1
|
Xi Y, Li X, Liu L, Xiu F, Yi X, Chen H, You X. Sneaky tactics: Ingenious immune evasion mechanisms of Bartonella. Virulence 2024; 15:2322961. [PMID: 38443331 PMCID: PMC10936683 DOI: 10.1080/21505594.2024.2322961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Gram-negative Bartonella species are facultative intracellular bacteria that can survive in the harsh intracellular milieu of host cells. They have evolved strategies to evade detection and degradation by the host immune system, which ensures their proliferation in the host. Following infection, Bartonella alters the initial immunogenic surface-exposed proteins to evade immune recognition via antigen or phase variation. The diverse lipopolysaccharide structures of certain Bartonella species allow them to escape recognition by the host pattern recognition receptors. Additionally, the survival of mature erythrocytes and their resistance to lysosomal fusion further complicate the immune clearance of this species. Certain Bartonella species also evade immune attacks by producing biofilms and anti-inflammatory cytokines and decreasing endothelial cell apoptosis. Overall, these factors create a challenging landscape for the host immune system to rapidly and effectively eradicate the Bartonella species, thereby facilitating the persistence of Bartonella infections and creating a substantial obstacle for therapeutic interventions. This review focuses on the effects of three human-specific Bartonella species, particularly their mechanisms of host invasion and immune escape, to gain new perspectives in the development of effective diagnostic tools, prophylactic measures, and treatment options for Bartonella infections.
Collapse
Affiliation(s)
- Yixuan Xi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinru Li
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu Liu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Feichen Xiu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinchao Yi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Hongliang Chen
- Chenzhou NO.1 People’s Hospital, The Affiliated Chenzhou Hospital, Hengyang Medical College, University of South China, ChenZhou, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
2
|
Shukla R, Soni J, Kumar A, Pandey R. Uncovering the diversity of pathogenic invaders: insights into protozoa, fungi, and worm infections. Front Microbiol 2024; 15:1374438. [PMID: 38596382 PMCID: PMC11003270 DOI: 10.3389/fmicb.2024.1374438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Post COVID-19, there has been renewed interest in understanding the pathogens challenging the human health and evaluate our preparedness towards dealing with health challenges in future. In this endeavour, it is not only the bacteria and the viruses, but a greater community of pathogens. Such pathogenic microorganisms, include protozoa, fungi and worms, which establish a distinct variety of disease-causing agents with the capability to impact the host's well-being as well as the equity of ecosystem. This review summarises the peculiar characteristics and pathogenic mechanisms utilized by these disease-causing organisms. It features their role in causing infection in the concerned host and emphasizes the need for further research. Understanding the layers of pathogenesis encompassing the concerned infectious microbes will help expand targeted inferences with relation to the cause of the infection. This would strengthen and augment benefit to the host's health along with the maintenance of ecosystem network, exhibiting host-pathogen interaction cycle. This would be key to discover the layers underlying differential disease severities in response to similar/same pathogen infection.
Collapse
Affiliation(s)
- Richa Shukla
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Jyoti Soni
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Kumar
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Koku R, Futse JE, Morrison J, Brayton KA, Palmer GH, Noh SM. The Use of the Antigenically Variable Major Surface Protein 2 in the Establishment of Superinfection during Natural Tick Transmission of Anaplasma marginale in Southern Ghana. Infect Immun 2023; 91:e0050122. [PMID: 36877065 PMCID: PMC10112223 DOI: 10.1128/iai.00501-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/01/2023] [Indexed: 03/07/2023] Open
Abstract
Many vector-borne pathogens, including Anaplasma spp., Borrelia spp., Trypanosoma spp., and Plasmodium spp., establish persistent infection in the mammalian host by using antigenic variation. These pathogens are also able to establish strain superinfection, defined as infection of an infected host with additional strains of the same pathogen despite an adaptive immune response. The ability to establish superinfection results in a population of susceptible hosts even with high pathogen prevalence. It is likely that antigenic variation, responsible for persistent infection, also plays a role in the establishment of superinfection. Anaplasma marginale, an antigenically variable, obligate intracellular, tickborne bacterial pathogen of cattle, is well suited for the study of the role of antigenically variant surface proteins in the establishment of superinfection. Anaplasma marginale establishes persistent infection by variation in major surface protein 2 (msp2), which is encoded by approximately six donor alleles that recombine into a single expression site to produce immune escape variants. Nearly all cattle in regions of high prevalence are superinfected. By tracking the acquisition of strains in calves through time, the complement of donor alleles, and how those donor alleles are expressed, we determined that simple variants derived from a single donor allele, rather than multiple donor alleles, were predominant. Additionally, superinfection is associated with the introduction of new donor alleles, but these new donor alleles are not predominantly used to establish superinfection. These findings highlight the potential for competition among multiple strains of a pathogen for resources within the host and the balance between pathogen fitness and antigenic variation.
Collapse
Affiliation(s)
- Roberta Koku
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, Washington, USA
| | - James E. Futse
- Animal Disease Biotechnology Laboratory, Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Jillian Morrison
- Department of Mathematical and Computational Sciences, The College of Wooster, Wooster, Ohio, USA
| | - Kelly A. Brayton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Guy H. Palmer
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Susan M. Noh
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, Washington, USA
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| |
Collapse
|
4
|
Kumar A, Varma VP, Sridhar K, Abdullah M, Vyas P, Ashiq Thalappil M, Chang YF, Faisal SM. Deciphering the Role of Leptospira Surface Protein LigA in Modulating the Host Innate Immune Response. Front Immunol 2022; 12:807775. [PMID: 34975922 PMCID: PMC8716722 DOI: 10.3389/fimmu.2021.807775] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Leptospira, a zoonotic pathogen, is known to infect various hosts and can establish persistent infection. This remarkable ability of bacteria is attributed to its potential to modulate (activate or evade) the host immune response by exploiting its surface proteins. We have identified and characterized the domain of the variable region of Leptospira immunoglobulin-like protein A (LAV) involved in immune modulation. The 11th domain (A11) of the variable region of LigA (LAV) induces a strong TLR4 dependent innate response leading to subsequent induction of humoral and cellular immune responses in mice. A11 is also involved in acquiring complement regulator FH and binds to host protease Plasminogen (PLG), there by mediating functional activity to escape from complement-mediated killing. The deletion of A11 domain significantly impaired TLR4 signaling and subsequent reduction in the innate and adaptive immune response. It also inhibited the binding of FH and PLG thereby mediating killing of bacteria. Our study discovered an unprecedented role of LAV as a nuclease capable of degrading Neutrophil Extracellular Traps (NETs). This nuclease activity was primarily mediated by A11. These results highlighted the moonlighting function of LigA and demonstrated that a single domain of a surface protein is involved in modulating the host innate immune defenses, which might allow the persistence of Leptospira in different hosts for a long term without clearance.
Collapse
Affiliation(s)
- Ajay Kumar
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Vivek P Varma
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Kavela Sridhar
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Mohd Abdullah
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India.,Department of Biosciences, Integral University, Lucknow, India
| | - Pallavi Vyas
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | | | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Syed M Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|
5
|
Falk F, Kamanyi Marucha K, Clayton C. The EIF4E1-4EIP cap-binding complex of Trypanosoma brucei interacts with the terminal uridylyl transferase TUT3. PLoS One 2021; 16:e0258903. [PMID: 34807934 PMCID: PMC8608314 DOI: 10.1371/journal.pone.0258903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Most transcription in Trypanosoma brucei is constitutive and polycistronic. Consequently, the parasite relies on post-transcriptional mechanisms, especially affecting translation initiation and mRNA decay, to control gene expression both at steady-state and for adaptation to different environments. The parasite has six isoforms of the cap-binding protein EIF4E as well as five EIF4Gs. EIF4E1 does not bind to any EIF4G, instead being associated with a 4E-binding protein, 4EIP. 4EIP represses translation and reduces the stability of a reporter mRNA when artificially tethered to the 3’-UTR, whether or not EIF4E1 is present. 4EIP is essential during the transition from the mammalian bloodstream form to the procyclic form that lives in the Tsetse vector. In contrast, EIF4E1 is dispensable during differentiation, but is required for establishment of growing procyclic forms. In Leishmania, there is some evidence that EIF4E1 might be active in translation initiation, via direct recruitment of EIF3. However in T. brucei, EIF4E1 showed no detectable association with other translation initiation factors, even in the complete absence of 4EIP. There was some evidence for interactions with NOT complex components, but if these occur they must be weak and transient. We found that EIF4E1is less abundant in the absence of 4EIP, and RNA pull-down results suggested this might occur through co-translational complex assembly. We also report that 4EIP directly recruits the cytosolic terminal uridylyl transferase TUT3 to EIF4E1/4EIP complexes. There was, however, no evidence that TUT3 is essential for 4EIP function.
Collapse
Affiliation(s)
- Franziska Falk
- DKFZ-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Kevin Kamanyi Marucha
- DKFZ-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Christine Clayton
- DKFZ-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
6
|
The First Immunocompetent Mouse Model of Strictly Human Pathogen, Borrelia recurrentis. Infect Immun 2021; 89:e0004821. [PMID: 33875475 DOI: 10.1128/iai.00048-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spirochetal bacterium Borrelia recurrentis causes louse-borne relapsing fever (LBRF). B. recurrentis is unique because, as opposed to other Borrelia spirochetes, this strictly human pathogen is transmitted by lice. Despite the high mortality and historically proven epidemic potential and current outbreaks in African countries and Western Europe, research on LBRF has been obstructed by the lack of suitable animal models. The previously used grivet monkey model is associated with ethical concerns, among other issues. An existing immunodeficient mouse model does not limit bacteremia due to its impaired immune system. In this study, we used genetically diverse Collaborative Cross (CC) lines to develop the first LBRF immunocompetent mouse model. Out of 12 CC lines tested, CC046 mice consistently developed B. recurrentis-induced spirochetemia during the first 3 days postchallenge as concordantly detected by dark-field microscopy, culture, and quantitative PCR. However, spirochetemia was not detected from day 4 through day 10 postchallenge. The high-level spirochetemia (>107 cells/ml of blood) observed in CC046 mice was similar to that recorded in LBRF patients as well as immunocompetent mouse strains experimentally infected by tick-borne relapsing fever (RF) spirochetes, Borrelia hermsii and Borrelia persica. In contrast to the Old World and New World RF spirochetes, which develop multiple relapses (n = 3 to 9), B. recurrentis produced only single culture-detectable spirochetemia in CC046 mice. The lack of relapses may not be surprising, as LBRF patients and the grivet monkey model usually develop no or only 1 to 2 spirochetemic relapses. The novel model will now allow scientists to study B. recurrentis in the context of intact immunity.
