1
|
Sayk F, Hauswaldt S, Knobloch JK, Rupp J, Nitschke M. Do asymptomatic STEC-long-term carriers need to be isolated or decolonized? New evidence from a community case study and concepts in favor of an individualized strategy. Front Public Health 2024; 12:1364664. [PMID: 38699424 PMCID: PMC11064650 DOI: 10.3389/fpubh.2024.1364664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Asymptomatic long-term carriers of Shigatoxin producing Escherichia coli (STEC) are regarded as potential source of STEC-transmission. The prevention of outbreaks via onward spread of STEC is a public health priority. Accordingly, health authorities are imposing far-reaching restrictions on asymptomatic STEC carriers in many countries. Various STEC strains may cause severe hemorrhagic colitis complicated by life-threatening hemolytic uremic syndrome (HUS), while many endemic strains have never been associated with HUS. Even though antibiotics are generally discouraged in acute diarrheal STEC infection, decolonization with short-course azithromycin appears effective and safe in long-term shedders of various pathogenic strains. However, most endemic STEC-strains have a low pathogenicity and would most likely neither warrant antibiotic decolonization therapy nor justify social exclusion policies. A risk-adapted individualized strategy might strongly attenuate the socio-economic burden and has recently been proposed by national health authorities in some European countries. This, however, mandates clarification of strain-specific pathogenicity, of the risk of human-to-human infection as well as scientific evidence of social restrictions. Moreover, placebo-controlled prospective interventions on efficacy and safety of, e.g., azithromycin for decolonization in asymptomatic long-term STEC-carriers are reasonable. In the present community case study, we report new observations in long-term shedding of various STEC strains and review the current evidence in favor of risk-adjusted concepts.
Collapse
Affiliation(s)
- Friedhelm Sayk
- Department of Medicine I, Division of Gastroenterology and Nephrology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Susanne Hauswaldt
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Johannes K. Knobloch
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute for Medical Microbiology, Virology and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Martin Nitschke
- Department of Medicine I, Division of Gastroenterology and Nephrology, University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
2
|
Lee KS, Park JY, Jeong YJ, Lee MS. The Fatal Role of Enterohaemorrhagic Escherichia coli Shiga Toxin-associated Extracellular Vesicles in Host Cells. J Microbiol 2023; 61:715-727. [PMID: 37665555 DOI: 10.1007/s12275-023-00066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a specific subset of Shiga toxin-producing Escherichia coli (STEC) strains that are characterized by their ability to cause bloody diarrhea (hemorrhagic colitis) and potentially life-threatening, extraintestinal complications such as hemolytic uremic syndrome (HUS), which is associated with acute renal failure., contributing to severe clinical outcomes. The Shiga toxins (Stxs), produced by EHEC, are primary virulence factors. These potent cytotoxins are composed of one enzymatically active A subunit (StxA) and five receptor-binding B subunits (StxB). Although the toxins are primarily associated with cytotoxic effects, they also elicit other pathogenic consequences due to their induction of a number of biological processes, including apoptosis through ER-stress, pro-inflammatory responses, autophagy, and post-translational modification (PTM). Moreover, several studies have reported the association between Stxs and extracellular vesicles (EVs), including microvesicles and exosomes, demonstrating that Stx-containing EVs secreted by intoxicated macrophages are taken up by recipient cells, such as toxin-sensitive renal proximal tubular epithelial cells. This mechanism likely contributes to the spreading of Stxs within the host, and may exacerbate gastrointestinal illnesses and kidney dysfunction. In this review, we summarize recent findings relating to the host responses, in different types of cells in vitro and in animal models, mediated by Stxs-containing exosomes. Due to their unique properties, EVs have been explored as therapeutic agents, drug delivery systems, and diagnostic tools. Thus, potential therapeutic applications of EVs in EHEC Stxs-mediated pathogenesis are also briefly reviewed.
Collapse
Affiliation(s)
- Kyung-Soo Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jun-Young Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Yu-Jin Jeong
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Hovdey R, Sargeant JM, Fisman DN, Greer AL. Examining the role of person-to-person transmission during a verocytotoxigenic Escherichia coli outbreak in Ontario, Canada. BMC Res Notes 2022; 15:187. [PMID: 35597997 PMCID: PMC9123793 DOI: 10.1186/s13104-022-06075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Person-to-person transmission can occur during outbreaks of verotoxigenic Escherichia coli (VTEC), however the impact of this transmission route is not well understood. This study aimed to examine the role of person-to-person transmission during a VTEC outbreak, and how targeting this route may reduce outbreak size. A deterministic compartmental model describing a VTEC outbreak was constructed and fit to data from a 2008 outbreak in Ontario, Canada. Using the best-fit model, simulations were run to calculate the: reduction in transmission rate after implementing interventions, proportion of cases infected through both transmission routes, and number of cases prevented by interventions. Latin hypercube sensitivity analysis was conducted to examine the sensitivity of the outbreak size to the model parameters. RESULTS Based on the best-fit model, ~ 14.25% of the cases likely arose due to person-to-person transmission. Interventions reduced this transmission rate by ~ 73%, causing a reduction in outbreak size of ~ 17% (47 cases). Sensitivity analysis showed that the model was highly sensitive to changes in all parameters of the model. The model demonstrates that person-to-person could be an important transmission route during VTEC outbreaks. Targeting this route of transmission through hand hygiene and work exclusions could reduce the final outbreak size.
Collapse
Affiliation(s)
- Roksolana Hovdey
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jan M Sargeant
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - David N Fisman
- Department of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Amy L Greer
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada. .,Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada. .,Department of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Evidence of on-going transmission of Shiga toxin-producing Escherichia coli O157:H7 following a foodborne outbreak. Epidemiol Infect 2021; 149:e147. [PMID: 34096488 PMCID: PMC8251666 DOI: 10.1017/s0950268821001278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In August 2019, public health surveillance systems in Scotland and England identified seven, geographically dispersed cases infected with the same strain (defined as isolates that fell within the same five single nucleotide polymorphism single linage cluster) of Shiga toxin-producing Escherichia coli O157:H7. Epidemiological analysis of enhanced surveillance questionnaire data identified handling raw beef and shopping from the same national retailer (retailer A) as the common exposure. Concurrently, a microbiological survey of minced beef at retail identified the same strain in a sample of minced beef sold by retailer A, providing microbiological evidence of the link. Between September and November 2019, a further four primary and two secondary cases infected with the same strain were identified; two cases developed haemolytic uraemic syndrome. None of the four primary cases reported consumption of beef from retailer A and the transmission route of these subsequent cases was not identified, although all four primary cases visited the same petting farm. Generally, outbreaks of STEC O157:H7 in the UK appear to be distinct, short-lived events; however, on-going transmission linked to contaminated food, animals or environmental exposures and person-to-person contact do occur. Although outbreaks of STEC caused by contaminated fresh produce are increasingly common, undercooked meat products remain a risk of infection.
