1
|
Granados-Chinchilla F, Rodríguez C. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:1315497. [PMID: 28168081 PMCID: PMC5266830 DOI: 10.1155/2017/1315497] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/17/2016] [Accepted: 11/08/2016] [Indexed: 05/15/2023]
Abstract
Antibiotics are widely used as growth promoters in animal husbandry; among them, the tetracyclines are a chemical group of relevance, due to their wide use in agriculture, surpassing in quantities applied almost every other antibiotic family. Seeing the considerable amounts of tetracyclines used worldwide, monitoring of these antibiotics is paramount. Advances must be made in the analysis of antibiotics to assess correct usage and dosage of tetracyclines in food and feedstuffs and possible residues in pertinent environmental samples. The tetracyclines are still considered a clinically relevant group of antibiotics, though dissemination of tolerance and resistance determinants have limited their use. This review focuses on four different aspects: (i) tetracyclines, usage, dosages, and regulatory issues that govern their food-related application, with particular attention to the prohibitions and restrictions that several countries have enforced in recent years by agencies from both the United States and the European Union, (ii) analytical methods for tetracyclines, determination, and residues thereof in feedstuffs and related matrices with an emphasis on the most relevant and novel techniques, including both screening and confirmatory methods, (iii) tetracycline resistance and tetracycline-resistant bacteria in feedstuff, and (iv) environmental and health risks accompanying the use of tetracyclines in animal nutrition. In the last two cases, we discuss the more relevant undesirable effects that tetracyclines exert over bacterial communities and nontarget species including unwanted effects in farmers.
Collapse
Affiliation(s)
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
2
|
Abstract
Antimicrobial therapy transformed medical practice from a merely diagnosis-focused approach 80 years ago to a treatment-focused approach, saving millions of lives in the years to follow. Today, numerous medical advances made possible by effective antibiotics are being threatened by the relentlessly rising rates of bacteria resistant to all currently available antibiotics. This phenomenon is a consequence of antibiotic misuse, which exerts undue selective pressure on micro-organisms, combined with defective infection control practices that accelerate their spread. Its impact on societies worldwide is immense, resulting in loss of human life and money. An alarming pattern of resistance involving multidrug-resistant and sometimes pandrug-resistant Gram-negative bacteria is currently emerging. In response to the global public health threat posed by antimicrobial resistance (AMR), a number of national and international actions and initiatives have been developed in recent years to address this issue. Although the optimally effective and cost-effective strategy to reduce AMR is not known, a multifaceted approach is most likely to be successful. It should include actions aiming at optimising antibiotic use, strengthening surveillance and infection control, and improving healthcare worker and public education with regard to antibiotics. Research efforts to bring new effective antibiotics to patients need to be fostered in order to negate the consequences of the current lack of antimicrobial therapy options. A holistic view of AMR as well as intersectoral collaboration between human and veterinary medicine is required to best address the problem.
Collapse
Affiliation(s)
- Niki I Paphitou
- Intensive Care Unit, Nicosia General Hospital, 22 Athinon Street, Latsia 2222, Nicosia, Cyprus.
| |
Collapse
|
3
|
Tetracycline resistance genes acquired at birth. Arch Microbiol 2013; 195:447-51. [DOI: 10.1007/s00203-012-0864-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/09/2012] [Accepted: 12/16/2012] [Indexed: 10/27/2022]
|
4
|
Schmieder R, Edwards R. Insights into antibiotic resistance through metagenomic approaches. Future Microbiol 2012; 7:73-89. [PMID: 22191448 DOI: 10.2217/fmb.11.135] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The consequences of bacterial infections have been curtailed by the introduction of a wide range of antibiotics. However, infections continue to be a leading cause of mortality, in part due to the evolution and acquisition of antibiotic-resistance genes. Antibiotic misuse and overprescription have created a driving force influencing the selection of resistance. Despite the problem of antibiotic resistance in infectious bacteria, little is known about the diversity, distribution and origins of resistance genes, especially for the unculturable majority of environmental bacteria. Functional and sequence-based metagenomics have been used for the discovery of novel resistance determinants and the improved understanding of antibiotic-resistance mechanisms in clinical and natural environments. This review discusses recent findings and future challenges in the study of antibiotic resistance through metagenomic approaches.
Collapse
Affiliation(s)
- Robert Schmieder
- Computational Science Research Center & Department of Computer Science, San Diego State University, San Diego, CA 92182, USA
| | | |
Collapse
|
5
|
Barkovskii A, Manoylov K, Bridges C. Positive and negative selection towards tetracycline resistance genes in manure treatment lagoons. J Appl Microbiol 2012; 112:907-19. [DOI: 10.1111/j.1365-2672.2012.05252.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Rezzonico F, Stockwell VO, Duffy B. Plant agricultural streptomycin formulations do not carry antibiotic resistance genes. Antimicrob Agents Chemother 2009; 53:3173-7. [PMID: 19414583 PMCID: PMC2704632 DOI: 10.1128/aac.00036-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/10/2009] [Accepted: 04/23/2009] [Indexed: 11/20/2022] Open
Abstract
Streptomycin is used in plant agriculture for bacterial disease control, particularly against fire blight in pome fruit orchards. Concerns that this may increase environmental antibiotic resistance have led to bans or restrictions on use. Experience with antibiotic use in animal feeds raises the possible influence of formulation-delivered resistance genes. We demonstrate that agricultural streptomycin formulations do not carry producer organism resistance genes. By using an optimized extraction procedure, Streptomyces 16S rRNA genes and the streptomycin resistance gene strA were not detected in agricultural streptomycin formulations. This diminishes the likelihood for one potential factor in resistance development due to streptomycin use.
