1
|
Vélez EJ, Unniappan S. A Comparative Update on the Neuroendocrine Regulation of Growth Hormone in Vertebrates. Front Endocrinol (Lausanne) 2020; 11:614981. [PMID: 33708174 PMCID: PMC7940767 DOI: 10.3389/fendo.2020.614981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/31/2020] [Indexed: 12/22/2022] Open
Abstract
Growth hormone (GH), mainly produced from the pituitary somatotrophs is a key endocrine regulator of somatic growth. GH, a pleiotropic hormone, is also involved in regulating vital processes, including nutrition, reproduction, physical activity, neuroprotection, immunity, and osmotic pressure in vertebrates. The dysregulation of the pituitary GH and hepatic insulin-like growth factors (IGFs) affects many cellular processes associated with growth promotion, including protein synthesis, cell proliferation and metabolism, leading to growth disorders. The metabolic and growth effects of GH have interesting applications in different fields, including the livestock industry and aquaculture. The latest discoveries on new regulators of pituitary GH synthesis and secretion deserve our attention. These novel regulators include the stimulators adropin, klotho, and the fibroblast growth factors, as well as the inhibitors, nucleobindin-encoded peptides (nesfatin-1 and nesfatin-1-like peptide) and irisin. This review aims for a comparative analysis of our current understanding of the endocrine regulation of GH from the pituitary of vertebrates. In addition, we will consider useful pharmacological molecules (i.e. stimulators and inhibitors of the GH signaling pathways) that are important in studying GH and somatotroph biology. The main goal of this review is to provide an overview and update on GH regulators in 2020. While an extensive review of each of the GH regulators and an in-depth analysis of specifics are beyond its scope, we have compiled information on the main endogenous and pharmacological regulators to facilitate an easy access. Overall, this review aims to serve as a resource on GH endocrinology for a beginner to intermediate level knowledge seeker on this topic.
Collapse
|
2
|
Jin J, Hashizume T. Effects of hypothalamic dopamine on growth hormone-releasing hormone-induced growth hormone secretion and thyrotropin-releasing hormone-induced prolactin secretion in goats. Anim Sci J 2014; 86:634-40. [PMID: 25442325 DOI: 10.1111/asj.12333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/07/2014] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on the secretion of growth hormone (GH) in goats. The GH-releasing response to an intravenous (i.v.) injection of GH-releasing hormone (GHRH, 0.25 μg/kg body weight (BW)) was examined after treatments to augment central DA using carbidopa (carbi, 1 mg/kg BW) and L-dopa (1 mg/kg BW) in male and female goats under a 16-h photoperiod (16 h light, 8 h dark) condition. GHRH significantly and rapidly stimulated the release of GH after its i.v. administration to goats (P < 0.05). The carbi and L-dopa treatments completely suppressed GH-releasing responses to GHRH in both male and female goats (P < 0.05). The prolactin (PRL)-releasing response to an i.v. injection of thyrotropin-releasing hormone (TRH, 1 μg/kg BW) was additionally examined in male goats in this study to confirm modifications to central DA concentrations. The treatments with carbi and L-dopa significantly reduced TRH-induced PRL release in goats (P < 0.05). These results demonstrated that hypothalamic DA was involved in the regulatory mechanisms of GH, as well as PRL secretion in goats.