Collapse
|
5
|
Epidemiological investigation of recurrent outbreaks of haemolytic uraemic syndrome caused by Shiga toxin-producing Escherichia coli serotype O55:H7 in England, 2014-2018. Epidemiol Infect 2021; 149:e108. [PMID: 33866980 PMCID: PMC8161408 DOI: 10.1017/s0950268821000844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recurrent outbreaks of haemolytic uraemic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli (STEC) serotype O55:H7 occurred in England between 2014 and 2018. We reviewed the epidemiological evidence to identify potential source(s) and transmission routes of the pathogen, and to assess the on-going risk to public health. Over the 5-year period, there were 43 confirmed and three probable cases of STEC O55:H7. The median age of cases was 4 years old (range 6 months to 69 years old) and over half of all cases were female (28/46, 61%). There were 36/46 (78.3%) symptomatic cases, and over half of all cases developed HUS (25/46, 54%), including two fatal cases. No common food or environmental exposures were identified, although the majority of cases lived in rural or semi-rural environments and reported contact with both wild and domestic animals. This investigation informed policy on the clinical and public health management of HUS caused by STEC other than serotype O157:H7 (non-O157 STEC) in England, including comprehensive testing of all household contacts and household pets and more widespread use of polymerase chain reaction assays for the rapid diagnosis of STEC-HUS.
Collapse
|
6
|
Family Clusters of Shiga Toxin-producing Escherichia coli Infection: An Overlooked Source of Transmission. Data From the ItalKid-Hus Network. Pediatr Infect Dis J 2021; 40:1-5. [PMID: 32898091 DOI: 10.1097/inf.0000000000002877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The aim of the present work was to investigate family clusters of Shiga toxin-producing Escherichia coli (STEC) infection among the household members of STEC positive patients, identified within a screening program of bloody diarrhea (BD) for STEC in Northern Italy. METHODS Stool samples from patients with BD or BD-associated-hemolytic uremic syndrome (HUS) and related households were investigated by molecular and bacteriologic methods to detect and characterize the virulence profile of STEC and Pulsed Field Gel Electrophoresis analysis were done on isolates. RESULTS Thirty-nine cases of STEC infection (isolated BD in 16, BD-associated-HUS in 23) were considered, and a total of 130 stool samples from 1 to 8 households of the index patient were analyzed. The prevalence of positivity was higher in siblings (34.8%, 8/23) than in mothers (20%, 7/35), grandparents (9.5%, 2/21), fathers (8.8%, 3/34) or other households. In 14 clusters (36%), one or more household shared a STEC with the same virulence profile (stx, eae, serogroup) as the index case. In 7 clusters, STEC strains isolated from at least 2 subjects also shared identical Pulsed Field Gel Electrophoresis profile. The frequency of household infection does not appear to be associated to the index case's illness (HUS or BD), nor with the serotype or with the virulence profile of the involved STEC (stx2 or stx1-stx2). CONCLUSIONS Our study shows that STEC infections, most likely related to human-to-human transmission, are common among households of patients with STEC BD or HUS and underlines the importance of extending the epidemiologic investigations to all family members, as the index case may not always be the primary infection in the family.
Collapse
|
7
|
Burns H, Fallon U, Collins A, Ni Shuilleabhain C. Background prevalence of subclinical Shiga toxin-producing Escherichia coli in children attending childcare facilities in the Irish Midlands. J Public Health (Oxf) 2020; 42:766-771. [PMID: 31840747 DOI: 10.1093/pubmed/fdz166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Exclusion of asymptomatic shedders of Shiga toxin-producing Escherichia coli (STEC) from childcare facilities (CCFs) is a recognized measure to minimize risk of secondary transmission. This is predicated on factors including an assumption of low background prevalence of STEC amongst CCF attendees. There is a paucity of scientific evidence regarding the true prevalence of STEC in paediatric populations. The study aimed to develop and test a methodology to estimate background prevalence of STEC amongst CCF attendees at regional level in Ireland. METHODS Computerized Infectious Disease Reporting data were used to compile a list of outbreaks of STEC occurring in CCFs in the Irish Midlands since the introduction of polymerase chain reaction (PCR)-based testing. Laboratory data were used to determine background prevalence of STEC in screened children in each outbreak individually and across all outbreaks. RESULTS A pooled summary prevalence estimate of 2.9% (95% confidence interval 1.4-5.5%) was determined for the entire screened cohort across all outbreaks. Sensitivity analysis supported the validity of the estimate. CONCLUSIONS The relatively high prevalence estimate of 2.9% suggests that a public health risk assessment approach to return of prolonged asymptomatic shedders to the CCF may be appropriate in peak STEC season in the Midlands.
Collapse
Affiliation(s)
- H Burns
- Department of Public Health, Health Service Executive, HSE Area Office, Arden Road, Tullamore, Co. Offaly, Ireland, R35 TY28
| | - U Fallon
- Department of Public Health, Health Service Executive, HSE Area Office, Arden Road, Tullamore, Co. Offaly, Ireland, R35 TY28
| | - A Collins
- Department of Public Health, Health Service Executive, HSE Area Office, Arden Road, Tullamore, Co. Offaly, Ireland, R35 TY28
| | - C Ni Shuilleabhain
- Department of Public Health, Health Service Executive, HSE Area Office, Arden Road, Tullamore, Co. Offaly, Ireland, R35 TY28
| |
Collapse
|
8
|
Harkins VJ, McAllister DA, Reynolds BC. Shiga-Toxin E. coli Hemolytic Uremic Syndrome: Review of Management and Long-term Outcome. CURRENT PEDIATRICS REPORTS 2020. [DOI: 10.1007/s40124-020-00208-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Purpose of Review
We review the pathophysiology of Shiga-Toxin Enteropathogenic–Hemolytic Uremic Syndrome (STEC-HUS), strategies to ameliorate or prevent evolution of STEC-HUS, management and the improved recognition of long-term adverse outcomes.
Recent Findings
Following on from the preclinical evidence of a role for the complement system in STEC-HUS, the use of complement blocking agents has been the major focus of most recent clinical research. Novel therapies to prevent or lessen HUS have yet to enter the clinical arena. The long-term outcomes of STEC-HUS, similarly to other causes of AKI, are not as benign as previously thought.