Collapse
Affiliation(s)
- Fabio Rezzonico
- Agroscope Changins-Wädenswil, ACW, Swiss National Competence Center for Fire Blight, Wädenswil, Switzerland
| | | | | |
Collapse
|
7
|
Abstract
New concepts have emerged in the past few years that help us to better understand the emergence and spread of antimicrobial resistance (AMR). These include, among others, the discovery of the mutator state and the concept of mutant selection window for resistances emerging primarily through mutations in existing genes. Our understanding of horizontal gene transfer has also evolved significantly in the past few years, and important new mechanisms of AMR transfer have been discovered, including, among others, integrative conjugative elements and ISCR (insertion sequences with common regions) elements. Simultaneously, large-scale studies have helped us to start comprehending the immense and yet untapped reservoir of both AMR genes and mobile genetic elements present in the environment. Finally, new PCR- and DNA sequencing-based techniques are being developed that will allow us to better understand the epidemiology of classical vectors of AMR genes, such as plasmids, and to monitor them in a more global and systematic way.
Collapse
|
8
|
Saleha A, Myaing TT, Ganapathy K, Zulkifli I, Raha R, Arifah K. Possible Effect of Antibiotic-Supplemented Feed and Environment on the
Occurrence of Multiple Antibiotic Resistant Escherichia coli in Chickens. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/ijps.2009.28.31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
D'Costa VM, Griffiths E, Wright GD. Expanding the soil antibiotic resistome: exploring environmental diversity. Curr Opin Microbiol 2007; 10:481-9. [PMID: 17951101 DOI: 10.1016/j.mib.2007.08.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/20/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
Antibiotic resistance has largely been studied in the context of failure of the drugs in clinical settings. There is now growing evidence that bacteria that live in the environment (e.g. the soil) are multi-drug-resistant. Recent functional screens and the growing accumulation of metagenomic databases are revealing an unexpected density of resistance genes in the environment: the antibiotic resistome. This challenges our current understanding of antibiotic resistance and provides both barriers and opportunities for antimicrobial drug discovery.
Collapse
Affiliation(s)
- Vanessa M D'Costa
- Antimicrobial Research Centre, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1200 Main St W, Hamilton, Ontario, Canada L8N 3Z5
| | | | | |
Collapse
|
10
|
Garofalo C, Vignaroli C, Zandri G, Aquilanti L, Bordoni D, Osimani A, Clementi F, Biavasco F. Direct detection of antibiotic resistance genes in specimens of chicken and pork meat. Int J Food Microbiol 2006; 113:75-83. [PMID: 17005283 DOI: 10.1016/j.ijfoodmicro.2006.07.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Revised: 05/19/2006] [Accepted: 07/07/2006] [Indexed: 11/21/2022]
Abstract
Antibiotic resistance (AR) in bacteria, a major threat to human health, has emerged in the last few decades as a consequence of the selective pressure exerted by the widespread use of antibiotics in medicine, agriculture and veterinary practice and as growth promoters in animal husbandry. The frequency of 11 genes [tet(M), tet(O), tet(K), erm(A), erm(B), erm(C), vanA, vanB, aac (6')-Ie aph (2'')-Ia, mecA, blaZ] encoding resistance to some antibiotics widely used in clinical practice was analysed in raw pork and chicken meat and in fermented sausages as well as in faecal samples from the relevant farm animals using a molecular approach based on PCR amplification of bacterial DNA directly extracted from specimens. Some of the 11 AR genes were highly prevalent, the largest number being detected in chicken meat and pig faeces. The genes found most frequently in meat were tet(K) and erm(B); vanB and mecA were the least represented. All 11 determinants were detected in faecal samples except mecA, which was found only in chicken faeces. erm(B) and erm(C) were detected in all faecal samples. The frequency of AR genes was not appreciably different in meat compared to faecal specimens of the relevant animal except for vanB, which was more prevalent in faeces. Our findings suggest that AR genes are highly prevalent in food-associated bacteria and that AR contamination is likely related to breeding rather than processing techniques. Finally, the cultivation-independent molecular method used in this work to determine the prevalence of AR genes in foods proved to be a rapid and reliable alternative to traditional tools.
