1
|
Thapa A, Abdelbaset-Ismail A, Chumak V, Adamiak M, Brzezniakiewicz-Janus K, Ratajczak J, Kucia M, Ratajczak MZ. Extracellular Adenosine (eAdo) - A 2B Receptor Axis Inhibits in Nlrp3 Inflammasome-dependent Manner Trafficking of Hematopoietic Stem/progenitor Cells. Stem Cell Rev Rep 2022; 18:2893-2911. [PMID: 35870082 PMCID: PMC9622533 DOI: 10.1007/s12015-022-10417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2022] [Indexed: 10/16/2022]
Abstract
We postulated that mobilization, homing, and engraftment of hematopoietic stem/progenitor cells (HSCPs) is facilitated by a state of sterile inflammation induced in bone marrow (BM) after administration of pro-mobilizing drugs or in response to pre-transplant myeloablative conditioning. An important role in this phenomenon plays purinergic signaling that by the release of extracellular adenosine triphosphate (eATP) activates in HSPCs and in cells in the hematopoietic microenvironment an intracellular pattern recognition receptor (PPR) known as Nlrp3 inflammasome. We reported recently that its deficiency results in defective trafficking of HSPCs. Moreover, it is known that eATP after release into extracellular space is processed by cell surface expressed ectonucleotidases CD39 and CD73 to extracellular adenosine (eAdo) that in contrast to eATP shows an anti-inflammatory effect. Based on data that the state of sterile inflammation promotes trafficking of HSPCs, and since eAdo is endowed with anti-inflammatory properties we become interested in how eAdo will affect the mobilization, homing, and engraftment of HSPCs and which of eAdo receptors are involved in these processes. As expected, eAdo impaired HSPCs trafficking and this occurred in autocrine- and paracrine-dependent manner by direct stimulation of these cells or by affecting cells in the BM microenvironment. We report herein for the first time that this defect is mediated by activation of the A2B receptor and a specific inhibitor of this receptor improves eAdo-aggravated trafficking of HSPCs. To explain this at the molecular level eAdo-A2B receptor interaction upregulates in HSPCs in NF-kB-, NRF2- and cAMP-dependent manner heme oxygenase-1 (HO-1), that is Nlrp3 inflammasome inhibitor. This corroborated with our analysis of proteomics signature in murine HSPCs exposed to eAdo that revealed that A2B inhibition promotes cell migration and proliferation. Based on this we postulate that blockage of A2B receptor may accelerate the mobilization of HSPCs as well as their hematopoietic reconstitution and this approach could be potentially considered in the future to be tested in the clinic.
Collapse
Affiliation(s)
- Arjun Thapa
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, 40202 Louisville, KY USA
| | - Ahmed Abdelbaset-Ismail
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, 40202 Louisville, KY USA
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Vira Chumak
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Adamiak
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, 40202 Louisville, KY USA
| | - Magdalena Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, 40202 Louisville, KY USA
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, 40202 Louisville, KY USA
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Hofer M, Pospíšil M, Dušek L, Hoferová Z, Komůrková D. Agonist of the adenosine A3 receptor, IB-MECA, and inhibitor of cyclooxygenase-2, meloxicam, given alone or in a combination early after total body irradiation enhance survival of γ-irradiated mice. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:211-215. [PMID: 24263216 DOI: 10.1007/s00411-013-0500-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/07/2013] [Indexed: 06/02/2023]
Abstract
There exists a requirement for drugs which would be useful in therapy of an acute radiation damage of a mammalian organism. The aim of the study was to evaluate survival parameters in mice exposed to a lethal γ-ray dose of 8.5 Gy and treated with single doses of an adenosine A(3) receptor agonist, IB-MECA, or a cyclooxygenase-2 (COX-2) inhibitor, meloxicam, administered alone or in a combination early after irradiation, i.e., 0.5 and 1 h post-irradiation, respectively. The assessed parameters were the mean survival time (MST) and the cumulative percentage 30-day survival (CPS). Administrations of single intraperitoneal doses of either IB-MECA 0.5 h post-irradiation or meloxicam 1 h post-irradiation resulted in statistically significant increases of MST in comparison with the control irradiated mice. Combined administration of IB-MECA and meloxicam was found to be the only treatment statistically enhancing the parameter of CPS and to lead to the most expressive increase in MST of the experimental mice. The findings add new knowledge on the action of an adenosine A3 receptor agonist and a COX-2 inhibitor in an irradiated mammalian organism and suggest the potential of both the investigated drugs in the treatment of the acute radiation damage.