Summary
Optimizing supportive care in STEC-HUS is the only current recommended treatment. The administration of early isotonic fluids may reduce the severity and duration of STEC-HUS. The role of complement blockade in the management of STEC-HUS remains unclear. The long-term sequelae from STEC-HUS are significant and patients with apparent full renal recovery remain at risk.
Collapse
|
9
|
Elson R, Davies TM, Jenkins C, Vivancos R, O'Brien SJ, Lake IR. Application of kernel smoothing to estimate the spatio-temporal variation in risk of STEC O157 in England. Spat Spatiotemporal Epidemiol 2019; 32:100305. [PMID: 32007279 DOI: 10.1016/j.sste.2019.100305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 01/27/2023]
Abstract
Identifying geographical areas with significantly higher or lower rates of infectious diseases can provide important aetiological clues to inform the development of public health policy and interventions designed to reduce morbidity. We applied kernel smoothing to estimate the spatial and spatio-temporal variation in risk of STEC O157 infection in England between 2009 and 2015, and to explore differences between the residential locations of cases reporting travel and those not reporting travel. We provide evidence that the distribution of STEC O157 infection in England is non-uniform with respect to the distribution of the at-risk population; that the spatial distribution of the three main genetic lineages infecting humans (I, II and I/II) differs significantly and that the spatio-temporal risk is highly dynamic. Our results also indicate that cases of STEC O157 reporting travel within or outside the UK are more likely to live in the south/south-east of the country, meaning that their residential location may not reflect the location of exposure that led to their infection. We suggest that the observed variation in risk reflects exposure to sources of STEC O157 that are geographically prescribed. These differences may be related to a combination of changes in the strains circulating in the ruminant reservoir, animal movements (livestock, birds or wildlife) or the behavior of individuals prior to infection. Further work to identify the importance of behaviours and exposures reported by cases relative to residential location is needed.
Collapse
Affiliation(s)
- Richard Elson
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, United Kingdom; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, United Kingdom; School of Environmental Sciences, University of East Anglia, United Kingdom.
| | - Tilman M Davies
- Department of Mathematics & Statistics, University of Otago, Dunedin, New Zealand
| | - Claire Jenkins
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, United Kingdom; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, United Kingdom
| | - Roberto Vivancos
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, United Kingdom; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, United Kingdom; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Emerging and Zoonotic Infections, United Kingdom
| | - Sarah J O'Brien
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, United Kingdom; Institute of Population Health Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Iain R Lake
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, United Kingdom; School of Environmental Sciences, University of East Anglia, United Kingdom
| |
Collapse
|
10
|
Complete Genome Sequence of Escherichia coli Myophage Mansfield. Microbiol Resour Announc 2019; 8:8/38/e01038-19. [PMID: 31537679 PMCID: PMC6753283 DOI: 10.1128/mra.01038-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mansfield is a PB1-like Escherichia bacteriophage with a 68,120-bp genome and a predicted 3,673-bp direct terminal repeat. This myophage encodes 105 proteins, for which 32 functions were predicted. Mansfield is a PB1-like Escherichia bacteriophage with a 68,120-bp genome and a predicted 3,673-bp direct terminal repeat. This myophage encodes 105 proteins, for which 32 functions were predicted.
Collapse
|
11
|
King T, Vockler CJ, Allnutt TR, Fegan N. Transcriptomic response of Escherichia coli O157 isolates on meat: Comparison between a typical Australian isolate from cattle and a pathogenic clinical isolate. Food Microbiol 2019; 82:378-387. [DOI: 10.1016/j.fm.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 02/02/2023]
|
12
|
Curran KG, Heiman Marshall KE, Singh T, Doobovsky Z, Hensley J, Melius B, Whitlock L, Stevenson L, Leinbach J, Oltean H, Glover WA, Kunesh T, Lindquist S, Williams I, Nichols M. An outbreak of Escherichia coli O157:H7 infections following a dairy education school field trip in Washington state, 2015. Epidemiol Infect 2018; 146:442-449. [PMID: 29271327 PMCID: PMC9134535 DOI: 10.1017/s0950268817002862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/30/2017] [Accepted: 11/21/2017] [Indexed: 11/07/2022] Open
Abstract
On 27 April 2015, Washington health authorities identified Escherichia coli O157:H7 infections associated with dairy education school field trips held in a barn 20-24 April. Investigation objectives were to determine the magnitude of the outbreak, identify the source of infection, prevent secondary illness transmission and develop recommendations to prevent future outbreaks. Case-finding, hypothesis generating interviews, environmental site visits and a case-control study were conducted. Parents and children were interviewed regarding event activities. Odds ratios (OR) and 95% confidence intervals (CI) were computed. Environmental testing was conducted in the barn; isolates were compared to patient isolates using pulsed-field gel electrophoresis (PFGE). Sixty people were ill, 11 (18%) were hospitalised and six (10%) developed haemolytic uremic syndrome. Ill people ranged in age from <1 year to 47 years (median: 7), and 20 (33%) were female. Twenty-seven case-patients and 88 controls were enrolled in the case-control study. Among first-grade students, handwashing (i.e. soap and water, or hand sanitiser) before lunch was protective (adjusted OR 0.13; 95% CI 0.02-0.88, P = 0.04). Barn samples yielded E. coli O157:H7 with PFGE patterns indistinguishable from patient isolates. This investigation provided epidemiological, laboratory and environmental evidence for a large outbreak of E. coli O157:H7 infections from exposure to a contaminated barn. The investigation highlights the often overlooked risk of infection through exposure to animal environments as well as the importance of handwashing for disease prevention. Increased education and encouragement of infection prevention measures, such as handwashing, can prevent illness.
