1
|
Fitting S, McRae M, Hauser KF. Opioid and neuroHIV Comorbidity - Current and Future Perspectives. J Neuroimmune Pharmacol 2020; 15:584-627. [PMID: 32876803 PMCID: PMC7463108 DOI: 10.1007/s11481-020-09941-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
With the current national opioid crisis, it is critical to examine the mechanisms underlying pathophysiologic interactions between human immunodeficiency virus (HIV) and opioids in the central nervous system (CNS). Recent advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal opioid-HIV interactions with increasing clarity. However, despite the substantial new insight, the unique impact of opioids on the severity, progression, and prognosis of neuroHIV and HIV-associated neurocognitive disorders (HAND) are not fully understood. In this review, we explore, in detail, what is currently known about mechanisms underlying opioid interactions with HIV, with emphasis on individual HIV-1-expressed gene products at the molecular, cellular and systems levels. Furthermore, we review preclinical and clinical studies with a focus on key considerations when addressing questions of whether opioid-HIV interactive pathogenesis results in unique structural or functional deficits not seen with either disease alone. These considerations include, understanding the combined consequences of HIV-1 genetic variants, host variants, and μ-opioid receptor (MOR) and HIV chemokine co-receptor interactions on the comorbidity. Lastly, we present topics that need to be considered in the future to better understand the unique contributions of opioids to the pathophysiology of neuroHIV. Graphical Abstract Blood-brain barrier and the neurovascular unit. With HIV and opiate co-exposure (represented below the dotted line), there is breakdown of tight junction proteins and increased leakage of paracellular compounds into the brain. Despite this, opiate exposure selectively increases the expression of some efflux transporters, thereby restricting brain penetration of specific drugs.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA, 23298-0059, USA.
| |
Collapse
|
2
|
Elman I, Howard M, Borodovsky JT, Mysels D, Rott D, Borsook D, Albanese M. Metabolic and Addiction Indices in Patients on Opioid Agonist Medication-Assisted Treatment: A Comparison of Buprenorphine and Methadone. Sci Rep 2020; 10:5617. [PMID: 32221389 PMCID: PMC7101411 DOI: 10.1038/s41598-020-62556-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
Metabolic hormones stabilize brain reward and motivational circuits, whereas excessive opioid consumption counteracts this effect and may impair metabolic function. Here we addressed the role of metabolic processes in the course of the agonist medication-assisted treatment for opioid use disorder (OUD) with buprenorphine or methadone. Plasma lipids, hemoglobin A1C, body composition, the oral glucose tolerance test (oGTT) and the Sweet Taste Test (STT) were measured in buprenorphine- (n = 26) or methadone (n = 32)- treated subjects with OUD. On the whole, the subjects in both groups were overweight or obese and insulin resistant; they displayed similar oGTT and STT performance. As compared to methadone-treated subjects, those on buprenorphine had significantly lower rates of metabolic syndrome (MetS) along with better values of the high-density lipoproteins (HDL). Subjects with- vs. without MetS tended to have greater addiction severity. Correlative analyses revealed that more buprenorphine exposure duration was associated with better HDL and opioid craving values. In contrast, more methadone exposure duration was associated with worse triglycerides-, HDL-, blood pressure-, fasting glucose- and hemoglobin A1C values. Buprenorphine appears to produce beneficial HDL- and craving effects and, contrary to methadone, its role in the metabolic derangements is not obvious. Our data call for further research aimed at understanding the distinctive features of buprenorphine metabolic effects vis-à-vis those of methadone and their potential role in these drugs' unique therapeutic profiles.
Collapse
Affiliation(s)
- Igor Elman
- Center for Pain and the Brain, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
| | - Margaret Howard
- Rhode Island Department of Behavioral Healthcare, Cranston, RI, USA
| | - Jacob T Borodovsky
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - David Mysels
- Department of Psychiatry, Alpert Medical School of Brown University, Providence, RI, USA
| | - David Rott
- Department of Cardiology, Sheba Medical Center, Sackler School of Medicine, Tel Aviv, Israel
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children's Hospital, Massachusetts General Hospital and McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Albanese
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
3
|
Pregnane steroidogenesis is altered by HIV-1 Tat and morphine: Physiological allopregnanolone is protective against neurotoxic and psychomotor effects. Neurobiol Stress 2020; 12:100211. [PMID: 32258256 PMCID: PMC7109513 DOI: 10.1016/j.ynstr.2020.100211] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Pregnane steroids, particularly allopregnanolone (AlloP), are neuroprotective in response to central insult. While unexplored in vivo, AlloP may confer protection against the neurological dysfunction associated with human immunodeficiency virus type 1 (HIV-1). The HIV-1 regulatory protein, trans-activator of transcription (Tat), is neurotoxic and its expression in mice increases anxiety-like behavior; an effect that can be ameliorated by progesterone, but not when 5α-reduction is blocked. Given that Tat's neurotoxic effects involve mitochondrial dysfunction and can be worsened with opioid exposure, we hypothesized that Tat and/or combined morphine would perturb steroidogenesis in mice, promoting neuronal death, and that exogenous AlloP would rescue these effects. Like other models of neural injury, conditionally inducing HIV-1 Tat in transgenic mice significantly increased the central synthesis of pregnenolone and progesterone's 5α-reduced metabolites, including AlloP, while decreasing central deoxycorticosterone (independent of changes in plasma). Morphine significantly increased brain and plasma concentrations of several steroids (including progesterone, deoxycorticosterone, corticosterone, and their metabolites) likely via activation of the hypothalamic-pituitary-adrenal stress axis. Tat, but not morphine, caused glucocorticoid resistance in primary splenocytes. In neurons, Tat depolarized mitochondrial membrane potential and increased cell death. Physiological concentrations of AlloP (0.1, 1, or 10 nM) reversed these effects. High-concentration AlloP (100 nM) was neurotoxic in combination with morphine. Tat induction in transgenic mice potentiated the psychomotor effects of acute morphine, while exogenous AlloP (1.0 mg/kg, but not 0.5 mg/kg) was ameliorative. Data demonstrate that steroidogenesis is altered by HIV-1 Tat or morphine and that physiological AlloP attenuates resulting neurotoxic and psychomotor effects.