Collapse
Affiliation(s)
- Michal Hofer
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic,
| | | | | | | | | |
Collapse
|
3
|
HOFER M, POSPÍŠIL M, DUŠEK L, HOFEROVÁ Z, WEITEROVÁ L, KOMŮRKOVÁ D. Erythropoiesis- and Thrombopoiesis-Characterizing Parameters in Adenosine A3 Receptor Knock-Out Mice. Physiol Res 2013; 62:305-11. [DOI: 10.33549/physiolres.932489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Influence of the regulatory system mediated by adenosine A3 receptors on the functioning of erythropoiesis and thrombopoiesis was studied by means of evaluation of the numbers and attributes of peripheral blood erythrocytes and platelets, as well as of erythroid bone marrow progenitor cells in adenosine A3 receptor knock-out (Adora3tm1Jbsn/Adora3tm1Jbsn, A3AR(-/-)) mice and their wild-type C57BL/6 counterparts, both males and females. Minor but statistically significant disturbances in the properties of erythrocytes, namely in the parameters of mean erythrocyte volume and mean erythrocyte hemoglobin were observed in A3AR(-/-) mice. In addition, adenosine A3 receptor knock-out mice were found to exhibit an expressive, statistically significant decrease of their blood platelet count, amounting to 17 % and 21 % in males and females, respectively. This decrease in platelet levels was accompanied by a significant 17 % decline in the plateletcrit in both sexes. The obtained data can help to define therapeutic applications based on the principle of adenosine receptor signaling.
Collapse
Affiliation(s)
- M. HOFER
- Laboratory of Experimental Hematology, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
4
|
Hofer M, Pospíšil M, Hoferová Z, Komůrková D, Páral P, Savvulidi F, Šefc L. The pharmacological activation of adenosine A1 and A 3 receptors does not modulate the long- or short-term repopulating ability of hematopoietic stem and multipotent progenitor cells in mice. Purinergic Signal 2013; 9:207-14. [PMID: 23242571 PMCID: PMC3646123 DOI: 10.1007/s11302-012-9340-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/06/2012] [Indexed: 11/25/2022] Open
Abstract
This study continues our earlier findings on the hematopoiesis-modulating effects of adenosine A1 and A3 receptor agonists that were performed on committed hematopoietic progenitor and precursor cell populations. In the earlier experiments, N (6)-cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, was found to inhibit proliferation in the above-mentioned hematopoietic cell systems, whereas N (6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), an adenosine A3 receptor agonist, was found to stimulate it. The topic of this study was to evaluate the possibility that the above-mentioned adenosine receptor agonists modulate the behavior of early hematopoietic progenitor cells and hematopoietic stem cells. Flow cytometric analysis of hematopoietic stem cells in mice was employed, as well as a functional test of hematopoietic stem and progenitor cells (HSPCs). These techniques enabled us to study the effect of the agonists on both short-term repopulating ability and long-term repopulating ability, representing multipotent progenitors and hematopoietic stem cells, respectively. In a series of studies, we did not find any significant effect of adenosine agonists on HSPCs in terms of their numbers, proliferation, or functional activity. Thus, it can be concluded that CPA and IB-MECA do not significantly influence the primitive hematopoietic stem and progenitor cell pool and that the hematopoiesis-modulating action of these adenosine receptor agonists is restricted to more mature compartments of hematopoietic progenitor and precursor cells.