Collapse
Affiliation(s)
- K. G. Curran
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - T. Singh
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Z. Doobovsky
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - J. Hensley
- Whatcom County Health Department, Bellingham, WA, USA
| | - B. Melius
- Washington State Department of Health, Shoreline, WA, USA
| | - L. Whitlock
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - L. Stevenson
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - J. Leinbach
- Whatcom County Health Department, Bellingham, WA, USA
| | - H. Oltean
- Washington State Department of Health, Shoreline, WA, USA
| | - W. A. Glover
- Washington State Public Health Laboratories, Shoreline, WA, USA
| | - T. Kunesh
- Whatcom County Health Department, Bellingham, WA, USA
| | - S. Lindquist
- Washington State Department of Health, Shoreline, WA, USA
| | - I. Williams
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M. Nichols
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
13
|
Hemolytic uremic syndrome due to Shiga toxin-producing Escherichia coli infection. Med Mal Infect 2017; 48:167-174. [PMID: 29054297 DOI: 10.1016/j.medmal.2017.09.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 09/15/2017] [Indexed: 12/31/2022]
Abstract
The leading cause of hemolytic uremic syndrome (HUS) in children is Shiga toxin-producing Escherichia coli (STEC) infection, which has a major outbreak potential. Since the early 2010s, STEC epidemiology is characterized by a decline of the historically predominant O157 serogroup and the emergence of non-O157 STEC, especially O26 and O80 in France. STEC contamination occurs through the ingestion of contaminated food or water, person-to-person transmission, or contact with ruminants or their contaminated environment. The main symptom is diarrhea, which is bloody in about 60% of patients and occurs after a median incubation period of three days. Shiga toxins released by STEC induce a cascade of thrombogenic and inflammatory changes of microvascular endothelial cells. HUS is observed in 5-15% of STEC infection cases, defined by the triad of mechanical hemolytic anemia, thrombocytopenia, and acute renal injury. The diagnosis of STEC infection relies on biological screening for Shiga toxins and STEC in stools and serology. Treatment of STEC-HUS is mainly symptomatic, as no specific drug has proved effective. The effect of antibiotics in STEC infection and STEC-HUS remains debated; however, some bacteriostatic antibiotics might have a beneficial effect. Proofs of evidence of a benefit from complement blockade therapy in STEC-HUS are also lacking. Clinical and bacteriological STEC-HUS surveillance needs to be continued. Ongoing prospective studies will document the role of bacteriostatic antibiotics in STEC infection and STEC-HUS, and of complement blockade therapy in STEC-HUS.
Collapse
|
14
|
Mughini-Gras L, van Pelt W, van der Voort M, Heck M, Friesema I, Franz E. Attribution of human infections with Shiga toxin-producing Escherichia coli (STEC) to livestock sources and identification of source-specific risk factors, The Netherlands (2010-2014). Zoonoses Public Health 2017; 65:e8-e22. [PMID: 28921940 DOI: 10.1111/zph.12403] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Indexed: 11/26/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen of public health concern whose sources and transmission routes are difficult to trace. Using a combined source attribution and case-control analysis, we determined the relative contributions of four putative livestock sources (cattle, small ruminants, pigs, poultry) to human STEC infections and their associated dietary, animal contact, temporal and socio-econo-demographic risk factors in the Netherlands in 2010/2011-2014. Dutch source data were supplemented with those from other European countries with similar STEC epidemiology. Human STEC infections were attributed to sources using both the modified Dutch model (mDM) and the modified Hald model (mHM) supplied with the same O-serotyping data. Cattle accounted for 48.6% (mDM) and 53.1% (mHM) of the 1,183 human cases attributed, followed by small ruminants (mDM: 23.5%; mHM: 25.4%), pigs (mDM: 12.5%; mHM: 5.7%) and poultry (mDM: 2.7%; mHM: 3.1%), whereas the sources of the remaining 12.8% of cases could not be attributed. Of the top five O-serotypes infecting humans, O157, O26, O91 and O103 were mainly attributed to cattle (61%-75%) and O146 to small ruminants (71%-77%). Significant risk factors for human STEC infection as a whole were the consumption of beef, raw/undercooked meat or cured meat/cold cuts. For cattle-attributed STEC infections, specific risk factors were consuming raw meat spreads and beef. Consuming raw/undercooked or minced meat were risk factors for STEC infections attributed to small ruminants. For STEC infections attributed to pigs, only consuming raw/undercooked meat was significant. Consuming minced meat, raw/undercooked meat or cured meat/cold cuts were associated with poultry-attributed STEC infections. Consuming raw vegetables was protective for all STEC infections. We concluded that domestic ruminants account for approximately three-quarters of reported human STEC infections, whereas pigs and poultry play a minor role and that risk factors for human STEC infection vary according to the attributed source.
Collapse
Affiliation(s)
- L Mughini-Gras
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - W van Pelt
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - M van der Voort
- Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, The Netherlands
| | - M Heck
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - I Friesema
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - E Franz
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
15
|
CHUNG YS, PARK YK, PARK YH, PARK KT. Probable secondary transmission of antimicrobial-resistant Escherichia coli between people living with and without pets. J Vet Med Sci 2017; 79:486-491. [PMID: 28190823 PMCID: PMC5383166 DOI: 10.1292/jvms.16-0585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/30/2017] [Indexed: 11/22/2022] Open
Abstract
Companion animals are considered as one of the reservoirs of antimicrobial-resistant (AR) bacteria that can be cross-transmitted to humans. However, limited information is available on the possibility of AR bacteria originating from companion animals being transmitted secondarily from owners to non-owners sharing the same space. To address this issue, the present study investigated clonal relatedness among AR E. coli isolated from dog owners and non-owners in the same college classroom or household. Anal samples (n=48) were obtained from 14 owners and 34 non-owners; 31 E. coli isolates were collected (nine from owners and 22 from non-owners). Of 31 E. coli, 20 isolates (64.5%) were resistant to at least one antimicrobial, and 16 isolates (51.6%) were determined as multi-drug resistant E. coli. Six isolates (19.4%) harbored integrase genes (five harbored class I integrase gene and one harbored class 2 integrase gene, respectively). Pulsed-field gel electrophoretic analysis identified three different E. coli clonal sets among isolates, indicating that cross-transmission of AR E. coli can easily occur between owners and non-owners. The findings emphasize a potential risk of spread of AR bacteria originating from pets within human communities, once they are transferred to humans. Further studies are needed to evaluate the exact risk and identify the risk factors of secondarily transmission by investigating larger numbers of isolates from pets, their owners and non-owners in a community.