Collapse
|
4
|
Taveira TH, Wu WC, Tschibelu E, Borsook D, Simonson DC, Yamamoto R, Langleben DD, Swift R, Elman I. The effect of naltrexone on body fat mass in olanzapine-treated schizophrenic or schizoaffective patients: a randomized double-blind placebo-controlled pilot study. J Psychopharmacol 2014; 28:395-400. [PMID: 24218048 DOI: 10.1177/0269881113509904] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Olanzapine (OLZ), a commonly prescribed second generation antipsychotic drug, is associated with obesity and metabolic syndrome and may contribute to increased cardiovascular morbidity and mortality. Opioidergic neurotransmission may be implicated in the development of these metabolic disturbances. The objective of this study was to assess the effects of opioid blockade on OLZ-treated patients' metabolic status. Patients with schizophrenia or schizoaffective disorder (n=30) on a stable dose of OLZ were randomized in a double-blind fashion to receive an opioid receptor antagonist, naltrexone (NTX), (n=14) or placebo (n=16). The primary outcome measure was the change in body mass index (BMI) at 12 weeks. Secondary measures included body fat and fat-free mass, along with homeostasis model assessment-estimated insulin resistance (HOMA-IR), plasma lipids and liver function tests (LFTs). There was no significant change in BMI between the treatment arms. However, in comparison to the OLZ + placebo combination, the OLZ + NTX group displayed a significant decrease in the fat and increase in fat-free mass along with a trend towards improvement in HOMA-IR values. There were no significant differences in plasma lipids and LFTs. These findings suggest that addition of NTX to OLZ may attenuate OLZ-induced body fat mass gain. A larger study of longer duration will be needed to confirm these results.
Collapse
|
5
|
Kurbanov DB, Currie PJ, Simonson DC, Borsook D, Elman I. Effects of naltrexone on food intake and body weight gain in olanzapine-treated rats. J Psychopharmacol 2012; 26:1244-51. [PMID: 22723540 DOI: 10.1177/0269881112450783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Blockade of opioidergic neurotransmission contributes to reduction in body weight. However, how such blockade affects body weight gain (BWG) attributed to second generation antipsychotic agents (SGAs) has not yet been established. Here we examined the effects of an opioid receptor antagonist, naltrexone (NTX), on food intake and BWG associated with an SGA, olanzapine (OL). Four groups of Wistar Han IGS rats were treated for 28 days with either OL (2 mg/kg twice daily, intraperitoneal (IP)), a combination of OL (2 mg/kg twice daily, IP) + extended-release NTX (50 mg/kg, one-time, intramuscular (IM)), extended-release NTX (50 mg/kg, one-time, IM) or vehicle and their food intake and body weight were measured daily for the first nine days and every other day thereafter. Food intake and BWG that were increased by OL were decreased by the added NTX while NTX alone had no significant effects on food intake or on BWG. Plasma leptin concentrations were significantly elevated in the three groups receiving pharmacological agents, but did not differ among each other, suggesting that changes in leptin secretion and/or clearance alone would not explain the food intake and the body weight findings. Our results extend prior reports on anorexigenic effects of opioid antagonists by demonstrating that such effects may generalize to food intake increases and BWG arising in the context of OL pharmacotherapy.
Collapse
|
6
|
Mennella JA, Pepino MY. Biphasic effects of moderate drinking on prolactin during lactation. Alcohol Clin Exp Res 2008; 32:1899-908. [PMID: 18715274 DOI: 10.1111/j.1530-0277.2008.00774.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Contrary to the popular lore that encourages women to drink alcohol as an aid to lactation, we previously showed that alcohol consumption disrupted lactational performance and the hormonal milieu of the lactating mother in the short term. METHODS Thirteen lactating women participated in a 4-session, double-blind, 2 x 2 within-subject study to test several hypotheses related to the effects of alcohol on prolactin (PRL) responses and milk yield over time. The two within-subject factors were beverage condition (control or 0.4 g/kg dose of alcohol) and pumping condition (pumping occurred at fixed intervals once or twice during the 5.3-hour session). Plasma PRL, blood alcohol concentrations (BAC), and milk yield were measured. RESULTS Alcohol consumption increased basal PRL levels (p < 0.0001) and modified the PRL response to pumping (p < 0.0001) but the directionality of the response depended on when pumping occurred along the BAC curve. Pumping enhanced PRL response when it occurred during the ascending BAC limb but blunted the response when it occurred during the descending limb, providing evidence that the effects were transient and of a biphasic nature. The slower the alcohol was metabolized, the greater the relative PRL response to breast pumping (p < 0.05). The dynamics of the PRL response between pumping sessions was also altered if women drank. If women pumped within the hour after drinking alcohol, the PRL response during the next pumping some 1.5 hours later, was delayed by a few minutes. Milk yield was significantly lower after drinking alcohol but such deficits were not significantly related to PRL or the speed at which alcohol was eliminated. CONCLUSIONS Effects of alcohol on suckling-induced PRL were biphasic in nature, but could not explain the deficits in lactational performance. Such findings provide further evidence that the dynamic changes in neuroendocrine state are integrally involved in alcohol's effects over time and underscore the complexity of lactation.
Collapse
Affiliation(s)
- Julie A Mennella
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104-3308, USA.
| | | |
Collapse
|