Collapse
|
7
|
Balderrama-Gutierrez G, Milovic A, Cook VJ, Islam MN, Zhang Y, Kiaris H, Belisle JT, Mortazavi A, Barbour AG. An Infection-Tolerant Mammalian Reservoir for Several Zoonotic Agents Broadly Counters the Inflammatory Effects of Endotoxin. mBio 2021; 12:e00588-21. [PMID: 33849979 PMCID: PMC8092257 DOI: 10.1128/mbio.00588-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Animals that are competent reservoirs of zoonotic pathogens commonly suffer little morbidity from the infections. To investigate mechanisms of this tolerance of infection, we used single-dose lipopolysaccharide (LPS) as an experimental model of inflammation and compared the responses of two rodents: Peromyscus leucopus, the white-footed deermouse and reservoir for the agents of Lyme disease and other zoonoses, and the house mouse Mus musculus Four hours after injection with LPS or saline, blood, spleen, and liver samples were collected and subjected to transcriptome sequencing (RNA-seq), metabolomics, and specific reverse transcriptase quantitative PCR (RT-qPCR). Differential expression analysis was at the gene, pathway, and network levels. LPS-treated deermice showed signs of sickness similar to those of exposed mice and had similar increases in corticosterone levels and expression of interleukin 6 (IL-6), tumor necrosis factor, IL-1β, and C-reactive protein. By network analysis, the M. musculus response to LPS was characterized as cytokine associated, while the P. leucopus response was dominated by neutrophil activity terms. In addition, dichotomies in the expression levels of arginase 1 and nitric oxide synthase 2 and of IL-10 and IL-12 were consistent with type M1 macrophage responses in mice and type M2 responses in deermice. Analysis of metabolites in plasma and RNA in organs revealed species differences in tryptophan metabolism. Two genes in particular signified the different phenotypes of deermice and mice: the Slpi and Ibsp genes. Key RNA-seq findings for P. leucopus were replicated in older animals, in a systemic bacterial infection, and with cultivated fibroblasts. The findings indicate that P. leucopus possesses several adaptive traits to moderate inflammation in its balancing of infection resistance and tolerance.IMPORTANCE Animals that are natural carriers of pathogens that cause human diseases commonly manifest little or no sickness as a consequence of infection. Examples include the deermouse, Peromyscus leucopus, which is a reservoir for Lyme disease and several other disease agents in North America, and some types of bats, which are carriers of viruses with pathogenicity for humans. Mechanisms of this phenomenon of infection tolerance and entailed trade-off costs are poorly understood. Using a single injection of lipopolysaccharide (LPS) endotoxin as a proxy for infection, we found that deermice differed from the mouse (Mus musculus) in responses to LPS in several diverse pathways, including innate immunity, oxidative stress, and metabolism. Features distinguishing the deermice cumulatively would moderate downstream ill effects of LPS. Insights gained from the P. leucopus model in the laboratory have implications for studying infection tolerance in other important reservoir species, including bats and other types of wildlife.
Collapse
Affiliation(s)
- Gabriela Balderrama-Gutierrez
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Ana Milovic
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Vanessa J Cook
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
| | - M Nurul Islam
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Youwen Zhang
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Hippokratis Kiaris
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, South Carolina, USA
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, California, USA
| | - John T Belisle
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Alan G Barbour
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, California, USA
- Department of Ecology & Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| |
Collapse
|
8
|
Schmidt FL, Sürth V, Berg TK, Lin YP, Hovius JW, Kraiczy P. Interaction between Borrelia miyamotoi variable major proteins Vlp15/16 and Vlp18 with plasminogen and complement. Sci Rep 2021; 11:4964. [PMID: 33654183 PMCID: PMC7925540 DOI: 10.1038/s41598-021-84533-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Borrelia miyamotoi, a relapsing fever spirochete transmitted by Ixodid ticks causes B. miyamotoi disease (BMD). To evade the human host´s immune response, relapsing fever borreliae, including B. miyamotoi, produce distinct variable major proteins. Here, we investigated Vsp1, Vlp15/16, and Vlp18 all of which are currently being evaluated as antigens for the serodiagnosis of BMD. Comparative analyses identified Vlp15/16 but not Vsp1 and Vlp18 as a plasminogen-interacting protein of B. miyamotoi. Furthermore, Vlp15/16 bound plasminogen in a dose-dependent fashion with high affinity. Binding of plasminogen to Vlp15/16 was significantly inhibited by the lysine analog tranexamic acid suggesting that the protein–protein interaction is mediated by lysine residues. By contrast, ionic strength did not have an effect on binding of plasminogen to Vlp15/16. Of relevance, plasminogen bound to the borrelial protein cleaved the chromogenic substrate S-2251 upon conversion by urokinase-type plasminogen activator (uPa), demonstrating it retained its physiological activity. Interestingly, further analyses revealed a complement inhibitory activity of Vlp15/16 and Vlp18 on the alternative pathway by a Factor H-independent mechanism. More importantly, both borrelial proteins protect serum sensitive Borrelia garinii cells from complement-mediated lysis suggesting multiple roles of these two variable major proteins in immune evasion of B. miyamotoi.
Collapse
Affiliation(s)
- Frederik L Schmidt
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Valerie Sürth
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Tim K Berg
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Science, State University of New York at Albany, Albany, NY, USA
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany.
| |
Collapse
|
9
|
Abstract
Relapsing fever (RF) is caused by several species of Borrelia; all, except two species, are transmitted to humans by soft (argasid) ticks. The species B. recurrentis is transmitted from one human to another by the body louse, while B. miyamotoi is vectored by hard-bodied ixodid tick species. RF Borrelia have several pathogenic features that facilitate invasion and dissemination in the infected host. In this article we discuss the dynamics of vector acquisition and subsequent transmission of RF Borrelia to their vertebrate hosts. We also review taxonomic challenges for RF Borrelia as new species have been isolated throughout the globe. Moreover, aspects of pathogenesis including symptomology, neurotropism, erythrocyte and platelet adhesion are discussed. We expound on RF Borrelia evasion strategies for innate and adaptive immunity, focusing on the most fundamental pathogenetic attributes, multiphasic antigenic variation. Lastly, we review new and emerging species of RF Borrelia and discuss future directions for this global disease.
Collapse
Affiliation(s)
- Job Lopez
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston TX, USA
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Amsterdam Medical centers, location Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Sven Bergström
- Department of Molecular Biology, Umeå Center for Microbial Research, Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Chronic Lyme Disease: An Evidence-Based Definition by the ILADS Working Group. Antibiotics (Basel) 2019; 8:antibiotics8040269. [PMID: 31888310 PMCID: PMC6963229 DOI: 10.3390/antibiotics8040269] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: Chronic Lyme disease has been a poorly defined term and often dismissed as a fictitious entity. In this paper, the International Lyme and Associated Diseases Society (ILADS) provides its evidence-based definition of chronic Lyme disease. Definition: ILADS defines chronic Lyme disease (CLD) as a multisystem illness with a wide range of symptoms and/or signs that are either continuously or intermittently present for a minimum of six months. The illness is the result of an active and ongoing infection by any of several pathogenic members of the Borrelia burgdorferi sensu lato complex (Bbsl). The infection has variable latency periods and signs and symptoms may wax, wane and migrate. CLD has two subcategories, CLD, untreated (CLD-U) and CLD, previously treated (CLD-PT). The latter requires that CLD manifestations persist or recur following treatment and are present continuously or in a relapsing/remitting pattern for a duration of six months or more. Methods: Systematic review of over 250 peer reviewed papers in the international literature to characterize the clinical spectrum of CLD-U and CLD-PT. Conclusion: This evidence-based definition of chronic Lyme disease clarifies the term's meaning and the literature review validates that chronic and ongoing Bbsl infections can result in chronic disease. Use of this CLD definition will promote a better understanding of the infection and facilitate future research of this infection.
Collapse
|
11
|
Tokarz R, Tagliafierro T, Caciula A, Mishra N, Thakkar R, Chauhan LV, Sameroff S, Delaney S, Wormser GP, Marques A, Lipkin WI. Identification of immunoreactive linear epitopes of Borrelia miyamotoi. Ticks Tick Borne Dis 2019; 11:101314. [PMID: 31636001 DOI: 10.1016/j.ttbdis.2019.101314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 11/19/2022]
Abstract
Borrelia miyamotoi is an emerging tick-borne spirochete transmitted by ixodid ticks. Current serologic assays for B. miyamotoi are impacted by genetic similarities to other Borrelia and limited understanding of optimal antigenic targets. In this study, we employed the TBD-Serochip, a peptide array platform, to identify new linear targets for serologic detection of B. miyamotoi. We examined a wide range of suspected B. miyamotoi antigens and identified 352 IgM and 91 IgG reactive peptides, with the majority mapping to variable membrane proteins. These included peptides within conserved fragments of variable membrane proteins that may have greater potential for differential diagnosis. We also identified reactive regions on FlaB, and demonstrate crossreactivity of B. burgdorferi s.l. C6 with a B. miyamotoi C6-like peptide. The panel of linear peptides identified in this study can be used to enhance serodiagnosis of B. miyamotoi.