Collapse
Affiliation(s)
- Yeon Soo CHUNG
- Department of Veterinary Microbiology, College of Veterinary Medicine, BK21 Plus Program for Veterinary Science and Research
Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Young Kyung PARK
- Department of Veterinary Microbiology, College of Veterinary Medicine, BK21 Plus Program for Veterinary Science and Research
Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yong Ho PARK
- Department of Veterinary Microbiology, College of Veterinary Medicine, BK21 Plus Program for Veterinary Science and Research
Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kun Taek PARK
- Department of Veterinary Microbiology, College of Veterinary Medicine, BK21 Plus Program for Veterinary Science and Research
Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
16
|
TOKUDA K, YAHATA Y, SUNAGAWA T. Prevention of secondary household transmission during Shiga toxin-producing Escherichia coli outbreaks. Epidemiol Infect 2016; 144:2931-2939. [PMID: 27291948 PMCID: PMC9150406 DOI: 10.1017/s0950268816001199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 05/09/2016] [Accepted: 05/23/2016] [Indexed: 11/06/2022] Open
Abstract
Prevention of secondary household transmission of Shiga toxin-producing Escherichia coli (STEC) is important in outbreak settings. We examined factors contributing to secondary household transmission during STEC outbreaks in daycare centres in Japan. Suspected STEC outbreaks in daycare centres were identified by the National Epidemiological Surveillance of Infectious Diseases. Questionnaires were sent to local health centres that responded to outbreaks. Secondary household transmission rates were calculated, and factors affecting secondary household transmission rate were analysed by multilevel analysis. The secondary household transmission rates in 16 outbreaks ranged from 0% to 34·4% (median 4·4%). The highest rate (23·0%) was observed in siblings aged 6-9 years, and the infection rate was significantly higher for mothers than for fathers and grandparents (P < 0·05). Using multilevel analysis, the following variables were selected in the best model: information provided face-to-face (vs. letter or telephone) to families of children in daycare centres (at initial response), STEC type and lag time (days) between onset and providing information. Early response and hygiene education by visiting local health centre staff may be effective measures to prevent secondary household transmission in STEC outbreaks. Hygiene education should be emphasized for children aged 6-9 years, as well as for younger children.
Collapse
Affiliation(s)
- K. TOKUDA
- Department of Infection Prevention and Control, Division of Medical and Environmental Safety, Kagoshima University Medical and Dental Hospital, Kagoshima, Japan
| | - Y. YAHATA
- National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - T. SUNAGAWA
- National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
17
|
Byrne L, Adams N, Glen K, Dallman TJ, Kar-Purkayastha I, Beasley G, Willis C, Padfield S, Adak G, Jenkins C. Epidemiological and Microbiological Investigation of an Outbreak of Severe Disease from Shiga Toxin-Producing Escherichia coli O157 Infection Associated with Consumption of a Slaw Garnish. J Food Prot 2016; 79:1161-8. [PMID: 27357035 DOI: 10.4315/0362-028x.jfp-15-580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Investigating outbreaks of Shiga toxin-producing Escherichia coli (STEC) in England is a priority due to the potential severity of disease. However, there are often challenges in investigating outbreaks due to the small numbers of cases, poor patient recall, and low levels of bacteria that are challenging to detect in food samples using traditional laboratory culture techniques, and frequently a source is not identified. In September 2014, we investigated an STEC O157 outbreak associated with consuming a slaw garnish, and we report our findings here. Twenty confirmed cases were identified. Outbreak cases were interviewed, and menus reviewed to identify dishes consumed outside the home. Cases shared a history of eating meals at different chain restaurants. Analysis of menu items indicated shared consumption of slaw garnishes by 85.6% cases, although just 35.7% reported consuming them during interviews. Whole-genome sequencing linked cases where interpretation of the multilocus variable number tandem repeat analysis profile was obscured and indicated that the strain originated from a domestic (i.e., United Kingdom) source. Traceback identified that carrots and cabbages grown in the United Kingdom were the likely source of infection. Samples of products were examined, but STEC was not recovered. Epidemiological investigations linked the outbreak to consumption of a slaw garnish, which was poorly recalled by cases, and likely comprised of domestically produced raw vegetables. The causative organism was not isolated from food samples, and we conclude that future investigations should include sampling of animals and wildlife in the vicinity of farms where implicated produce is grown.
Collapse
Affiliation(s)
- Lisa Byrne
- Gastrointestinal Illness Department, National Infections Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK.
| | - Natalie Adams
- Gastrointestinal Illness Department, National Infections Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK; Gastrointestinal Bacteria Reference Unit, National Infections Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK; National Institute for Health Research (NIHR) Health Protection Research Unit in Gastrointestinal Infections, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK; National Institute for Health Research (NIHR) Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, L69 7BE, UK
| | - Kirsten Glen
- Gastrointestinal Illness Department, National Infections Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Timothy J Dallman
- Gastrointestinal Bacteria Reference Unit, National Infections Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Ishani Kar-Purkayastha
- Wessex Public Health England Centre, Solent Business Park, Unit 8, Victory Park, Fareham, PO15 7FN, UK
| | - Gillian Beasley
- Anglia Health Protection Team, Anglia and Essex Public Health England Centre, Public Health England, Thetford Community Healthy Living Centre, Croxton Road, Thetford, IP24 1JD, UK
| | - Caroline Willis
- Food, Water and Environment Laboratory, Public Health England, Manor Farm Road, Porton Down, Salisbury, SP4 0JG, UK
| | - Simon Padfield
- Public Health England Centre Yorkshire and Humber, York Block 2, The Food and Environment Research Agency (FERA), Sand Hutton, York, YO41 1LZ, UK
| | - Goutam Adak
- Gastrointestinal Illness Department, National Infections Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Claire Jenkins
- Gastrointestinal Bacteria Reference Unit, National Infections Service, National Institute for Health Research (NIHR) Health Protection Research Unit in Gastrointestinal Infections, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK
| | | |
Collapse
|
18
|
Launders N, Byrne L, Jenkins C, Harker K, Charlett A, Adak GK. Disease severity of Shiga toxin-producing E. coli O157 and factors influencing the development of typical haemolytic uraemic syndrome: a retrospective cohort study, 2009-2012. BMJ Open 2016; 6:e009933. [PMID: 26826153 PMCID: PMC4735319 DOI: 10.1136/bmjopen-2015-009933] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVES Assess the disease severity of Shiga toxin-producing Escherichia coli (STEC) O157 infection and factors influencing the development of typical haemolytic uraemic syndrome (tHUS). DESIGN A retrospective cohort study using data collected through routine surveillance questionnaires between 2009 and 2012. PARTICIPANTS 3323 symptomatic cases of STEC O157. MAIN OUTCOME MEASURES Incidence of human STEC O157 and tHUS, proportion of cases reporting bloody diarrhoea, hospitalisation, tHUS and death. Odds of progression to tHUS and predicted percentage chance of developing tHUS based on case demographics, STEC O157 strain characteristics and clinical symptoms. RESULTS From 2009 to 2012, 3323 cases of symptomatic STEC O157 with completed questionnaires were reported, of which 172 developed tHUS (5.18%). Being aged 1-4 years (OR 8.65, 95% CI 5.01 to 14.94, p=0.004) or female (OR 1.61, 95% CI 1.12 to 2.30, p=0.009), being infected with phage type (PT) 21/28 (OR 2.07, 95% CI 1.25 to 3.42, p=0.005) or PT 2 (OR 2.18, 95% CI 1.06 to 4.50, p=0.034), receiving β-lactam antibiotics (OR 4.08, 95% CI 1.43 to 11.68, p=0.009) and presenting with vomiting (OR 3.16, 95% CI 2.16 to 4.62, p<0.001) or bloody diarrhoea (OR 2.10, 95% CI 1.38 to 3.20, p=0.001) were found to be significant risk factors for progression to tHUS. The predicted percentage chance of developing tHUS varied from under 1% to 50% if all risk factors were present. CONCLUSIONS The data from this study indicate the use of β-lactam antibiotics should be avoided in suspected cases of STEC infection in all age groups, particularly in those under the age of 5.