Collapse
Affiliation(s)
- Michal Hofer
- />Laboratory of Experimental Hematology, Institute of Biophysics, v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Milan Pospíšil
- />Laboratory of Experimental Hematology, Institute of Biophysics, v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Zuzana Hoferová
- />Laboratory of Experimental Hematology, Institute of Biophysics, v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Denisa Komůrková
- />Laboratory of Experimental Hematology, Institute of Biophysics, v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Petr Páral
- />Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53 Praha 2, Czech Republic
| | - Filipp Savvulidi
- />Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53 Praha 2, Czech Republic
| | - Luděk Šefc
- />Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53 Praha 2, Czech Republic
| |
Collapse
|
5
|
Hofer M, Pospíšil M, Dušek L, Hoferová Z, Komůrková D. IB-MECA, an adenosine A(3) receptor agonist, does not influence survival of lethally γ-irradiated mice. Physiol Res 2012; 61:649-54. [PMID: 23098658 DOI: 10.33549/physiolres.932411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In our previous studies, IB-MECA, an adenosine A(3) receptor agonist, was found to stimulate proliferation of hematopoietic progenitor and precursor cells in mice. This property of IB-MECA was considered to be responsible for its ability to support regeneration of suppressed hematopoiesis after irradiation with sublethal doses of γ-rays when the drug was given in a post-irradiation treatment regimen. This study was aimed at assessing the ability of IB-MECA to influence a 30-day survival of lethally irradiated mice. In a series of experiments, IB-MECA was administered following various lethal radiation doses in various numbers of drug doses and various administration routes. Though in some of these experiments a moderate increase in 30-day survival was observed in IB-MECA-treated mice, the differences in comparison with the controls were not significantly different. It can be inferred from these results and those of previous studies assessing the effects of IB-MECA after sublethal radiation doses that IB-MECA can probably influence only a substantially preserved hematopoiesis like that remaining after sublethal irradiation. Future studies should be aimed at evaluation of the abilities of IB-MECA to influence post-irradiation survival when administered as a part of combined treatment regimens.
Collapse
Affiliation(s)
- M Hofer
- Laboratory of Experimental Hematology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
6
|
HOFER M, DUŠEK L, HOFEROVÁ Z, STIXOVÁ L, POSPÍŠIL M. Expression of mRNA for Adenosine A1, A2a, A2b, and A3 Receptors in HL-60 Cells: Dependence on Cell Cycle Phases. Physiol Res 2011; 60:913-20. [DOI: 10.33549/physiolres.932233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The present studies investigated changes in expression of mRNA for adenosine A1, A2a, A2b, and A3 receptors in samples of HL-60 promyelocytic cells differing in the actual presence of cells in various phases of the cell cycle induced by the double thymidine block method. Real-time PCR technique was used for obtaining data on mRNA expression. Statistical analysis of the data revealed that the mRNA expression of adenosine A1, A2a, and A3 receptors is dependent on the cell cycle phase. G0/G1 and G2/M phases were characterized by a higher mRNA expression of adenosine A1 receptors and a lower one of adenosine A2a and A3 receptors whereas the opposite was true for the S phase. Interestingly, expression of mRNA of the adenosine A2b receptors was independent on the cell cycle phase. The results indicate the plasticity of mRNA expression of adenosine receptors in the investigated promyelocytic cells and its interaction with physiological mechanisms of the cell cycle.
Collapse
Affiliation(s)
- M. HOFER
- Laboratory of Experimental Hematology, Department of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
7
|
Hofer M, Pospíšil M, Dušek L, Hoferová Z, Weiterová L. Inhibition of cyclooxygenase-2 promotes the stimulatory action of adenosine A₃ receptor agonist on hematopoiesis in sublethally γ-irradiated mice. Biomed Pharmacother 2011; 65:427-31. [PMID: 21719245 DOI: 10.1016/j.biopha.2011.04.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/14/2011] [Indexed: 01/30/2023] Open
Abstract
Mouse hematopoiesis, suppressed by a sublethal dose of ionizing radiation, was the target for combined therapy with a cyclooxygenase-2 (COX-2) inhibitor meloxicam and an adenosine A₃ receptor agonist IB-MECA. The drugs were administered in an early postirradiation treatment regimen: meloxicam was given in a single dose 1hour after irradiation, IB-MECA in two doses 24 and 48hours after irradiation. Treatment-induced changes in several compartments of hematopoietic progenitor and precursor cells of the bone marrow were evaluated on day 3 after irradiation. Values of hematopoietic progenitor cells for granulocytes/macrophages and erythrocytes (GM-CFC and BFU-E, respectively), as well as those of proliferative granulocytic cells were found to be significantly higher in the mice treated with the drug combination in comparison to irradiated controls and attained the highest increase factors of 1.6, 1.6, and 2.6, respectively. The study emphasizes the significance of the combined treatment of suppressed hematopoiesis with more agents. Mechanisms of the action of the individual compounds of the studied drug combination and of their joint operation are discussed.