Collapse
Affiliation(s)
- Jin Jin
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | | |
Collapse
|
3
|
KASUYA E, YAYOU KI, HASHIZUME T, KITAGAWA S, SUTOH M. A possible role of central serotonin in L-tryptophan-induced GH secretion in cattle. Anim Sci J 2010; 81:345-51. [DOI: 10.1111/j.1740-0929.2010.00747.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Hudmon A, Davenport G, Coleman ES, Sartin JL. Low doses of estradiol partly inhibit release of GH in sheep without affecting basal levels. Domest Anim Endocrinol 2009; 37:181-7. [PMID: 19616401 DOI: 10.1016/j.domaniend.2009.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 05/13/2009] [Accepted: 05/15/2009] [Indexed: 11/22/2022]
Abstract
Estradiol increases basal growth hormone (GH) concentrations in sheep and cattle. This study sought to determine the effects of estradiol on GH-releasing hormone (GRH)-stimulated GH release in sheep. Growth hormone secretory characteristics, the GH response to GRH, and steady-state GH mRNA concentrations were determined in castrated male lambs treated with 2 different doses of estradiol 17-beta for a 28-d experimental period. Although no differences between treatments in mean GH, basal GH, or GH pulse number were observed after 28 d of estradiol treatment, GH pulse amplitude was greater (P < 0.05) in the 2.00-cm implant-treated animals than in the control and 0.75-cm implant group. The effect of estradiol treatment on GRH-stimulated GH release revealed differences between the control and estradiol-treated animals (P < 0.05). The 15-min GH responses to 0.075 microg/kg hGRH in the control, 0.75-cm, and 2.00-cm implant groups, respectively, were 76 +/- 10, 22.6 +/- 2.1, and 43.6 +/- 15.0 ng/mL. Growth hormone mRNA content was determined for pituitary glands from the different treatment groups, and no differences in steady-state GH mRNA levels were observed. There were no differences in the mean plasma concentrations of IGF-I, cortisol, T(3), or T(4) from weekly samples. Growth hormone release from cultured ovine pituitary cells from control sheep was not affected by estradiol after 72 h or in a subsequent 3-h incubation with estradiol combined with GRH. These data suggest that estradiol has differing actions on basal and GRH-stimulated GH concentrations in plasma, but the increase in pulse amplitude does not represent an increased pituitary sensitivity to GRH.
Collapse
Affiliation(s)
- A Hudmon
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
5
|
Gahete MD, Durán-Prado M, Luque RM, Martínez-Fuentes AJ, Quintero A, Gutiérrez-Pascual E, Córdoba-Chacón J, Malagón MM, Gracia-Navarro F, Castaño JP. Understanding the multifactorial control of growth hormone release by somatotropes: lessons from comparative endocrinology. Ann N Y Acad Sci 2009; 1163:137-53. [PMID: 19456335 DOI: 10.1111/j.1749-6632.2008.03660.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Control of postnatal growth is the main, but not the only, role for growth hormone (GH) as this hormone also contributes to regulating metabolism, reproduction, immunity, development, and osmoregulation in different species. Likely owing to this variety of group-specific functions, GH production is differentially regulated across vertebrates, with an apparent evolutionary trend to simplification, especially in the number of stimulatory factors governing substantially GH release. Thus, teleosts exhibit a multifactorial regulation of GH secretion, with a number of factors, from the newly discovered fish GH-releasing hormone (GHRH) to pituitary adenylate cyclase-activating peptide (PACAP) but also gonadotropin-releasing hormone, dopamine, corticotropin-releasing hormone, and somatostatin(s) directly controlling somatotropes. In amphibians and reptiles, GH secretion is primarily stimulated by the major hypothalamic peptides GHRH and PACAP and inhibited by somatostatin(s), while other factors (ghrelin, thyrotropin-releasing hormone) also influence GH release. Finally, in birds and mammals, primary control of GH secretion is exerted by a dual interplay between GHRH and somatostatin. In addition, somatotrope function is modulated by additional hypothalamic and peripheral factors (e.g., ghrelin, leptin, insulin-like growth factor-I), which together enable a balanced integration of feedback signals related to processes in which GH plays a relevant regulatory role, such as metabolic and energy status, reproductive, and immune function. Interestingly, in contrast to the high number of stimulatory factors impinging upon somatotropes, somatostatin(s) stand(s) as the main primary inhibitory regulator(s) for this cell type.
