive stiffness or tensile strength. These findings suggest that a reduction of cardiac myocyte stiffness and increased cellular fragility could contribute to the reduced overall cardiac tissue stiffness and the high incidence of ventricular aneurysm observed in copper-deficient rats.
Collapse
Affiliation(s)
- L J Heller
- Department of Medical and Molecular Physiology, School of Medicine, University of Minnesota, Duluth 55812, USA.
| | | | | |
Collapse
|
50
|
Kang YJ, Zhou ZX, Wu H, Wang GW, Saari JT, Klein JB. Metallothionein inhibits myocardial apoptosis in copper-deficient mice: role of atrial natriuretic peptide. J Transl Med 2000; 80:745-57. [PMID: 10830785 DOI: 10.1038/labinvest.3780078] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Dietary copper restriction causes heart hypertrophy in animal models. Several studies have indicated that this cardiomyopathy is mediated by oxidative stress. Metallothionein (MT), a low molecular weight and cysteine-rich protein, functions in protecting the heart from oxidative injury. We therefore used a cardiac-specific MT-overexpressing transgenic mouse model to test the hypothesis that MT inhibits copper deficiency-induced heart hypertrophy. Dams of both transgenic pups and non-transgenic littermates were fed a copper-adequate or copper-deficient diet, starting on the fourth day post-delivery, and the weanling mice were continued on the dams' diets until they were killed. Heart hypertrophy developed in copper-deficient pups by the fourth week of the combined pre- and post-weaning feeding and aggressively progressed until the end of the experiment (6 weeks). MT overexpression did not prevent the occurrence of heart hypertrophy, but inhibited the progression of this cardiomyopathy, which correlated with its suppression of cardiac lipid peroxidation. Corresponding to the progression of heart hypertrophy, myocardial apoptosis and atrial natriuretic peptide (ANP) production in the left ventricle were detected in non-transgenic copper-deficient mice; these effects were significantly suppressed in transgenic copper-deficient mice. Measurement of apoptosis by TUNEL assay and Annexin V-FITC confocal microscopy in primary cultures of cardiomyocytes revealed that ANP was largely responsible for the myocyte apoptosis and that MT inhibited ANP-induced apoptosis. The data clearly demonstrate that elevation of MT in the heart inhibits oxidative injury and suppresses the progression of heart hypertrophy in copper deficiency, although it does not block its initiation. The results suggest that MT inhibits the transition from heart hypertrophy to failure by suppressing apoptosis through inhibition of both cardiac ANP production and its apoptotic effect.
Collapse
Affiliation(s)
- Y J Kang
- Department of Medicine, University of Louisville, Kentucky 40292, USA.
| | | | | | | | | | | |
Collapse
|