Collapse
Affiliation(s)
- Michal Hofer
- Research Group of Experimental Hematology, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
8
|
Burnstock G, Ulrich H. Purinergic signaling in embryonic and stem cell development. Cell Mol Life Sci 2011; 68:1369-94. [PMID: 21222015 PMCID: PMC11114541 DOI: 10.1007/s00018-010-0614-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/07/2010] [Accepted: 12/10/2010] [Indexed: 01/23/2023]
Abstract
Nucleotides are of crucial importance as carriers of energy in all organisms. However, the concept that in addition to their intracellular roles, nucleotides act as extracellular ligands specifically on receptors of the plasma membrane took longer to be accepted. Purinergic signaling exerted by purines and pyrimidines, principally ATP and adenosine, occurs throughout embryologic development in a wide variety of organisms, including amphibians, birds, and mammals. Cellular signaling, mediated by ATP, is present in development at very early stages, e.g., gastrulation of Xenopus and germ layer definition of chick embryo cells. Purinergic receptor expression and functions have been studied in the development of many organs, including the heart, eye, skeletal muscle and the nervous system. In vitro studies with stem cells revealed that purinergic receptors are involved in the processes of proliferation, differentiation, and phenotype determination of differentiated cells. Thus, nucleotides are able to induce various intracellular signaling pathways via crosstalk with other bioactive molecules acting on growth factor and neurotransmitter receptors. Since normal development is disturbed by dysfunction of purinergic signaling in animal models, further studies are needed to elucidate the functions of purinoceptor subtypes in developmental processes.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Royal Free Campus, Rowland Hill Street, London, UK.
| | | |
Collapse
|
9
|
Hofer M, Pospisil M, Weiterova L, Hoferova Z. The role of adenosine receptor agonists in regulation of hematopoiesis. Molecules 2011; 16:675-85. [PMID: 21242946 PMCID: PMC6259153 DOI: 10.3390/molecules16010675] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/04/2011] [Accepted: 01/17/2011] [Indexed: 11/16/2022] Open
Abstract
The review summarizes data evaluating the role of adenosine receptor signaling in murine hematopoietic functions. The studies carried out utilized either non-selective activation of adenosine receptors induced by elevation of extracellular adenosine or by administration of synthetic adenosine analogs having various proportions of selectivity for a particular receptor. Numerous studies have described stimulatory effects of non-selective activation of adenosine receptors, manifested as enhancement of proliferation of cells at various levels of the hematopoietic hierarchy. Subsequent experimental approaches, considering the hematopoiesis-modulating action of adenosine receptor agonists with a high level of selectivity to individual adenosine receptor subtypes, have revealed differential effects of various adenosine analogs. Whereas selective activation of A₁ receptors has resulted in suppression of proliferation of hematopoietic progenitor and precursor cells, that of A₃ receptors has led to stimulated cell proliferation in these cell compartments. Thus, A₁ and A₃ receptors have been found to play a homeostatic role in suppressed and regenerating hematopoiesis. Selective activation of adenosine A₃ receptors has been found to act curatively under conditions of drug- and radiation-induced myelosuppression. The findings in these and further research areas will be summarized and mechanisms of hematopoiesis-modulating action of adenosine receptor agonists will be discussed.