Collapse
Affiliation(s)
- N Launders
- Gastrointestinal, Emerging and Zoonotic Infections Department, Public Health England, Centre for Infectious Disease Surveillance and Control, London, UK
| | - L Byrne
- Gastrointestinal, Emerging and Zoonotic Infections Department, Public Health England, Centre for Infectious Disease Surveillance and Control, London, UK
| | - C Jenkins
- Gastrointestinal Bacterial Reference Unit, Public Health England, Centre for Infectious Disease Surveillance and Control, London, UK
| | - K Harker
- Gastrointestinal, Emerging and Zoonotic Infections Department, Public Health England, Centre for Infectious Disease Surveillance and Control, London, UK
| | - A Charlett
- Statistics, Modelling and Economics Unit, Public Health England, Centre for Infectious Disease Surveillance and Control, London, UK
| | - G K Adak
- Gastrointestinal, Emerging and Zoonotic Infections Department, Public Health England, Centre for Infectious Disease Surveillance and Control, London, UK
| |
Collapse
|
19
|
BYRNE L, JENKINS C, LAUNDERS N, ELSON R, ADAK GK. The epidemiology, microbiology and clinical impact of Shiga toxin-producing Escherichia coli in England, 2009-2012. Epidemiol Infect 2015; 143:3475-87. [PMID: 25920912 PMCID: PMC9150938 DOI: 10.1017/s0950268815000746] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/24/2015] [Accepted: 03/23/2015] [Indexed: 11/06/2022] Open
Abstract
Between 1 January 2009 and 31 December 2012 in England, a total of 3717 cases were reported with evidence of Shiga toxin-producing E. coli (STEC) infection, and the crude incidence of STEC infection was 1·80/100 000 person-years. Incidence was highest in children aged 1-4 years (7·63/100 000 person-years). Females had a higher incidence of STEC than males [rate ratio (RR) 1·24, P < 0·001], and white ethnic groups had a higher incidence than non-white ethnic groups (RR 1·43, P < 0·001). Progression to haemolytic uraemic syndrome (HUS) was more frequent in females and children. Non-O157 STEC strains were associated with higher hospitalization and HUS rates than O157 STEC strains. In STEC O157 cases, phage type (PT) 21/28, predominantly indigenously acquired, was also associated with more severe disease than other PTs, as were strains encoding stx2 genes. Incidence of STEC was over four times higher in people residing in rural areas than urban areas (RR 4·39, P < 0·001). Exposure to livestock and/or their faeces was reported twice as often in cases living in rural areas than urban areas (P < 0·001). Environmental/animal contact remains an important risk factor for STEC transmission and is a significant driver in the burden of sporadic STEC infection. The most commonly detected STEC serogroup in England was O157. However, a bias in testing methods results in an unquantifiable under-ascertainment of non-O157 STEC infections. Implementation of PCR-based diagnostic methods designed to detect all STEC, to address this diagnostic deficit, is therefore important.
Collapse
Affiliation(s)
- L. BYRNE
- Public Health England Department of Gastrointestinal, Emerging and Zoonotic Infections, Centre for Infectious Disease Surveillance and Control, London, UK
| | - C. JENKINS
- Public Health England Gastrointestinal Bacteria Reference Unit, London, UK
| | - N. LAUNDERS
- Public Health England Department of Gastrointestinal, Emerging and Zoonotic Infections, Centre for Infectious Disease Surveillance and Control, London, UK
| | - R. ELSON
- Public Health England Department of Gastrointestinal, Emerging and Zoonotic Infections, Centre for Infectious Disease Surveillance and Control, London, UK
| | - G. K. ADAK
- Public Health England Department of Gastrointestinal, Emerging and Zoonotic Infections, Centre for Infectious Disease Surveillance and Control, London, UK
| |
Collapse
|
20
|
Brandal LT, Wester AL, Lange H, Løbersli I, Lindstedt BA, Vold L, Kapperud G. Shiga toxin-producing escherichia coli infections in Norway, 1992-2012: characterization of isolates and identification of risk factors for haemolytic uremic syndrome. BMC Infect Dis 2015; 15:324. [PMID: 26259588 PMCID: PMC4531490 DOI: 10.1186/s12879-015-1017-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/08/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Shiga toxin-producing E. coli (STEC) infection is associated with haemolytic uremic syndrome (HUS). Therefore Norway has implemented strict guidelines for prevention and control of STEC infection. However, only a subgroup of STEC leads to HUS. Thus, identification of determinants differentiating high risk STEC (HUS STEC) from low risk STEC (non-HUS STEC) is needed to enable implementation of graded infectious disease response. METHODS A national study of 333 STEC infections in Norway, including one STEC from each patient or outbreak over two decades (1992-2012), was conducted. Serotype, virulence profile, and genotype of each STEC were determined by phenotypic or PCR based methods. The association between microbiological properties and demographic and clinical data was assessed by univariable analyses and multiple logistic regression models. RESULTS From 1992 through 2012, an increased number of STEC cases including more domestically acquired infections were notified in Norway. O157 was the most frequent serogroup (33.6 %), although a decrease of this serogroup was seen over the last decade. All 25 HUS patients yielded STEC with stx2, eae, and ehxA. In a multiple logistic regression model, age ≤5 years (OR = 16.7) and stx2a (OR = 30.1) were independently related to increased risk of HUS. eae and hospitalization could not be modelled since all HUS patients showed these traits. The combination of low age (≤5 years) and the presence of stx2a, and eae gave a positive predictive value (PPV) for HUS of 67.5 % and a negative predictive value (NPV) of 99.0 %. SF O157:[H7] and O145:H?, although associated with HUS in the univariable analyses, were not independent risk factors. stx1 (OR = 0.1) was the sole factor independently associated with a reduced risk of HUS (NPV: 79.7 %); stx2c was not so. CONCLUSIONS Our results indicate that virulence gene profile and patients' age are the major determinants of HUS development.
Collapse
Affiliation(s)
- Lin T Brandal
- Department of Foodborne Infections, The Norwegian Institute of Public Health, Oslo, Norway.