Collapse
Affiliation(s)
- Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States.
| | - Teresa Tagliafierro
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Adrian Caciula
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Nischay Mishra
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Riddhi Thakkar
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Lokendra V Chauhan
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Shannon Delaney
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Gary P Wormser
- Division of Infectious Diseases, New York Medical College, Valhalla, NY, United States
| | - Adriana Marques
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
12
|
Lee SH, Healy JE, Lambert JS. Single Core Genome Sequencing for Detection of both Borrelia burgdorferi Sensu Lato and Relapsing Fever Borrelia Species. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101779. [PMID: 31137527 PMCID: PMC6571920 DOI: 10.3390/ijerph16101779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 05/16/2019] [Indexed: 01/05/2023]
Abstract
Lyme disease, initially described as Lyme arthritis, was reported before nucleic-acid based detection technologies were available. The most widely used diagnostic tests for Lyme disease are based on the serologic detection of antibodies produced against antigens derived from a single strain of Borrelia burgdorferi. The poor diagnostic accuracy of serological tests early in the infection process has been noted most recently in the 2018 Report to Congress issued by the U.S. Department of Health and Human Services Tick-Borne Disease Working Group. Clinical Lyme disease may be caused by a diversity of borreliae, including those classified as relapsing fever species, in the United States and in Europe. It is widely accepted that antibiotic treatment of Lyme disease is most successful during this critical early stage of infection. While genomic sequencing is recognized as an irrefutable direct detection method for laboratory diagnosis of Lyme borreliosis, development of a molecular diagnostic tool for all clinical forms of borreliosis is challenging because a “core genome” shared by all pathogenic borreliae has not yet been identified. After a diligent search of the GenBank database, we identified two highly conserved segments of DNA sequence among the borrelial 16S rRNA genes. We further developed a pair of Borrelia genus-specific PCR primers for amplification of a segment of borrelial 16S rRNA gene as a “core genome” to be used as the template for routine Sanger sequencing-based metagenomic direct detection test. This study presented examples of base-calling DNA sequencing electropherograms routinely generated in a clinical diagnostic laboratory on DNA extracts of human blood specimens and ticks collected from human skin bites and from the environment. Since some of the tick samples tested were collected in Ireland, borrelial species or strains not known to exist in the United States were also detected by analysis of this 16S rRNA “core genome”. We recommend that hospital laboratories located in Lyme disease endemic areas begin to use a “core genome” sequencing test to routinely diagnose spirochetemia caused by various species of borreliae for timely management of patients at the early stage of infection.
Collapse
Affiliation(s)
- Sin Hang Lee
- Milford Molecular Diagnostics, Milford, CT 06460, USA.
| | - John Eoin Healy
- School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K Cork, Ireland.
| | - John S Lambert
- Department of medicine, University College Dublin, D04 V1W8 Dublin, Ireland.
- Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland.
| |
Collapse
|
13
|
Lambert JS, Cook MJ, Healy JE, Murtagh R, Avramovic G, Lee SH. Metagenomic 16S rRNA gene sequencing survey of Borrelia species in Irish samples of Ixodes ricinus ticks. PLoS One 2019; 14:e0209881. [PMID: 30986208 PMCID: PMC6464168 DOI: 10.1371/journal.pone.0209881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/07/2019] [Indexed: 11/19/2022] Open
Abstract
The spirochetal bacterium Borrelia miyamotoi is a human pathogen and has been identified in many countries throughout the world. This study reports for the first time the presence of Borrelia miyamotoi in Ireland, and confirms prior work with the detection of B. garinii and B. valaisiana infected ticks. Questing Ixodes ricinus nymph samples were taken at six localities within Ireland. DNA extraction followed by Sanger sequencing was used to identify the species and strains present in each tick. The overall rate of borrelial infection in the Irish tick population was 5%, with a range from 2% to 12% depending on the locations of tick collection. The most prevalent species detected was B. garinii (70%) followed by B. valaisiana (20%) and B. miyamotoi (10%). Knowledge of Borrelia species prevalence is important and will guide appropriate selection of antigens for serology test kit manufacture, help define the risk of infection, and allow medical authorities to formulate appropriate strategies and guidelines for diagnosis and treatment of Borrelia diseases.
Collapse
Affiliation(s)
- John S. Lambert
- University College Dublin, Dublin, Ireland
- Mater Misericordiae University Hospital, Dublin, Ireland
- * E-mail:
| | | | | | | | - Gordana Avramovic
- University College Dublin, Dublin, Ireland
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Sin Hang Lee
- Milford Molecular Diagnostics, Connecticut, United States of America
| |
Collapse
|
14
|
Deng H, Pang Q, Zhao B, Vayssier-Taussat M. Molecular Mechanisms of Bartonella and Mammalian Erythrocyte Interactions: A Review. Front Cell Infect Microbiol 2018; 8:431. [PMID: 30619777 PMCID: PMC6299047 DOI: 10.3389/fcimb.2018.00431] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
Bartonellosis is an infectious disease caused by Bartonella species that are distributed worldwide with animal and public health impact varying according to Bartonella species, infection phase, immunological characteristics, and geographical region. Bartonella is widely present in various mammals including cats, rodents, ruminants, and humans. At least 13 Bartonella species or subspecies are zoonotic. Each species has few reservoir animals in which it is often asymptomatic. Bartonella infection may lead to various clinical symptoms in humans. As described in the B.tribocorum-rat model, when Bartonella was seeded into the blood stream, they could escape immunity, adhered to and invaded host erythrocytes. They then replicated and persisted in the infected erythrocytes for several weeks. This review summarizes the current knowledge of how Bartonella prevent phagocytosis and complement activation, what pathogenesis factors are involved in erythrocyte adhesion and invasion, and how Bartonella could replicate and persist in mammalian erythrocytes. Current advances in research will help us to decipher molecular mechanisms of interactions between Bartonella and mammalian erythrocytes and may help in the development of biological strategies for the prevention and control of bartonellosis.
Collapse
Affiliation(s)
- Hongkuan Deng
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Qiuxiang Pang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Muriel Vayssier-Taussat
- UMR BIPAR, INRA, ANSES, École Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil Val-de-Marne, Maisons-Alfort, France
| |
Collapse
|
15
|
Guellil M, Kersten O, Namouchi A, Bauer EL, Derrick M, Jensen AØ, Stenseth NC, Bramanti B. Genomic blueprint of a relapsing fever pathogen in 15th century Scandinavia. Proc Natl Acad Sci U S A 2018; 115:10422-10427. [PMID: 30249639 PMCID: PMC6187149 DOI: 10.1073/pnas.1807266115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Louse-borne relapsing fever (LBRF) is known to have killed millions of people over the course of European history and remains a major cause of mortality in parts of the world. Its pathogen, Borrelia recurrentis, shares a common vector with global killers such as typhus and plague and is known for its involvement in devastating historical epidemics such as the Irish potato famine. Here, we describe a European and historical genome of Brecurrentis, recovered from a 15th century skeleton from Oslo. Our distinct European lineage has a discrete genomic makeup, displaying an ancestral oppA-1 gene and gene loss in antigenic variation sites. Our results illustrate the potential of ancient DNA research to elucidate dynamics of reductive evolution in a specialized human pathogen and to uncover aspects of human health usually invisible to the archaeological record.
Collapse
Affiliation(s)
- Meriam Guellil
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
| | - Oliver Kersten
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Amine Namouchi
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Egil L Bauer
- Norwegian Institute for Cultural Heritage Research, N-0155 Oslo, Norway
| | - Michael Derrick
- Norwegian Institute for Cultural Heritage Research, N-0155 Oslo, Norway
| | - Anne Ø Jensen
- Norwegian Institute for Cultural Heritage Research, N-0155 Oslo, Norway
| | - Nils C Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
| | - Barbara Bramanti
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
- Department of Biomedical and Specialty Surgical Sciences, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 35-441221 Ferrara, Italy
| |
Collapse
|
16
|
Holding T, Valletta JJ, Recker M. Multiscale Immune Selection and the Transmission-Diversity Feedback in Antigenically Diverse Pathogen Systems. Am Nat 2018; 192:E189-E201. [PMID: 30444661 PMCID: PMC6561780 DOI: 10.1086/699535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Antigenic diversity is commonly used by pathogens to enhance their
transmission success. Within-host clonal antigenic variation helps to maintain
long infectious periods, whereas high levels of allelic diversity at the
population level significantly expand the pool of susceptible individuals.
Diversity, however, is not necessarily a static property of a pathogen
population but in many cases is generated by the very act of infection and
transmission, and it is therefore expected to respond dynamically to changes in
transmission and immune selection. We hypothesized that this coupling creates a
positive feedback whereby infection and disease transmission promote the
generation of diversity, which itself facilitates immune evasion and further
infections. To investigate this link in more detail, we considered the human
malaria parasite Plasmodium falciparum, one of the most
important antigenically diverse pathogens. We developed an individual-based
model in which antigenic diversity emerges as a dynamic property from the
underlying transmission processes. Our results show that the balance between
stochastic extinction and the generation of new antigenic variants is
intrinsically linked to within-host and between-host immune selection. This in
turn determines the level of diversity that can be maintained in a given
population. Furthermore, the transmission-diversity feedback can lead to
temporal lags in the response to natural or intervention-induced perturbations
in transmission rates. Our results therefore have important implications for
monitoring and assessing the effectiveness of disease control efforts.
Collapse
|
17
|
Estrada-Peña A, Álvarez-Jarreta J, Cabezas-Cruz A. Reservoir and vector evolutionary pressures shaped the adaptation of Borrelia. INFECTION GENETICS AND EVOLUTION 2018; 66:308-318. [PMID: 29654924 DOI: 10.1016/j.meegid.2018.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
Abstract
The life cycle of spirochetes of the genus Borrelia includes complex networks of vertebrates and ticks. The tripartite association of Borrelia-vertebrate-tick has proved ecologically successful for these bacteria, which have become some of the most prominent tick-borne pathogens in the northern hemisphere. To keep evolutionary pace with its double-host life history, Borrelia must adapt to the evolutionary pressures exerted by both sets of hosts. In this review, we attempt to reconcile functional, phylogenetic, and ecological perspectives to propose a coherent scenario of Borrelia evolution. Available empirical information supports that the association of Borrelia with ticks is very old. The major split between the tick families Argasidae-Ixodidae (dated some 230-290 Mya) resulted in most relapsing fever (Rf) species being restricted to Argasidae and few associated with Ixodidae. A further key event produced the diversification of the Lyme borreliosis (Lb) species: the radiation of ticks of the genus Ixodes from the primitive stock of Ixodidae (around 217 Mya). The ecological interactions of Borrelia demonstrate that Argasidae-transmitted Rf species remain restricted to small niches of one tick species and few vertebrates. The evolutionary pressures on this group are consequently low, and speciation processes seem to be driven by geographical isolation. In contrast to Rf, Lb species circulate in nested networks of dozens of tick species and hundreds of vertebrate species. This greater variety confers a remarkably variable pool of evolutionary pressures, resulting in large speciation of the Lb group, where different species adapt to circulate through different groups of vertebrates. Available data, based on ospA and multilocus sequence typing (including eight concatenated in-house genes) phylogenetic trees, suggest that ticks could constitute a secondary bottleneck that contributes to Lb specialization. Both sets of adaptive pressures contribute to the resilience of highly adaptable meta-populations of bacteria.