Collapse
Affiliation(s)
- Michal Hofer
- Working Group of Experimental Hematology, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno, Czech Republic.
| | | | | | | |
Collapse
|
10
|
Abstract
Radiation leaves a fairly characteristic footprint in biological materials, but this is rapidly all but obliterated by the canonical biological responses to the radiation damage. The innate immune recognition systems that sense "danger" through direct radiation damage and through associated collateral damage set in motion a chain of events that, in a tissue compromised by radiation, often unwittingly result in oscillating waves of molecular and cellular responses as tissues attempt to heal. Understanding "nature's whispers" that inform on these processes will lead to novel forms of intervention targeted more precisely towards modifying them in an appropriate and timely fashion so as to improve the healing process and prevent or mitigate the development of acute and late effects of normal tissue radiation damage, whether it be accidental, as a result of a terrorist incident, or of therapeutic treatment of cancer. Here we attempt to discuss some of the non-free radical scavenging mechanisms that modify radiation responses and comment on where we see them within a conceptual framework of an evolving radiation-induced lesion.
Collapse
Affiliation(s)
- Kwanghee Kim
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - William H. McBride
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
11
|
Hofer M, Pospísil M, Sefc L, Dusek L, Vacek A, Holá J, Hoferová Z, Streitová D. Activation of adenosine A(3) receptors supports hematopoiesis-stimulating effects of granulocyte colony-stimulating factor in sublethally irradiated mice. Int J Radiat Biol 2010; 86:649-56. [PMID: 20586541 DOI: 10.3109/09553001003746075] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Research areas of 'post-exposure treatment' and 'cytokines and growth factors' have top priority among studies aimed at radiological nuclear threat countermeasures. The experiments were aimed at testing the ability of N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), an adenosine A(3) receptor agonist, to modulate hematopoiesis in sublethally irradiated mice, when administered alone or in a combination with granulocyte colony-stimulating factor (G-CSF) in a two-day post-irradiation treatment regimen. MATERIALS AND METHODS A complete analysis of hematopoiesis including determination of numbers of bone marrow hematopoietic progenitor and precursor cells, as well as of numbers of peripheral blood cells, was performed. The outcomes of the treatment were assessed at days 3 to 22 after irradiation. RESULTS IB-MECA alone has been found to induce a significant elevation of numbers of bone marrow granulocyte-macrophage progenitor cells (GM-CFC) and peripheral blood neutrophils. IB-MECA given concomitantly with G-CSF increased significantly bone marrow GM-CFC and erythroid progenitor cells (BFU-E) in comparison with the controls and with animals administered each of the drugs alone. CONCLUSIONS The findings suggest the ability of IB-MECA to stimulate hematopoiesis and to support the hematopoiesis-stimulating effects of G-CSF in sublethally irradiated mice.
Collapse
Affiliation(s)
- Michal Hofer
- Research Group of Experimental Hematology, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Katebi M, Soleimani M, Cronstein BN. Adenosine A2A receptors play an active role in mouse bone marrow-derived mesenchymal stem cell development. J Leukoc Biol 2008; 85:438-44. [PMID: 19056861 DOI: 10.1189/jlb.0908520] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) play a role in wound healing and tissue repair and may also be useful for organ regeneration. As we have demonstrated previously that A(2A) adenosine receptors (A(2A)R) promote tissue repair and wound healing by stimulating local repair mechanisms and enhancing accumulation of endothelial progenitor cells, we investigated whether A(2A)R activation modulates BM-MSC proliferation and differentiation. BM-MSCs were isolated and cultured from A(2A)-deficient and ecto-5'nucleotidase (CD73)-deficient female mice; the MSCs were identified and quantified by a CFU-fibroblast (CFU-F) assay. Procollagen alpha2 type I expression was determined by Western blotting and immunocytochemistry. MSC-specific markers were examined in primary cells and third-passage cells by cytofluorography. PCR and real time-PCR were used to quantitate adenosine receptor and CD73 expression. There were significantly fewer CFU-Fs in cultures of BM-MSCs from A(2A)R knockout (KO) mice or BM-MSCs treated with the A(2A)R antagonist ZM241385, 1 microM. Similarly, there were significantly fewer procollagen alpha2 type I-positive MSCs in cultures from A(2A)R KO and antagonist-treated cultures as well. In late passage cells, there were significantly fewer MSCs from A(2A) KO mice expressing CD90, CD105, and procollagen type I (P<0.05 for all; n=3). These findings indicate that adenosine and adenosine A(2A)R play a critical role in promoting the proliferation and differentiation of mouse BM-MSCs.
Collapse
Affiliation(s)
- Majid Katebi
- New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|