- Division of Infectious Disease Control, Department of Foodborne Infections, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403, Oslo, Norway.
| | - Astrid L Wester
- Department of Foodborne Infections, The Norwegian Institute of Public Health, Oslo, Norway.
| | - Heidi Lange
- Department of Infectious Disease Epidemiology, The Norwegian Institute of Public Health, Oslo, Norway.
| | - Inger Løbersli
- Department of Foodborne Infections, The Norwegian Institute of Public Health, Oslo, Norway.
| | | | - Line Vold
- Department of Infectious Disease Epidemiology, The Norwegian Institute of Public Health, Oslo, Norway.
| | - Georg Kapperud
- Division of Infectious Disease Control, The Norwegian Institute of Public Health, Oslo, Norway.
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
21
|
Risk factors for sporadic Shiga toxin-producing Escherichia coli O157 and non-O157 illness in The Netherlands, 2008-2012, using periodically surveyed controls. Epidemiol Infect 2014; 143:1360-7. [PMID: 25195737 DOI: 10.1017/s0950268814002349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) infections have been associated with severe illness. Ruminants are seen as the main reservoir and the major transmission route is considered to be foodborne. In The Netherlands, a case-control study was conducted, using data collected during 2008-2012. Patients were interviewed and controls completed a self-administered questionnaire. Patients travelling abroad were excluded from the analyses. STEC O157 and non-O157 were examined separately and differentiated into two age groups (<10 years, ⩾10 years). We included 130 O157 cases, 78 non-O157 cases and 1563 controls. In both age groups of O157 patients, raw spreadable sausage was the main risk factor for infection. For STEC non-O157 cases aged <10 years, contact with farm animals was the main risk factor and in non-O157 cases aged ⩾10 years, consumption of beef was the main risk factor. During 2008-2012, risk factors for STEC infections in the Dutch population differed between age groups and serogroup categories, and were related to eating meat and contact with farm animals. Advising the public about the risks of consuming raw or undercooked meat (products) and hygiene habits in case of contact with farm animals, could help in the prevention of STEC infections.
Collapse
|
22
|
Franz E, Delaquis P, Morabito S, Beutin L, Gobius K, Rasko DA, Bono J, French N, Osek J, Lindstedt BA, Muniesa M, Manning S, LeJeune J, Callaway T, Beatson S, Eppinger M, Dallman T, Forbes KJ, Aarts H, Pearl DL, Gannon VP, Laing CR, Strachan NJ. Exploiting the explosion of information associated with whole genome sequencing to tackle Shiga toxin-producing Escherichia coli (STEC) in global food production systems. Int J Food Microbiol 2014; 187:57-72. [DOI: 10.1016/j.ijfoodmicro.2014.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/27/2014] [Accepted: 07/04/2014] [Indexed: 12/24/2022]
|
23
|
Predicting the public health benefit of vaccinating cattle against Escherichia coli O157. Proc Natl Acad Sci U S A 2013; 110:16265-70. [PMID: 24043803 DOI: 10.1073/pnas.1304978110] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identifying the major sources of risk in disease transmission is key to designing effective controls. However, understanding of transmission dynamics across species boundaries is typically poor, making the design and evaluation of controls particularly challenging for zoonotic pathogens. One such global pathogen is Escherichia coli O157, which causes a serious and sometimes fatal gastrointestinal illness. Cattle are the main reservoir for E. coli O157, and vaccines for cattle now exist. However, adoption of vaccines is being delayed by conflicting responsibilities of veterinary and public health agencies, economic drivers, and because clinical trials cannot easily test interventions across species boundaries, lack of information on the public health benefits. Here, we examine transmission risk across the cattle-human species boundary and show three key results. First, supershedding of the pathogen by cattle is associated with the genetic marker stx2. Second, by quantifying the link between shedding density in cattle and human risk, we show that only the relatively rare supershedding events contribute significantly to human risk. Third, we show that this finding has profound consequences for the public health benefits of the cattle vaccine. A naïve evaluation based on efficacy in cattle would suggest a 50% reduction in risk; however, because the vaccine targets the major source of human risk, we predict a reduction in human cases of nearly 85%. By accounting for nonlinearities in transmission across the human-animal interface, we show that adoption of these vaccines by the livestock industry could prevent substantial numbers of human E. coli O157 cases.
Collapse
|
24
|
Mellor GE, Besser TE, Davis MA, Beavis B, Jung W, Smith HV, Jennison AV, Doyle CJ, Chandry PS, Gobius KS, Fegan N. Multilocus genotype analysis of Escherichia coli O157 isolates from Australia and the United States provides evidence of geographic divergence. Appl Environ Microbiol 2013; 79:5050-8. [PMID: 23770913 PMCID: PMC3754714 DOI: 10.1128/aem.01525-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/12/2013] [Indexed: 01/31/2023] Open
Abstract
Escherichia coli O157 is a food-borne pathogen whose major reservoir has been identified as cattle. Recent genetic information has indicated that populations of E. coli O157 from cattle and humans can differ genetically and that this variation may have an impact on their ability to cause severe human disease. In addition, there is emerging evidence that E. coli O157 strains from different geographical regions may also be genetically divergent. To investigate the extent of this variation, we used Shiga toxin bacteriophage insertion sites (SBI), lineage-specific polymorphisms (LSPA-6), multilocus variable-number tandem-repeat analysis (MLVA), and a tir 255T>A polymorphism to examine 606 isolates representing both Australian and U.S. cattle and human populations. Both uni- and multivariate analyses of these data show a strong association between the country of origin and multilocus genotypes (P < 0.0001). In addition, our results identify factors that may play a role in virulence that also differed in isolates from each country, including the carriage of stx1 in the argW locus uniquely observed in Australian isolates and the much higher frequency of stx2-positive (also referred to as stx2a) strains in the U.S. isolates (4% of Australian isolates versus 72% of U.S. isolates). LSPA-6 lineages differed between the two continents, with the majority of Australian isolates belonging to lineage I/II (LI/II) (LI, 2%; LI/II, 85%; LII, 13%) and the majority of U.S. isolates belonging to LI (LI, 60%; LI/II, 16%; LII, 25%). The results of this study provide strong evidence of phylogeographic structuring of E. coli O157 populations, suggesting divergent evolution of enterohemorrhagic E. coli O157 in Australia and the United States.