Collapse
Affiliation(s)
| | - Jorge Álvarez-Jarreta
- Institute of Infection and Immunity, School of Medicine, Cardiff University, CF14 4XN, UK
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort 94700, France; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic; Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| |
Collapse
|
18
|
Talagrand-Reboul E, Boyer PH, Bergström S, Vial L, Boulanger N. Relapsing Fevers: Neglected Tick-Borne Diseases. Front Cell Infect Microbiol 2018; 8:98. [PMID: 29670860 PMCID: PMC5893795 DOI: 10.3389/fcimb.2018.00098] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
Relapsing fever still remains a neglected disease and little is known on its reservoir, tick vector and physiopathology in the vertebrate host. The disease occurs in temperate as well as tropical countries. Relapsing fever borreliae are spirochaetes, members of the Borreliaceae family which also contain Lyme disease spirochaetes. They are mainly transmitted by Ornithodoros soft ticks, but some species are vectored by ixodid ticks. Traditionally a Borrelia species is associated with a specific vector in a particular geographical area. However, new species are regularly described, and taxonomical uncertainties deserve further investigations to better understand Borrelia vector/host adaptation. The medical importance of Borrelia miyamotoi, transmitted by Ixodes spp., has recently spawned new interest in this bacterial group. In this review, recent data on tick-host-pathogen interactions for tick-borne relapsing fevers is presented, with special focus on B. miyamotoi.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
| | - Pierre H. Boyer
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Laurence Vial
- CIRAD BIOS, UMR15 CIRAD/Institut National de la Recherche Agronomique “Contrôle des Maladies Animales Exotiques et Emergentes,” Equipe “Vecteurs,” Campus International de Baillarguet, Montpellier, France
| | - Nathalie Boulanger
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
- Centre National de Référence Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| |
Collapse
|
19
|
Stuen S, Okstad W, Sagen AM. Intrauterine Transmission of Anaplasma phagocytophilum in Persistently Infected Lambs. Vet Sci 2018; 5:vetsci5010025. [PMID: 29495651 PMCID: PMC5876579 DOI: 10.3390/vetsci5010025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/16/2022] Open
Abstract
Anaplasma phagocytophilum, which causes the disease tick-borne fever (TBF), is the most important tick-borne pathogen in European animals. TBF may contribute to severe welfare challenges and economic losses in the Norwegian sheep industry. The bacterium causes a persistent infection in sheep and several other animal species. The objective of this study was to investigate whether intrauterine transmission occurs in persistently infected sheep. The study included thirteen 5–6-month-old unmated ewes, of which twelve were experimentally infected with A. phagocytophilum (GenBank acc. no. M73220). Four to six weeks later, all ewes were mated, and nine became pregnant. Blood samples were collected from these ewes and their offspring. If the lamb died, tissue samples were collected. The samples were analyzed with real-time PCR (qPCR) targeting the msp2 gene. PCR-positive samples were further analyzed by semi-nested PCR and 16S rDNA sequencing. A total of 20 lambs were born, of which six died within two days. Six newborn lambs (30%) were PCR-positive (qPCR), of which one was verified by 16S rDNA sequencing. The present study indicates that intrauterine transmission of A. phagocytophilum in persistently infected sheep may occur. The importance of these findings for the epidemiology of A. phagocytophilum needs to be further investigated.
Collapse
Affiliation(s)
- Snorre Stuen
- Section for Small Ruminant Research, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, N-4325 Sandnes, Norway.
| | - Wenche Okstad
- Section for Small Ruminant Research, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, N-4325 Sandnes, Norway.
| | - Anne Mette Sagen
- Section for Small Ruminant Research, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, N-4325 Sandnes, Norway.
| |
Collapse
|
20
|
James AE, Rogovskyy AS, Crowley MA, Bankhead T. Cis-acting DNA elements flanking the variable major protein expression site of Borrelia hermsii are required for murine persistence. Microbiologyopen 2017; 7:e00569. [PMID: 29250931 PMCID: PMC6011951 DOI: 10.1002/mbo3.569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 11/06/2022] Open
Abstract
In Borrelia hermsii, antigenic variation occurs as a result of a nonreciprocal gene conversion event that places one of ~60 silent variable major protein genes downstream of a single, transcriptionally active promoter. The upstream homology sequence (UHS) and downstream homology sequence (DHS) are two putative cis‐acting DNA elements that have been predicted to serve as crossover points for homologous recombination. In this report, a targeted deletion/in cis complementation technique was used to directly evaluate the role for these elements in antigenic switching. The results demonstrate that deletion of the expression site results in an inability of the pathogen to relapse in immunocompetent mice, and that the utilized technique was successful in producing complemented mutants that are capable of antigenic switching. Additional complemented clones with mutations in the UHS and DHS of the expressed locus were then generated and evaluated for their ability to relapse in immunocompetent mice. Mutation of the UHS and inverted repeat sequence within the DHS rendered these mutants incapable of relapsing. Overall, the results establish the requirement of the inverted repeat of the DHS for antigenic switching, and support the importance of the UHS for B. hermsii persistence in the mammalian host.
Collapse
Affiliation(s)
- Allison E James
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Artem S Rogovskyy
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Michael A Crowley
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Troy Bankhead
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
21
|
Gulisija D, Plotkin JB. Phenotypic plasticity promotes recombination and gene clustering in periodic environments. Nat Commun 2017; 8:2041. [PMID: 29229921 PMCID: PMC5725583 DOI: 10.1038/s41467-017-01952-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/26/2017] [Indexed: 11/25/2022] Open
Abstract
While theory offers clear predictions for when recombination will evolve in changing environments, it is unclear what natural scenarios can generate the necessary conditions. The Red Queen hypothesis provides one such scenario, but it requires antagonistic host-parasite interactions. Here we present a novel scenario for the evolution of recombination in finite populations: the genomic storage effect due to phenotypic plasticity. Using analytic approximations and Monte-Carlo simulations, we demonstrate that balanced polymorphism and recombination evolve between a target locus that codes for a seasonally selected trait and a plasticity modifier locus that modulates the effects of target-locus alleles. Furthermore, we show that selection suppresses recombination among multiple co-modulated target loci, in the absence of epistasis among them, which produces a cluster of linked selected loci. These results provide a novel biological scenario for the evolution of recombination and supergenes.
Collapse
Affiliation(s)
- Davorka Gulisija
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Joshua B Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
22
|
Aslam B, Nisar MA, Khurshid M, Farooq Salamat MK. Immune escape strategies of Borrelia burgdorferi. Future Microbiol 2017; 12:1219-1237. [PMID: 28972415 DOI: 10.2217/fmb-2017-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The borrelial resurge demonstrates that Borrelia burgdorferi is a persistent health problem. This spirochete is responsible for a global public health concern called Lyme disease. B. burgdorferi faces diverse environmental conditions of its vector and host during its life cycle. To circumvent the host immune system is a prominent feature of B. burgdorferi. To date, numerous studies have reported on the various mechanisms used by this pathogen to evade the host defense mechanisms. This current review attempts to consolidate this information to describe the immunological and molecular methods used by B. burgdorferi for its survival.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan.,College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
23
|
Tracy KE, Baumgarth N. Borrelia burgdorferi Manipulates Innate and Adaptive Immunity to Establish Persistence in Rodent Reservoir Hosts. Front Immunol 2017; 8:116. [PMID: 28265270 PMCID: PMC5316537 DOI: 10.3389/fimmu.2017.00116] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/25/2017] [Indexed: 01/17/2023] Open
Abstract
Borrelia burgdorferi sensu lato species complex is capable of establishing persistent infections in a wide variety of species, particularly rodents. Infection is asymptomatic or mild in most reservoir host species, indicating successful co-evolution of the pathogen with its natural hosts. However, infected humans and other incidental hosts can develop Lyme disease, a serious inflammatory syndrome characterized by tissue inflammation of joints, heart, muscles, skin, and CNS. Although B. burgdorferi infection induces both innate and adaptive immune responses, they are ultimately ineffective in clearing the infection from reservoir hosts, leading to bacterial persistence. Here, we review some mechanisms by which B. burgdorferi evades the immune system of the rodent host, focusing in particular on the effects of innate immune mechanisms and recent findings suggesting that T-dependent B cell responses are subverted during infection. A better understanding of the mechanisms causing persistence in rodents may help to increase our understanding of the pathogenesis of Lyme disease and ultimately aid in the development of therapies that support effective clearance of the bacterial infection by the host’s immune system.
Collapse
Affiliation(s)
- Karen E Tracy
- Graduate Group in Immunology, University of California Davis, Davis, CA, USA; Center for Comparative Medicine, University of California Davis, Davis, CA, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis, Davis, CA, USA; Center for Comparative Medicine, University of California Davis, Davis, CA, USA; Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
24
|
Duarte MC, Lage DP, Martins VT, Chávez-Fumagalli MA, Roatt BM, Menezes-Souza D, Goulart LR, Soto M, Tavares CAP, Coelho EAF. Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis. Rev Soc Bras Med Trop 2017; 49:398-407. [PMID: 27598624 DOI: 10.1590/0037-8682-0120-2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/09/2016] [Indexed: 11/22/2022] Open
Abstract
Visceral leishmaniasis (VL) is one of the most important tropical diseases worldwide. Although chemotherapy has been widely used to treat this disease, problems related to the development of parasite resistance and side effects associated with the compounds used have been noted. Hence, alternative approaches for VL control are desirable. Some methods, such as vector control and culling of infected dogs, are insufficiently effective, with the latter not ethically recommended. The development of vaccines to prevent VL is a feasible and desirable measure for disease control; for example, some vaccines designed to protect dogs against VL have recently been brought to market. These vaccines are based on the combination of parasite fractions or recombinant proteins with adjuvants that are able to induce cellular immune responses; however, their partial efficacy and the absence of a vaccine to protect against human leishmaniasis underline the need for characterization of new vaccine candidates. This review presents recent advances in control measures for VL based on vaccine development, describing extensively studied antigens, as well as new antigenic proteins recently identified using immuno-proteomic techniques.