Collapse
Affiliation(s)
- Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang X, Chu MMS, Wong AOL. Signaling mechanisms for alpha2-adrenergic inhibition of PACAP-induced growth hormone secretion and gene expression grass carp pituitary cells. Am J Physiol Endocrinol Metab 2007; 292:E1750-62. [PMID: 17311897 DOI: 10.1152/ajpendo.00001.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent growth hormone (GH)-releasing factor in lower vertebrates. However, its functional interactions with other GH regulators have not been fully characterized. In fish models, norepinephrine (NE) inhibits GH release at the pituitary cell level, but its effects on GH synthesis have yet to be determined. We examined adrenergic inhibition of PACAP-induced GH secretion and GH gene expression using grass carp pituitary cells as a cell model. Through activation of pituitary alpha2-adrenoreceptors, NE or the alpha2-agonist clonidine reduced both basal and PACAP-induced GH release and GH mRNA expression. In carp pituitary cells, clonidine also suppressed cAMP production and intracellular Ca2+ levels and blocked PACAP induction of these two second messenger signals. In GH3 cells transfected with a reporter carrying the grass carp GH promoter, PACAP stimulation increased GH promoter activity, and this stimulatory effect could be abolished by NE treatment. In parallel experiments, clonidine reduced GH primary transcript and GH promoter activity without affecting GH mRNA stability, and these inhibitory actions were mimicked by inhibiting adenylate cyclase (AC), blocking protein kinase A (PKA), removing extracellular Ca2+ in the culture medium, or inactivating L-type voltage-sensitive Ca2+ channels (VSCC). Since our recent studies have shown that PACAP can induce GH secretion in carp pituitary cells through cAMP/PKA- and Ca2+/calmodulin-dependent mechanisms, these results, taken together, suggest that alpha2-adrenergic stimulation in the carp pituitary may inhibit PACAP-induced GH release and GH gene transcription by blocking the AC/cAMP/PKA pathway and Ca2+ entry through L-type VSCC.
Collapse
Affiliation(s)
- Xinyan Wang
- Department of Zoology, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | |
Collapse
|
7
|
McMahon CD, Radcliff RP, Lookingland KJ, Tucker HA. Neuroregulation of growth hormone secretion in domestic animals. Domest Anim Endocrinol 2001; 20:65-87. [PMID: 11311846 DOI: 10.1016/s0739-7240(01)00084-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Growth hormone (GH) is essential for postnatal somatic growth, maintenance of lean tissue at maturity in domestic animals and milk production in cows. This review focuses on neuroregulation of GH secretion in domestic animals. Two hormones principally regulate the secretion of GH: growth hormone-releasing hormone (GHRH) stimulates, while somatostatin (SS) inhibits the secretion of GH. A long-standing hypothesis proposes that alternate secretion of GHRH and SS regulate episodic secretion of GH. However, measurement of GHRH and SS in hypophysial-portal blood of unanesthetized sheep and swine shows that episodic secretion of GHRH and SS do not account for all episodes of GH secreted. Furthermore, the activity of GHRH and SS neurons decreases after steers have eaten a meal offered for a 2-h period each day (meal-feeding) and this corresponds with reduced secretion of GH. Together, these data suggest that other factors also regulate the secretion of GH. Several neurotransmitters have been implicated in this regard. Thyrotropin-releasing hormone, serotonin and gamma-aminobutyric acid stimulate the secretion of GH at somatotropes. Growth hormone releasing peptide-6 overcomes feeding-induced refractoriness of somatotropes to GHRH and stimulates the secretion of GHRH. Norepinephrine reduces the activity of SS neurons and stimulates the secretion of GHRH via alpha(2)-adrenergic receptors. N-methyl-D,L-aspartate and leptin stimulate the secretion of GHRH, while neuropeptide Y stimulates the secretion of GHRH and SS. Activation of muscarinic receptors decreases the secretion of SS. Dopamine stimulates the secretion of SS via D1 receptors and inhibits the secretion of GH from somatotropes via D2 receptors. Thus, many neuroendocrine factors regulate the secretion of GH in livestock via altering secretion of GHRH and/or SS, communicating between GHRH and SS neurons, or acting independently at somatotropes to coordinate the secretion of GH.