Collapse
Affiliation(s)
- Glen E. Mellor
- CSIRO Animal, Food and Health Sciences, Archerfield BC, QLD, Australia
| | - Thomas E. Besser
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, Washington, USA
| | - Margaret A. Davis
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, Washington, USA
| | - Brittany Beavis
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, Washington, USA
| | - WooKyung Jung
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, Washington, USA
| | - Helen V. Smith
- Queensland Health Forensic and Scientific Services, Archerfield BC, QLD, Australia
| | - Amy V. Jennison
- Queensland Health Forensic and Scientific Services, Archerfield BC, QLD, Australia
| | - Christine J. Doyle
- Queensland Health Forensic and Scientific Services, Archerfield BC, QLD, Australia
| | - P. Scott Chandry
- CSIRO Animal, Food and Health Sciences, Werribee, VIC, Australia
| | - Kari S. Gobius
- CSIRO Animal, Food and Health Sciences, Werribee, VIC, Australia
| | - Narelle Fegan
- CSIRO Animal, Food and Health Sciences, Werribee, VIC, Australia
| |
Collapse
|
25
|
Scientific Opinion on VTEC‐seropathotype and scientific criteria regarding pathogenicity assessment. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3138] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Mody RK, Griffin PM. Editorial Commentary: Fecal Shedding of Shiga Toxin-Producing Escherichia coli: What Should Be Done to Prevent Secondary Cases? Clin Infect Dis 2013; 56:1141-4. [DOI: 10.1093/cid/cis1222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
27
|
Loś JM, Loś M, Węgrzyn A, Węgrzyn G. Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results. Front Cell Infect Microbiol 2013; 2:166. [PMID: 23316482 PMCID: PMC3539655 DOI: 10.3389/fcimb.2012.00166] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/11/2012] [Indexed: 12/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) may cause bloody diarrhea and hemorrhagic colitis (HC), with subsequent systemic disease. Since genes coding for Shiga toxins (stx genes) are located on lambdoid prophages, their effective production occurs only after prophage induction. Such induction and subsequent lytic development of Shiga toxin-converting bacteriophages results not only in production of toxic proteins, but also in the lysis (and thus, the death) of the host cell. Therefore, one may ask the question: what is the benefit for bacteria to produce the toxin if they die due to phage production and subsequent cell lysis? Recently, a hypothesis was proposed (simultaneously but independently by two research groups) that STEC may benefit from Shiga toxin production as a result of toxin-dependent killing of eukaryotic cells such as unicellular predators or human leukocytes. This hypothesis could make sense only if we assume that prophage induction (and production of the toxin) occurs only in a small fraction of bacterial cells, thus, a few members of the population are sacrificed for the benefit of the rest, providing an example of “bacterial altruism.” However, various reports indicating that the frequency of spontaneous induction of Shiga toxin-converting prophages is higher than that of other lambdoid prophages might seem to contradict the for-mentioned model. On the other hand, analysis of recently published results, discussed here, indicated that the efficiency of prophage excision under conditions that may likely occur in the natural habitat of STEC is sufficiently low to ensure survival of a large fraction of the bacterial host. A molecular mechanism by which partial prophage induction may occur is proposed. We conclude that the published data supports the proposed model of bacterial “altruism” where prophage induction occurs at a low enough frequency to render toxin production a positive selective force on the general STEC population.
Collapse
Affiliation(s)
- Joanna M Loś
- Laboratory of Molecular Genetics, Department of Molecular Biology, University of Gdańsk Gdańsk, Poland
| | | | | | | |
Collapse
|
28
|
Sin MA, Takla A, Flieger A, Prager R, Fruth A, Tietze E, Fink E, Korte J, Schink S, Höhle M, Eckmanns T. Carrier Prevalence, Secondary Household Transmission, and Long-Term Shedding in 2 Districts During the Escherichia coli O104:H4 Outbreak in Germany, 2011. J Infect Dis 2012; 207:432-8. [DOI: 10.1093/infdis/jis702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Molecular epidemiology of a household outbreak of Shiga-toxin-producing Escherichia coli in Poland due to secondary transmission of STEC O104 : H4 from Germany. J Med Microbiol 2012; 61:552-558. [DOI: 10.1099/jmm.0.039289-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Werber D, Krause G, Frank C, Fruth A, Flieger A, Mielke M, Schaade L, Stark K. Outbreaks of virulent diarrheagenic Escherichia coli--are we in control? BMC Med 2012; 10:11. [PMID: 22300479 PMCID: PMC3350439 DOI: 10.1186/1741-7015-10-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/02/2012] [Indexed: 11/10/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are the most virulent diarrheagenic E. coli known to date. They can be spread with alarming ease via food as exemplified by a large sprout-borne outbreak of STEC O104:H4 in 2011 that was centered in northern Germany and affected several countries. Effective control of such outbreaks is an important public health task and necessitates early outbreak detection, fast identification of the outbreak vehicle and immediate removal of the suspected food from the market, flanked by consumer advice and measures to prevent secondary spread.In our view, opportunities to improve control of STEC outbreaks lie in early clinical suspicion for STEC infection, timely diagnosis of all STEC at the serotype-level and integrating molecular subtyping information into surveillance systems. Furthermore, conducting analytical studies that supplement patients' imperfect food history recall and performing, as an investigative element, product tracebacks, are pivotal but underutilized tools for successful epidemiologic identification of the suspected vehicle in foodborne outbreaks. As a corollary, these tools are amenable to tailor microbiological testing of suspected food. Please see related article: http://www.biomedcentral.com/1741-7015/10/12.
Collapse
Affiliation(s)
- Dirk Werber
- Department of Infectious Disease Epidemiology, Robert Koch Institute, DGZ-Ring 1, 13086 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Qin J, Cui Y, Zhao X, Rohde H, Liang T, Wolters M, Li D, Belmar Campos C, Christner M, Song Y, Yang R. Identification of the Shiga toxin-producing Escherichia coli O104:H4 strain responsible for a food poisoning outbreak in Germany by PCR. J Clin Microbiol 2011; 49:3439-40. [PMID: 21752971 PMCID: PMC3165629 DOI: 10.1128/jcm.01312-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/03/2011] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - Xiangna Zhao
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijing 100071, China
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and HygieneUniversity Medical Centre Hamburg-EppendorfMartinistrasse 5220246 Hamburg, Germany
| | - Ting Liang
- Liaoning UniversityShenyang 110036, China
| | - Manuel Wolters
- Institute of Medical Microbiology, Virology and HygieneUniversity Medical Centre Hamburg-EppendorfMartinistrasse 5220246 Hamburg, Germany
| | | | | | - Martin Christner
- Institute of Medical Microbiology, Virology and HygieneUniversity Medical Centre Hamburg-EppendorfMartinistrasse 5220246 Hamburg, Germany
| | - Yajun Song
- Phone for Y. Song: 86-10-66948582, Fax: 86-10-63815259, E-mail:
| | - Ruifu Yang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijing 100071, China
| |
Collapse
|