Collapse
Affiliation(s)
- Mariana Costa Duarte
- Departamento de Patologia Clínica, Colégio Técnico, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Pagliara Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian Tamietti Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Mendes Roatt
- Departamento de Patologia Clínica, Colégio Técnico, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Departamento de Patologia Clínica, Colégio Técnico, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Ricardo Goulart
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil.,Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, USA
| | - Manuel Soto
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Alberto Pereira Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Departamento de Patologia Clínica, Colégio Técnico, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
25
|
Abstract
Antigenic variation is a strategy used by a broad diversity of microbial pathogens to persist within the mammalian host. Whereas viruses make use of a minimal proofreading capacity combined with large amounts of progeny to use random mutation for variant generation, antigenically variant bacteria have evolved mechanisms which use a stable genome, which aids in protecting the fitness of the progeny. Here, three well-characterized and highly antigenically variant bacterial pathogens are discussed: Anaplasma, Borrelia, and Neisseria. These three pathogens display a variety of mechanisms used to create the structural and antigenic variation needed for immune escape and long-term persistence. Intrahost antigenic variation is the focus; however, the role of these immune escape mechanisms at the population level is also presented.
Collapse
|
26
|
DNA Recombination Strategies During Antigenic Variation in the African Trypanosome. Microbiol Spectr 2016; 3:MDNA3-0016-2014. [PMID: 26104717 DOI: 10.1128/microbiolspec.mdna3-0016-2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Survival of the African trypanosome in its mammalian hosts has led to the evolution of antigenic variation, a process for evasion of adaptive immunity that has independently evolved in many other viral, bacterial and eukaryotic pathogens. The essential features of trypanosome antigenic variation have been understood for many years and comprise a dense, protective Variant Surface Glycoprotein (VSG) coat, which can be changed by recombination-based and transcription-based processes that focus on telomeric VSG gene transcription sites. However, it is only recently that the scale of this process has been truly appreciated. Genome sequencing of Trypanosoma brucei has revealed a massive archive of >1000 VSG genes, the huge majority of which are functionally impaired but are used to generate far greater numbers of VSG coats through segmental gene conversion. This chapter will discuss the implications of such VSG diversity for immune evasion by antigenic variation, and will consider how this expressed diversity can arise, drawing on a growing body of work that has begun to examine the proteins and sequences through which VSG switching is catalyzed. Most studies of trypanosome antigenic variation have focused on T. brucei, the causative agent of human sleeping sickness. Other work has begun to look at antigenic variation in animal-infective trypanosomes, and we will compare the findings that are emerging, as well as consider how antigenic variation relates to the dynamics of host-trypanosome interaction.
Collapse
|
27
|
Barbour AG. Multiple and Diverse vsp and vlp Sequences in Borrelia miyamotoi, a Hard Tick-Borne Zoonotic Pathogen. PLoS One 2016; 11:e0146283. [PMID: 26785134 PMCID: PMC4718594 DOI: 10.1371/journal.pone.0146283] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/15/2015] [Indexed: 12/02/2022] Open
Abstract
Based on chromosome sequences, the human pathogen Borrelia miyamotoi phylogenetically clusters with species that cause relapsing fever. But atypically for relapsing fever agents, B. miyamotoi is transmitted not by soft ticks but by hard ticks, which also are vectors of Lyme disease Borrelia species. To further assess the relationships of B. miyamotoi to species that cause relapsing fever, I investigated extrachromosomal sequences of a North American strain with specific attention on plasmid-borne vsp and vlp genes, which are the underpinnings of antigenic variation during relapsing fever. For a hybrid approach to achieve assemblies that spanned more than one of the paralogous vsp and vlp genes, a database of short-reads from next-generation sequencing was supplemented with long-reads obtained with real-time DNA sequencing from single polymerase molecules. This yielded three contigs of 31, 16, and 11 kb, which each contained multiple and diverse sequences that were homologous to vsp and vlp genes of the relapsing fever agent B. hermsii. Two plasmid fragments had coding sequences for plasmid partition proteins that differed from each other from paralogous proteins for the megaplasmid and a small plasmid of B. miyamotoi. One of 4 vsp genes, vsp1, was present at two loci, one of which was downstream of a candiate prokaryotic promoter. A limited RNA-seq analysis of a population growing in the blood of mice indicated that of the 4 different vsp genes vsp1 was the one that was expressed. The findings indicate that B. miyamotoi has at least four types of plasmids, two or more of which bear vsp and vlp gene sequences that are as numerous and diverse as those of relapsing fever Borrelia. The database and insights from these findings provide a foundation for further investigations of the immune responses to this pathogen and of the capability of B. miyamotoi for antigenic variation.
Collapse
Affiliation(s)
- Alan G. Barbour
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Brown WC, Barbet AF. Persistent Infections and Immunity in Ruminants to Arthropod-Borne Bacteria in the Family Anaplasmataceae. Annu Rev Anim Biosci 2015; 4:177-97. [PMID: 26734888 DOI: 10.1146/annurev-animal-022513-114206] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tick-transmitted gram-negative bacteria in the family Anaplasmataceae in the order Rickettsiales cause persistent infection and morbidity and mortality in ruminants. Whereas Anaplasma marginale infection is restricted to ruminants, Anaplasma phagocytophilum is promiscuous and, in addition to causing disease in sheep and cattle, notably causes disease in humans, horses, and dogs. Although the two pathogens invade and replicate in distinct blood cells (erythrocytes and neutrophils, respectively), they have evolved similar mechanisms of antigenic variation in immunodominant major surface protein 2 (MSP2) and MSP2(P44) that result in immune evasion and persistent infection. Furthermore, these bacteria have evolved distinct strategies to cause immune dysfunction, characterized as an antigen-specific CD4 T-cell exhaustion for A. marginale and a generalized immune suppression for A. phagocytophilum, that also facilitate persistence. This indicates highly adapted strategies of Anaplasma spp. to both suppress protective immune responses and evade those that do develop. However, conserved subdominant antigens are potential targets for immunization.
Collapse
Affiliation(s)
- Wendy C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164;
| | - Anthony F Barbet
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida 32611;
| |
Collapse
|
29
|
Application of Nanotrap technology for high sensitivity measurement of urinary outer surface protein A carboxyl-terminus domain in early stage Lyme borreliosis. J Transl Med 2015; 13:346. [PMID: 26537892 PMCID: PMC4634744 DOI: 10.1186/s12967-015-0701-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Prompt antibiotic treatment of early stage Lyme borreliosis (LB) prevents progression to severe multisystem disease. There is a clinical need to improve the diagnostic specificity of early stage Lyme assays in the period prior to the mounting of a robust serology response. Using a novel analyte harvesting nanotechnology, Nanotrap particles, we evaluated urinary Borrelia Outer surface protein A (OspA) C-terminus peptide in early stage LB before and after treatment, and in patients suspected of late stage disseminated LB. METHOD We employed Nanotrap particles to concentrate urinary OspA and used a highly specific anti-OspA monoclonal antibody (mAb) as a detector of the C-terminus peptides. We mapped the mAb epitope to a narrow specific OspA C-terminal domain OspA236-239 conserved across infectious Borrelia species but with no homology to human proteins and no cross-reactivity with relevant viral and non-Borrelia bacterial proteins. 268 urine samples from patients being evaluated for all categories of LB were collected in a LB endemic area. The urinary OspA assay, blinded to outcome, utilized Nanotrap particle pre-processing, western blotting to evaluate the OspA molecular size, and OspA peptide competition for confirmation. RESULTS OspA test characteristics: sensitivity 1.7 pg/mL (lowest limit of detection), % coefficient of variation (CV) = 8 %, dynamic range 1.7-30 pg/mL. Pre-treatment, 24/24 newly diagnosed patients with an erythema migrans (EM) rash were positive for urinary OspA while false positives for asymptomatic patients were 0/117 (Chi squared p < 10(-6)). For 10 patients who exhibited persistence of the EM rash during the course of antibiotic therapy, 10/10 were positive for urinary OspA. Urinary OspA of 8/8 patients switched from detectable to undetectable following symptom resolution post-treatment. Specificity of the urinary OspA test for the clinical symptoms was 40/40. Specificity of the urinary OspA antigen test for later serology outcome was 87.5 % (21 urinary OspA positive/24 serology positive, Chi squared p = 4.072e(-15)). 41 of 100 patients under surveillance for persistent LB in an endemic area were positive for urinary OspA protein. CONCLUSIONS OspA urinary shedding was strongly linked to concurrent active symptoms (e.g. EM rash and arthritis), while resolution of these symptoms after therapy correlated with urinary conversion to OspA negative.
Collapse
|
30
|
Krajacich BJ, Lopez JE, Raffel SJ, Schwan TG. Vaccination with the variable tick protein of the relapsing fever spirochete Borrelia hermsii protects mice from infection by tick-bite. Parasit Vectors 2015; 8:546. [PMID: 26490040 PMCID: PMC4618142 DOI: 10.1186/s13071-015-1170-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022] Open
Abstract
Background Tick-borne relapsing fevers of humans are caused by spirochetes that must adapt to both warm-blooded vertebrates and cold-blooded ticks. In western North America, most human cases of relapsing fever are caused by Borrelia hermsii, which cycles in nature between its tick vector Ornithodoros hermsi and small mammals such as tree squirrels and chipmunks. These spirochetes alter their outer surface by switching off one of the bloodstream-associated variable major proteins (Vmps) they produce in mammals, and replacing it with the variable tick protein (Vtp) following their acquisition by ticks. Based on this reversion to Vtp in ticks, we produced experimental vaccines comprised on this protein and tested them in mice challenged by infected ticks. Methods The vtp gene from two isolates of B. hermsii that encoded antigenically distinct types of proteins were cloned, expressed, and the recombinant Vtp proteins were purified and used to vaccinate mice. Ornithodoros hermsi ticks that were infected with one of the two strains of B. hermsii from which the vtp gene originated were used to challenge mice that received one of the two Vtp vaccines or only adjuvant. Mice were then followed for infection and seroconversion. Results The Vtp vaccines produced protective immune responses in mice challenged with O. hermsi ticks infected with B. hermsii. However, polymorphism in Vtp resulted in mice being protected only from the spirochete strain that produced the same Vtp used in the vaccine; mice challenged with spirochetes producing the antigenically different Vtp than the vaccine succumbed to infection. Conclusions We demonstrate that by having knowledge of the phenotypic changes made by B. hermsii as the spirochetes are acquired by ticks from infected mammals, an effective vaccine was developed that protected mice when challenged with infected ticks. However, the Vtp vaccines only protected mice from infection when challenged with that strain producing the identical Vtp. A vaccine containing multiple Vtp types may have promise as an oral vaccine for wild mammals if applied to geographic settings such as small islands where the mammal diversity is low and the Vtp types in the B. hermsii population are defined.