Collapse
Affiliation(s)
- C D McMahon
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
8
|
Cox NR, Morrison NE, Sartin JL, Buonomo FC, Steele B, Baker HJ. Alterations in the growth hormone/insulin-like growth factor I pathways in feline GM1 gangliosidosis. Endocrinology 1999; 140:5698-704. [PMID: 10579334 DOI: 10.1210/endo.140.12.7178] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cats affected with feline GM1 gangliosidosis, an autosomal, recessively inherited, lysosomal enzymopathy, have progressive neurological dysfunction, premature thymic involution, stunted growth, and premature death. Although increased membrane GM1 gangliosides can result in increased apoptosis of thymocytes, there is not a direct correlation between thymocyte surface GM1 and thymic apoptosis in vivo, suggesting that other factors may be important to the pathogenesis of thymic involution in affected cats. Because GH and insulin-like growth factor I (IGF-I) are important hormonal peptides supporting thymic function and affecting growth throughout the body, particularly in the prepubescent period, several components of the GH/IGF-I pathway were compared in GM1 mutant and normal age-matched cats. GM1 mutant cat serum IGF-I concentrations were reduced significantly compared with those in normal cats by 150 days of age, and GM1 mutant cats had no peripubertal increase in serum IGF-I. Additionally, IGF-binding protein-3 was reduced, and IGF-binding protein-2 was elevated significantly in GM1 mutant cats more than 200 days of age. Liver IGF-I messenger RNA and pituitary GH messenger RNA both were reduced significantly in GM1 mutant cats. After stimulation by exogenous recombinant canine GH, serum IGF-I levels increased significantly in GM1 mutant cats, indicating that GH/IGF-I signaling pathways within the liver remain intact and suggesting that alterations are external to the liver.
Collapse
Affiliation(s)
- N R Cox
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Alabama 36849, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Elsasser TH, Sartin JL, McMahon C, Romo G, Fayer R, Kahl S, Blagburn B. Changes in somatotropic axis response and body composition during growth hormone administration in progressive cachectic parasitism. Domest Anim Endocrinol 1998; 15:239-55. [PMID: 9673456 DOI: 10.1016/s0739-7240(98)00014-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A multistage protozoan parasitic disease was used as a cachexia model to study the effects of daily administration of bovine growth hormone (GH) on endocrine and body composition changes of young calves from the onset of the acute phase response (APR). Male calves averaging 127.5 +/- 2.0 kg body weight were assigned to control, ad libitum fed, noninfected (C); ad libitum fed, infected (250,000 oocysts Sarcocystis cruzi, per os, I); noninfected, pair-fed (PF) to matched I-treatment calves and these respective same treatments in calves injected daily with GH (USDA-bGH-B1), 12.5 mg/calf/day, im) designated as CGH, IGH and PFGH. GH injections were initiated on Day 20 postinfection (PI), 3 to 4 d before the onset of clinical signs of APR, and continued to Day 56 PI, at which time animals were euthanized for tissue collections. Abrupt increases in rectal temperature commensurate with up to 70% reduction in voluntary feed intake were observed in I and IGH beginning 23-25 d PI. For the trial period between Days 20 and 56 PI, average daily carcass protein gains were 123, 52, 109, 124, 48, and 67 g/d and average daily carcass fat gains were 85, 11, 43, 71, -23, and 29 g/d for C, I, PF, CGH, IGH, and PFGH, respectively. Effects of GH were significant for fat accretion and plasma urea depression. Rectus femoris was highly refractory to catabolic effects of infection while psoas major was significantly catabolized during infection. Plasma concentrations of insulin-like growth factor-I (IGF-I) increased significantly in all GH-treated calves between Day 20 and 23 PI. Plasma IGF-I declined well below Day 20 values in all infected calves from the onset of the APR through the end of the study. The decrease in plasma IGF-I concentrations in I and IG was highly correlated with the magnitude of the fever response. Hepatic mRNA for GH receptor and IGF-I was decreased in infected calves. Hepatic microsomal membrane binding of 125I-GH did not differ between groups. The data suggest that effects of GH and parasitism on tissue metabolism during disease may vary among different specific tissue pools. The data demonstrate that daily GH administration in young calves does not prevent lean tissue losses and may accelerate fat depletion associated with cachectic parasitism. Furthermore, the onset of APR overrode the capacity for GH to maintain elevated plasma concentrations of IGF-I, an effect not readily explained through changes of GH-receptor binding.
Collapse
Affiliation(s)
- T H Elsasser
- US Department of Agriculture, Agriculture Research Service, Beltsville, MD 20705 USA
| | | | | | | | | | | | | |
Collapse
|