Collapse
Affiliation(s)
- Cristiana Garofalo
- Department of Food Sciences, Università Politecnica delle Marche, via Ranieri, Montedago, 60131 Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Hasman H, Aarestrup FM, Dalsgaard A, Guardabassi L. Heterologous expression of glycopeptide resistance vanHAX gene clusters from soil bacteria in Enterococcus faecalis. J Antimicrob Chemother 2006; 57:648-53. [PMID: 16476725 DOI: 10.1093/jac/dkl033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The aim of the study was to determine whether glycopeptide resistance gene clusters from soil bacteria could be heterologously expressed in Enterococcus faecalis and adapt to the new host following exposure to vancomycin. METHODS The vanHAX clusters from Paenibacillus thiaminolyticus PT-2B1, Paenibacillus apiarius PA-B2B and Amycolatopsis coloradensis DSM 44225 were separately cloned in an appropriately constructed shuttle vector containing the two-component regulatory system (vanRS) of Tn1546. The complete vanA(PT) operon (vanRSHAXY) from P. thiaminolyticus PT-2B1 was cloned in the same shuttle vector lacking enterococcal vanRS. All plasmid constructs were electroporated into E. faecalis JH2-2 and the MICs of vancomycin and teicoplanin were determined for each recombinant strain before and following exposure to sublethal concentrations of vancomycin. RESULTS The vanHAX clusters from P. thiaminolyticus and P. apiarius conferred high-level vancomycin resistance (MIC > or = 125 mg/L) in E. faecalis JH2-2. In contrast, cloning of the vanHAX cluster from A. coloradensis did not result in a significant increase of vancomycin resistance (MIC = 0.7 mg/L). Resistance to vancomycin was not observed after cloning the complete vanA(PT) operon from P. thiaminolyticus (MIC = 2 mg/L), but this recombinant rapidly adapted to high concentrations of vancomycin (MIC = 500 mg/L) following exposure to sub-lethal concentrations of this antibiotic. CONCLUSION The results showed that vanA(PT) in P. thiaminolyticus is a possible ancestor of vanA-mediated glycopeptide resistance in enterococci. Experimental evidence supported the hypothesis that enterococci did not acquire glycopeptide resistance directly from glycopeptide-producing organisms such as A. coloradensis.
Collapse
Affiliation(s)
- Henrik Hasman
- Danish Institute for Food and Veterinary Research, Copenhagen V, Denmark.
| | | | | | | |
Collapse
|
13
|
Woegerbauer M, Lagler H, Graninger W, Burgmann H. DNA in antibiotic preparations: absence of intact resistance genes. Antimicrob Agents Chemother 2005; 49:2490-4. [PMID: 15917552 PMCID: PMC1140494 DOI: 10.1128/aac.49.6.2490-2494.2005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 10/10/2004] [Accepted: 02/01/2005] [Indexed: 11/20/2022] Open
Abstract
Fragments of erm(E2), otrA, and aph(6) shorter than 400 bp and producer strain-specific rRNA genes were amplified from various antibiotics. The amount of genetic material and the sizes of amplicons recovered from murine feces after oral administration of a beta-lactamase-encoding plasmid indicated substantial DNA degradation in the mammalian gastrointestinal tract. These observations imply that antibiotics are no major source for horizontal resistance gene transfer in clinical settings.
Collapse
Affiliation(s)
- Markus Woegerbauer
- Department of Infectious Diseases, Department of Internal Medicine I, University of Vienna and Birkmayer Laboratories, Department of Research and Development, Schwarzspanierstrasse 15, A-1090 Vienna, Austria.
| | | | | | | |
Collapse
|
14
|
Poppe C, Martin LC, Gyles CL, Reid-Smith R, Boerlin P, McEwen SA, Prescott JF, Forward KR. Acquisition of resistance to extended-spectrum cephalosporins by Salmonella enterica subsp. enterica serovar Newport and Escherichia coli in the turkey poult intestinal tract. Appl Environ Microbiol 2005; 71:1184-92. [PMID: 15746317 PMCID: PMC1065184 DOI: 10.1128/aem.71.3.1184-1192.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Newport resistant to the extended-spectrum cephalosporins (ESCs) and other antimicrobials causes septicemic salmonellosis in humans and animals and is increasingly isolated from humans, animals, foods, and environmental sources. Mechanisms whereby serovar Newport bacteria become resistant to ESCs and other classes of antimicrobials while inhabiting the intestinal tract are not well understood. The present study shows that 25.3% of serovar Newport strains isolated from the turkey poult intestinal tract after the animals were dosed with Escherichia coli harboring a large conjugative plasmid encoding the CMY-2 beta-lactamase and other drug resistance determinants acquired the plasmid and its associated drug resistance genes. The conjugative plasmid containing the cmy-2 gene was transferred not only from the donor E. coli to Salmonella serovar Newport but also to another E. coli serotype present in the intestinal tract. Laboratory studies showed that the plasmid could be readily transferred between serovar Newport and E. coli intestinal isolates. Administration of a single dose of ceftiofur, used to prevent septicemic colibacillosis, to 1-day-old turkeys did not result in the isolation of ceftiofur-resistant E. coli or Salmonella serovar Newport. There was a remarkable association between serotype, drug resistance, and plasmid profile among the E. coli strains isolated from the poults. This study shows that Salmonella serovar Newport can become resistant to ESCs and other antibiotics by acquiring a conjugative drug resistance plasmid from E. coli in the intestines.
Collapse
Affiliation(s)
- C Poppe
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 110 Stone Rd. West, Guelph, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
|