Collapse
Affiliation(s)
- Benjamin J Krajacich
- Present address: Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Job E Lopez
- Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Sandra J Raffel
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th Street, Hamilton, MT, 59840-2932, USA.
| | - Tom G Schwan
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th Street, Hamilton, MT, 59840-2932, USA.
| |
Collapse
|
31
|
Primary Structural Variation in Anaplasma marginale Msp2 Efficiently Generates Immune Escape Variants. Infect Immun 2015; 83:4178-84. [PMID: 26259814 DOI: 10.1128/iai.00851-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/04/2015] [Indexed: 11/20/2022] Open
Abstract
Antigenic variation allows microbial pathogens to evade immune clearance and establish persistent infection. Anaplasma marginale utilizes gene conversion of a repertoire of silent msp2 alleles into a single active expression site to encode unique Msp2 variants. As the genomic complement of msp2 alleles alone is insufficient to generate the number of variants required for persistence, A. marginale uses segmental gene conversion, in which oligonucleotide segments from multiple alleles are recombined into the expression site to generate a novel msp2 mosaic not represented elsewhere in the genome. Whether these segmental changes are sufficient to evade a broad antibody response is unknown. We addressed this question by identifying Msp2 variants that differed in primary structure within the immunogenic hypervariable region microdomains and tested whether they represented true antigenic variants. The minimal primary structural difference between variants was a single amino acid resulting from a codon insertion, and overall, the amino acid identity among paired microdomains ranged from 18 to 92%. Collectively, 89% of the expressed structural variants were also antigenic variants across all biological replicates, independent of a specific host major histocompatibility complex haplotype. Biological relevance is supported by the following: (i) all structural variants were expressed during infection of a natural host, (ii) the structural variation observed in the microdomains corresponded to the mean length of variants generated by segmental gene conversion, and (iii) antigenic variants were identified using a broad antibody response that developed during infection of a natural host. The findings demonstrate that segmental gene conversion efficiently generates Msp2 antigenic variants.
Collapse
|
32
|
Foley J. Mini-review: Strategies for Variation and Evolution of Bacterial Antigens. Comput Struct Biotechnol J 2015; 13:407-16. [PMID: 26288700 PMCID: PMC4534519 DOI: 10.1016/j.csbj.2015.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 07/18/2015] [Accepted: 07/19/2015] [Indexed: 12/29/2022] Open
Abstract
Across the eubacteria, antigenic variation has emerged as a strategy to evade host immunity. However, phenotypic variation in some of these antigens also allows the bacteria to exploit variable host niches as well. The specific mechanisms are not shared-derived characters although there is considerable convergent evolution and numerous commonalities reflecting considerations of natural selection and biochemical restraints. Unlike in viruses, mechanisms of antigenic variation in most bacteria involve larger DNA movement such as gene conversion or DNA rearrangement, although some antigens vary due to point mutations or modified transcriptional regulation. The convergent evolution that promotes antigenic variation integrates various evolutionary forces: these include mutations underlying variant production; drift which could remove alleles especially early in infection or during life history phases in arthropod vectors (when the bacterial population size goes through a bottleneck); selection not only for any particular variant but also for the mechanism for the production of variants (i.e., selection for mutability); and overcoming negative selection against variant production. This review highlights the complexities of drivers of antigenic variation, in particular extending evaluation beyond the commonly cited theory of immune evasion. A deeper understanding of the diversity of purpose and mechanisms of antigenic variation in bacteria will contribute to greater insight into bacterial pathogenesis, ecology and coevolution with hosts.
Collapse
Affiliation(s)
- Janet Foley
- 1320 Tupper Hall, Veterinary Medicine and Epidemiology, UC Davis, Davis, CA 95616, United States
| |
Collapse
|
33
|
Phage-fused epitopes fromLeishmania infantumused as immunogenic vaccines confer partial protection againstLeishmania amazonensisinfection. Parasitology 2015; 142:1335-47. [DOI: 10.1017/s0031182015000724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYTwo mimotopes ofLeishmania infantumidentified by phage display were evaluated as vaccine candidates in BALB/c mice againstLeishmania amazonensisinfection. The epitope-based immunogens, namely B10 and C01, presented as phage-fused peptides; were used without association of a Th1 adjuvant, and they were administered isolated or in combination into animals. Both clones showed a specific production of interferon-gamma (IFN-γ), interleukin-12 (IL-12) and granulocyte/macrophage colony-stimulating factor (GM-CSF) afterin vitrospleen cells stimulation, and they were able to induce a partial protection against infection. Significant reductions of parasite load in the infected footpads, liver, spleen, bone marrow and paws’ draining lymph nodes were observed in the immunized mice, in comparison with the control groups (saline, saponin, wild-type and non-relevant clones). Protection was associated with an IL-12-dependent production of IFN-γ, mediated mainly by CD8+T cells, against parasite proteins. Protected mice also presented low levels of IL-4 and IL-10, as well as increased levels of parasite-specific IgG2a antibodies. The association of both clones resulted in an improved protection in relation to their individual use. More importantly, the absence of adjuvant did not diminish the cross-protective efficacy againstLeishmaniaspp. infection. This study describes for the first time two epitope-based immunogens selected by phage display technology againstL. infantuminfected dogs sera, which induced a partial protection in BALB/c mice infected withL. amazonensis.
Collapse
|
34
|
Cameron DJ, Johnson LB, Maloney EL. Evidence assessments and guideline recommendations in Lyme disease: the clinical management of known tick bites, erythema migrans rashes and persistent disease. Expert Rev Anti Infect Ther 2014; 12:1103-35. [PMID: 25077519 PMCID: PMC4196523 DOI: 10.1586/14787210.2014.940900] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evidence-based guidelines for the management of patients with Lyme disease were developed by the International Lyme and Associated Diseases Society (ILADS). The guidelines address three clinical questions - the usefulness of antibiotic prophylaxis for known tick bites, the effectiveness of erythema migrans treatment and the role of antibiotic retreatment in patients with persistent manifestations of Lyme disease. Healthcare providers who evaluate and manage patients with Lyme disease are the intended users of the new ILADS guidelines, which replace those issued in 2004 (Exp Rev Anti-infect Ther 2004;2:S1-13). These clinical practice guidelines are intended to assist clinicians by presenting evidence-based treatment recommendations, which follow the Grading of Recommendations Assessment, Development and Evaluation system. ILADS guidelines are not intended to be the sole source of guidance in managing Lyme disease and they should not be viewed as a substitute for clinical judgment nor used to establish treatment protocols.
Collapse
Affiliation(s)
- Daniel J Cameron
- International Lyme and Associated Diseases Society,PO Box 341461, Bethesda MD, 20827-1461,USA
| | | | | |
Collapse
|
35
|
Groshong AM, Blevins JS. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:41-143. [PMID: 24377854 DOI: 10.1016/b978-0-12-800262-9.00002-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Borrelia burgdorferi, the vector-borne bacterium that causes Lyme disease, was first identified in 1982. It is known that much of the pathology associated with Lyme borreliosis is due to the spirochete's ability to infect, colonize, disseminate, and survive within the vertebrate host. Early studies aimed at defining the biological contributions of individual genes during infection and transmission were hindered by the lack of adequate tools and techniques for molecular genetic analysis of the spirochete. The development of genetic manipulation techniques, paired with elucidation and annotation of the B. burgdorferi genome sequence, has led to major advancements in our understanding of the virulence factors and the molecular events associated with Lyme disease. Since the dawn of this genetic era of Lyme research, genes required for vector or host adaptation have garnered significant attention and highlighted the central role that these components play in the enzootic cycle of this pathogen. This chapter covers the progress made in the Borrelia field since the application of mutagenesis techniques and how they have allowed researchers to begin ascribing roles to individual genes. Understanding the complex process of adaptation and survival as the spirochete cycles between the tick vector and vertebrate host will lead to the development of more effective diagnostic tools as well as identification of novel therapeutic and vaccine targets. In this chapter, the Borrelia genes are presented in the context of their general biological roles in global gene regulation, motility, cell processes, immune evasion, and colonization/dissemination.
Collapse
Affiliation(s)
- Ashley M Groshong
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jon S Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
36
|
Raffel SJ, Battisti JM, Fischer RJ, Schwan TG. Inactivation of genes for antigenic variation in the relapsing fever spirochete Borrelia hermsii reduces infectivity in mice and transmission by ticks. PLoS Pathog 2014; 10:e1004056. [PMID: 24699793 PMCID: PMC3974855 DOI: 10.1371/journal.ppat.1004056] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/24/2014] [Indexed: 11/18/2022] Open
Abstract
Borrelia hermsii, a causative agent of relapsing fever of humans in western North America, is maintained in enzootic cycles that include small mammals and the tick vector Ornithodoros hermsi. In mammals, the spirochetes repeatedly evade the host's acquired immune response by undergoing antigenic variation of the variable major proteins (Vmps) produced on their outer surface. This mechanism prolongs spirochete circulation in blood, which increases the potential for acquisition by fast-feeding ticks and therefore perpetuation of the spirochete in nature. Antigenic variation also underlies the relapsing disease observed when humans are infected. However, most spirochetes switch off the bloodstream Vmp and produce a different outer surface protein, the variable tick protein (Vtp), during persistent infection in the tick salivary glands. Thus the production of Vmps in mammalian blood versus Vtp in ticks is a dominant feature of the spirochete's alternating life cycle. We constructed two mutants, one which was unable to produce a Vmp and the other was unable to produce Vtp. The mutant lacking a Vmp constitutively produced Vtp, was attenuated in mice, produced lower cell densities in blood, and was unable to relapse in animals after its initial spirochetemia. This mutant also colonized ticks and was infectious by tick-bite, but remained attenuated compared to wild-type and reconstituted spirochetes. The mutant lacking Vtp also colonized ticks but produced neither Vtp nor a Vmp in tick salivary glands, which rendered the spirochete noninfectious by tick bite. Thus the ability of B. hermsii to produce Vmps prolonged its survival in blood, while the synthesis of Vtp was essential for mammalian infection by the bite of its tick vector.
Collapse
Affiliation(s)
- Sandra J. Raffel
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - James M. Battisti
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
- Division of Biological Sciences, The University of Montana, Missoula, Montana, United States of America
| | - Robert J. Fischer
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Tom G. Schwan
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
37
|
Gjini E, Haydon DT, Barry JD, Cobbold CA. Linking the antigen archive structure to pathogen fitness in African trypanosomes. Proc Biol Sci 2013; 280:20122129. [PMID: 23282992 PMCID: PMC3574339 DOI: 10.1098/rspb.2012.2129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/05/2012] [Indexed: 12/31/2022] Open
Abstract
Systems that generate antigenic variation enable pathogens to evade host immune responses and are intricately interwoven with major pathogen traits, such as host choice, growth, virulence and transmission. Although much is understood about antigen switching at the molecular level, little is known about the cross-scale links between these molecular processes and the larger-scale within and between host population dynamics that they must ultimately drive. Inspired by the antigenic variation system of African trypanosomes, we apply modelling approaches to our expanding understanding of the organization and expression of antigen repertoires, and explore links across these scales. We predict how pathogen population processes are determined by underlying molecular genetics and infer resulting selective pressures on important emergent repertoire traits.
Collapse
Affiliation(s)
- Erida Gjini
- School of Mathematics and Statistics, College of Science and Engineering, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | | | | | | |
Collapse
|
38
|
Magdanova LA, Golyasnaya NV. Heterogeneity as an adaptive trait of microbial populations. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713010074] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
39
|
Vink C, Rudenko G, Seifert HS. Microbial antigenic variation mediated by homologous DNA recombination. FEMS Microbiol Rev 2012; 36:917-948. [PMID: 22212019 PMCID: PMC3334452 DOI: 10.1111/j.1574-6976.2011.00321.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 11/27/2022] Open
Abstract
Pathogenic microorganisms employ numerous molecular strategies in order to delay or circumvent recognition by the immune system of their host. One of the most widely used strategies of immune evasion is antigenic variation, in which immunogenic molecules expressed on the surface of a microorganism are continuously modified. As a consequence, the host is forced to constantly adapt its humoral immune response against this pathogen. An antigenic change thus provides the microorganism with an opportunity to persist and/or replicate within the host (population) for an extended period of time or to effectively infect a previously infected host. In most cases, antigenic variation is caused by genetic processes that lead to the modification of the amino acid sequence of a particular antigen or to alterations in the expression of biosynthesis genes that induce changes in the expression of a variant antigen. Here, we will review antigenic variation systems that rely on homologous DNA recombination and that are found in a wide range of cellular, human pathogens, including bacteria (such as Neisseria spp., Borrelia spp., Treponema pallidum, and Mycoplasma spp.), fungi (such as Pneumocystis carinii) and parasites (such as the African trypanosome Trypanosoma brucei). Specifically, the various DNA recombination-based antigenic variation systems will be discussed with a focus on the employed mechanisms of recombination, the DNA substrates, and the enzymatic machinery involved.
Collapse
Affiliation(s)
- Cornelis Vink
- Department of Pediatrics, Erasmus MC, Rotterdam, The Netherlands
| | - Gloria Rudenko
- Division of Cell and Molecular Biology, Imperial College-South Kensington, London, UK
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
40
|
Identification of Bartonella Trw host-specific receptor on erythrocytes. PLoS One 2012; 7:e41447. [PMID: 22848496 PMCID: PMC3406051 DOI: 10.1371/journal.pone.0041447] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 06/27/2012] [Indexed: 01/22/2023] Open
Abstract
Each Bartonella species appears to be highly adapted to one or a limited number of reservoir hosts, in which it establishes long-lasting intraerythrocytic bacteremia as the hallmark of infection. Recently, we identified Trw as the bacterial system involved in recognition of erythrocytes according to their animal origin. The T4SS Trw is characterized by a multiprotein complex that spans the inner and outer bacterial membranes, and possesses a hypothetical pilus structure. TrwJ, I, H and trwL are present in variable copy numbers in different species and the multiple copies of trwL and trwJ in the Bartonella trw locus are considered to encode variant forms of surface-exposed pilus components. We therefore aimed to identify which of the candidate Trw pilus components were located on the bacterial surface and involved in adhesion to erythrocytes, together with their erythrocytic receptor. Using different technologies (electron microscopy, phage display, invasion inhibition assay, far western blot), we found that only TrwJ1 and TrwJ2 were expressed and localized at the cell surface of B. birtlesii and had the ability to bind to mouse erythrocytes, and that their receptor was band3, one of the major outer-membrane glycoproteins of erythrocytes, (anion exchanger). According to these results, we propose that the interaction between TrwJ1, TrwJ2 and band 3 leads to the critical host-specific adherence of Bartonella to its host cells, erythrocytes.
Collapse
|
41
|
Bishop LR, Helman D, Kovacs JA. Discordant antibody and cellular responses to Pneumocystis major surface glycoprotein variants in mice. BMC Immunol 2012; 13:39. [PMID: 22788748 PMCID: PMC3411419 DOI: 10.1186/1471-2172-13-39] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 07/12/2012] [Indexed: 11/29/2022] Open
Abstract
Background The major surface glycoprotein (Msg) of Pneumocystis is encoded by approximately 50 to 80 unique but related genes. Msg diversity may represent a mechanism for immune escape from host T cell responses. We examined splenic T cell proliferative and cytokine as well as serum antibody responses to recombinant and native Pneumocystis antigens in immunized or Pneumocystis-infected mice. In addition, immune responses were examined in 5 healthy humans. Results Proliferative responses to each of two recombinant Msg variant proteins were seen in mice immunized with either recombinant protein, but no proliferation to these antigens was seen in mice immunized with crude Pneumocystis antigens or in mice that had cleared infection, although the latter animals demonstrated proliferative responses to crude Pneumocystis antigens and native Msg. IL-17 and MCP-3 were produced in previously infected animals in response to the same antigens, but not to recombinant antigens. Antibody responses to the recombinant P. murina Msg variant proteins were seen in all groups of animals, demonstrating that all groups were exposed to and mounted immune responses to Msg. No human PBMC samples proliferated following stimulation with P. jirovecii Msg, while antibody responses were detected in sera from 4 of 5 samples. Conclusions Cross-reactive antibody responses to Msg variants are common, while cross-reactive T cell responses are uncommon; these results support the hypothesis that Pneumocystis utilizes switching of Msg variant expression to avoid host T cell responses.
Collapse
Affiliation(s)
- Lisa R Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1662, USA
| | | | | |
Collapse
|
42
|
Chávez ASO, Felsheim RF, Kurtti TJ, Ku PS, Brayton KA, Munderloh UG. Expression patterns of Anaplasma marginale Msp2 variants change in response to growth in cattle, and tick cells versus mammalian cells. PLoS One 2012; 7:e36012. [PMID: 22558307 PMCID: PMC3338850 DOI: 10.1371/journal.pone.0036012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/26/2012] [Indexed: 11/27/2022] Open
Abstract
Antigenic variation of major surface proteins is considered an immune-evasive maneuver used by pathogens as divergent as bacteria and protozoa. Likewise, major surface protein 2 (Msp2) of the tick-borne pathogen, Anaplasma marginale, is thought to be involved in antigenic variation to evade the mammalian host immune response. However, this dynamic process also works in the tick vector in the absence of immune selection pressure. We examined Msp2 variants expressed during infection of four tick and two mammalian cell-lines to determine if the presence of certain variants correlated with specific host cell types. Anaplasma marginale colonies differed in their development and appearance in each of the cell lines (P<0.001). Using Western blots probed with two Msp2-monospecific and one Msp2-monoclonal antibodies, we detected expression of variants with differences in molecular weight. Immunofluorescence-assay revealed that specific antibodies bound from 25 to 60% of colonies, depending on the host cell-line (P<0.001). Molecular analysis of cloned variant-encoding genes demonstrated expression of different predominant variants in tick (V1) and mammalian (V2) cell-lines. Analysis of the putative secondary structure of the variants revealed a change in structure when A. marginale was transferred from one cell-type to another, suggesting that the expression of particular Msp2 variants depended on the cell-type (tick or mammalian) in which A. marginale developed. Similarly, analysis of the putative secondary structure of over 200 Msp2 variants from ticks, blood samples, and other mammalian cells available in GenBank showed the predominance of a specific structure during infection of a host type (tick versus blood sample), demonstrating that selection of a possible structure also occurred in vivo. The selection of a specific structure in surface proteins may indicate that Msp2 fulfils an important role in infection and adaptation to diverse host systems. Supplemental Abstract in Spanish (File S1) is provided.
Collapse
|
43
|
Sacchi ABV, Duarte JMB, André MR, Machado RZ. Prevalence and molecular characterization of Anaplasmataceae agents in free-ranging Brazilian marsh deer (Blastocerus dichotomus). Comp Immunol Microbiol Infect Dis 2012; 35:325-34. [PMID: 22381686 DOI: 10.1016/j.cimid.2012.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/30/2012] [Accepted: 02/02/2012] [Indexed: 11/28/2022]
Abstract
Anaplasmataceae organisms comprise a group of obligate intracellular gram-negative, tick-borne bacteria that can infect both animals and humans. In the present work we investigate the presence of Ehrlichia, Anaplasma, and Neorickettsia species in blood samples from Brazilian marsh deer (Blastocerus dichotomus), using both molecular and serologic techniques. Blood was collected from 143 deer captured along floodplains of the Paraná River, near the Porto Primavera hydroelectric power plant. Before and after flooding, marsh deer were captured for a wide range research program under the financial support of São Paulo State Energy Company (CESP), between 1998 and 2001. Samples were divided into four groups according to time and location of capture and named MS01 (n=99), MS02 (n=18) (Mato Grosso do Sul, before and after flooding, respectively), PX (n=9; Peixe River, after flooding), and AGUA (n=17; Aguapeí River, after flooding). The seroprevalences for Ehrlichia chaffeensis and Anaplasma phagocytophilum were 76.76% and 20.2% in MS01, 88.88% and 5.55% in MS02, 88.88% and 22.22% in PX, and 94.12% and 5.88% in AGUA, respectively. Sixty-one animals (42.65% of the total population) were PCR-positive for E. chaffeensis PCR (100.0% identity based on 16S rRNA, dsb, and groESL genes). Seventy deer (48.95% of the total population) were PCR-positive for Anaplasma spp. (99.0% of identity with A. platys, and in the same clade as A. phagocytophilum, A. bovis, and A. platys based on 16S rRNA phylogenetic analysis). Our results demonstrate that Brazilian marsh deer are exposed to E. chaffeensis and Anaplasma spp. and may act as reservoirs for these rickettsial agents, playing a role in disease transmission to humans and other animals.
Collapse
Affiliation(s)
- A B V Sacchi
- Universidade Estadual Paulista, UNESP, Jaboticabal, SP, Brazil
| | | | | | | |
Collapse
|
44
|
Hodgson EE, Otto SP. The red queen coupled with directional selection favours the evolution of sex. J Evol Biol 2012; 25:797-802. [PMID: 22320180 DOI: 10.1111/j.1420-9101.2012.02468.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Why sexual reproduction has evolved to be such a widespread mode of reproduction remains a major question in evolutionary biology. Although previous studies have shown that increased sex and recombination can evolve in the presence of host-parasite interactions (the 'Red Queen hypothesis' for sex), many of these studies have assumed that multiple loci mediate infection vs. resistance. Data suggest, however, that a major locus is typically involved in antigen presentation and recognition. Here, we explore a model where only one locus mediates host-parasite interactions, but a second locus is subject to directional selection. Even though the effects of these genes on fitness are independent, we show that increased rates of sex and recombination are favoured at a modifier gene that alters the rate of genetic mixing. This result occurs because of selective interference in finite populations (the 'Hill-Robertson effect'), which also favours sex. These results suggest that the Red Queen hypothesis may help to explain the evolution of sex by contributing a form of persistent selection, which interferes with directional selection at other loci and thereby favours sex and recombination.
Collapse
Affiliation(s)
- E E Hodgson
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
45
|
Scarselli M, Aricò B, Brunelli B, Savino S, Di Marcello F, Palumbo E, Veggi D, Ciucchi L, Cartocci E, Bottomley MJ, Malito E, Lo Surdo P, Comanducci M, Giuliani MM, Cantini F, Dragonetti S, Colaprico A, Doro F, Giannetti P, Pallaoro M, Brogioni B, Tontini M, Hilleringmann M, Nardi-Dei V, Banci L, Pizza M, Rappuoli R. Rational design of a meningococcal antigen inducing broad protective immunity. Sci Transl Med 2011; 3:91ra62. [PMID: 21753121 DOI: 10.1126/scitranslmed.3002234] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The sequence variability of protective antigens is a major challenge to the development of vaccines. For Neisseria meningitidis, the bacterial pathogen that causes meningitis, the amino acid sequence of the protective antigen factor H binding protein (fHBP) has more than 300 variations. These sequence differences can be classified into three distinct groups of antigenic variants that do not induce cross-protective immunity. Our goal was to generate a single antigen that would induce immunity against all known sequence variants of N. meningitidis. To achieve this, we rationally designed, expressed, and purified 54 different mutants of fHBP and tested them in mice for the induction of protective immunity. We identified and determined the crystal structure of a lead chimeric antigen that was able to induce high levels of cross-protective antibodies in mice against all variant strains tested. The new fHBP antigen had a conserved backbone that carried an engineered surface containing specificities for all three variant groups. We demonstrate that the structure-based design of multiple immunodominant antigenic surfaces on a single protein scaffold is possible and represents an effective way to create broadly protective vaccines.
Collapse
Affiliation(s)
- Maria Scarselli
- Novartis Vaccines and Diagnostics S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lannergård J, Gustafsson MCU, Waldemarsson J, Norrby-Teglund A, Stålhammar-Carlemalm M, Lindahl G. The Hypervariable region of Streptococcus pyogenes M protein escapes antibody attack by antigenic variation and weak immunogenicity. Cell Host Microbe 2011; 10:147-57. [PMID: 21843871 DOI: 10.1016/j.chom.2011.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 03/24/2011] [Accepted: 06/28/2011] [Indexed: 10/17/2022]
Abstract
Sequence variation of antigenic proteins allows pathogens to evade antibody attack. The variable protein commonly includes a hypervariable region (HVR), which represents a key target for antibodies and is therefore predicted to be immunodominant. To understand the mechanism(s) of antibody evasion, we analyzed the clinically important HVR-containing M proteins of the human pathogen Streptococcus pyogenes. Antibodies elicited by M proteins were directed almost exclusively against the C-terminal part and not against the N-terminal HVR. Similar results were obtained for mice and humans with invasive S. pyogenes infection. Nevertheless, only anti-HVR antibodies protected efficiently against infection, as shown by passive immunizations. The HVR fused to an unrelated protein elicited no antibodies, implying that it is inherently weakly immunogenic. These data indicate that the M protein HVR evades antibody attack not only through antigenic variation but also by weak immunogenicity, a paradoxical observation that may apply to other HVR-containing proteins.
Collapse
Affiliation(s)
- Jonas Lannergård
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Switching from conventional strain-specific vaccines to multi-strain or multi-species universal vaccines is both justified and scientifically merited. Long-term cross-protective universal vaccines eliminate the need for repetitive short-term vaccination campaigns and short-notice vaccine redesign during impending epidemics. They also have the potential to be cost-effective, convenient, and amenable to stockpiling. Ongoing advances in genomics and reverse vaccinology along with the perceived ability of vaccines, if properly formulated, to induce cross-protective adaptive immunity and long-term T cell memory are at the heart of this trend. Consequently, the search for universal vaccines against influenza, HIV, and many other viral, bacterial, and fungal pathogens has intensified in recent years. Currently, several universal influenza vaccines are at different phases of clinical evaluation. That said, vaccine-related differential effectiveness, escape mutants, pathogen strain replacement, limited scope of cross-protective immunity, and diminished potential to reach optimal herd immunity thresholds present serious challenges to the concept and applicability of universal vaccines. Herein, the case for and the case against universal vaccines are investigated to realistically appreciate their prospects of success.
Collapse
Affiliation(s)
- Mawieh Hamad
- Research and Development Unit, JMS Medicals, Amman, Jordan
| |
Collapse
|
48
|
Wheeler RJ. The trypanolytic factor-mechanism, impacts and applications. Trends Parasitol 2010; 26:457-64. [PMID: 20646962 DOI: 10.1016/j.pt.2010.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
The Trypanosoma brucei subspecies T. brucei brucei is non-human infective due to susceptibility to lysis by trypanolytic factor (TLF) in human serum. Reviewed here are the advances which have revealed apolipoprotein L1 (ApoL1), found in high density lipoprotein, as the lysis-inducing component of TLF, the means of uptake via haptoglobin-related protein receptor and the mechanism of resistance in T. b. rhodesiense via its serum resistance-associated (SRA) protein. The first practical steps to application of these discoveries are now in progress; transgenic animals expressing either baboon or minimally truncated human ApoL1 show resistance to both T. b. brucei and T. b. rhodesiense. This has major implications for treatment and prevention of human and animal African trypanosomiasis.
Collapse
Affiliation(s)
- Richard J Wheeler
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
49
|
Roxo E, Campos A, Alves M, Couceiro A, Harakava R, Ikuno A, Ferreira V, Baldassi L, Almeida E, Spada D, Augusto M, Melo F. ANTS’ ROLE (HYMENOPTERA: FORMICIDAE) AS POTENTIAL VECTORS OF MYCOBACTERIA DISPERSION. ARQUIVOS DO INSTITUTO BIOLÓGICO 2010. [DOI: 10.1590/1808-1657v77p3592010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Ants are found worldwide playing an important environmental role. Some species are considered as agricultural pests and potential risk to human life and public health acting as pathogens carriers. Ants as Paratrechina longicornis and Camponotus spp. have been found inside hospitals. The aim of this study was the research of mycobacteria in 138 samples of ants (137 Paratrechina longicornis and only one Camponotus spp.) which got into the laboratories of tuberculosis diagnosis. These ants were suspended in sterile saline solution and inoculated into Petragnani and Stonebrink media, incubated at 37° C until 90 days and the isolates were identified as environmental mycobacteria (1 Mycobacterium fortuitum peregrinum, 1 Mycobacterium smegmatis) and 1 Mycobacterium tuberculosis complex. These results showed that ants should also act as mechanical vectors of mycobacteria dissemination in risk environments, reinforcing their significance in public health.
Collapse
Affiliation(s)
| | | | - M.P. Alves
- Instituto de Medicina Social e de Criminologia de São Paulo, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shapiro JA. Mobile DNA and evolution in the 21st century. Mob DNA 2010; 1:4. [PMID: 20226073 PMCID: PMC2836002 DOI: 10.1186/1759-8753-1-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 01/25/2010] [Indexed: 01/05/2023] Open
Abstract
Scientific history has had a profound effect on the theories of evolution. At the beginning of the 21st century, molecular cell biology has revealed a dense structure of information-processing networks that use the genome as an interactive read-write (RW) memory system rather than an organism blueprint. Genome sequencing has documented the importance of mobile DNA activities and major genome restructuring events at key junctures in evolution: exon shuffling, changes in cis-regulatory sites, horizontal transfer, cell fusions and whole genome doublings (WGDs). The natural genetic engineering functions that mediate genome restructuring are activated by multiple stimuli, in particular by events similar to those found in the DNA record: microbial infection and interspecific hybridization leading to the formation of allotetraploids. These molecular genetic discoveries, plus a consideration of how mobile DNA rearrangements increase the efficiency of generating functional genomic novelties, make it possible to formulate a 21st century view of interactive evolutionary processes. This view integrates contemporary knowledge of the molecular basis of genetic change, major genome events in evolution, and stimuli that activate DNA restructuring with classical cytogenetic understanding about the role of hybridization in species diversification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Science W123B, 929 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|