1
|
Khalid Z, Shamim A, Saadh MJ, Alafnan A, Alaraj M, Butt MH, Ashraf T. Identification of potential inhibitors against Corynebacterium diphtheriae MtrA response regulator protein; an in-silico drug discovery approach. J Mol Graph Model 2024; 133:108858. [PMID: 39232488 DOI: 10.1016/j.jmgm.2024.108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Corynebacterium diphtheriae is a multi-drug resistant bacteria responsible for the life-threatening respiratory illness, diphtheria which can lead to severe Nervous system disorders, mainly infecting the lungs, heart, and kidneys if left untreated. In the current study, Corynebacterium diphtheriae MtrA response regulator protein was targeted, which regulates a two-component system of bacterial pathogenesis, and initiates DNA replication and cell division. In the current study a computational approach have been described for drug development against C. diphtheriae infections by inhibiting MtrA protein by small molecules acting as potential inhibitors against it. Molecular docking analysis of the equilibrated MtrA protein revealed compound-0.2970, compound-0.3029, and compound-0.3016 from Asinex Library as the promising inhibitors based on their lowest binding energies (-9.8 kJ/mol, -9.2 kJ/mol, and -8.9 kJ/mol), highest gold scores (40.53, 47.41, and 48.41), drug-likeness and pharmacokinetic properties. The MD simulation studies of the identified top-ranked inhibitors at 100 ns elucidated the system stability and fluctuations in the binding pocket of MtrA protein. Molecular Dynamics Simulations of the top three docked complexes further revealed that the standard binding pocket was retained ensuring the system stability. The rearrangements of H-bonds, van der Waals, pi-pi, and solid hydrophobic interactions were also observed. The binding free energy calculations (MM/PBSA and MM/GBSA) suggested a fundamental binding capability of the ligand to the target receptor MtrA. Therefore, the current study has provided excellent candidates acting as potent inhibitors for developing therapeutic drugs against C. diphtheriae infections. However, in vivo and in vitro animal experiments and accurate clinical trials are needed to validate the potential inhibitory effect of these compounds.
Collapse
Affiliation(s)
- Zunera Khalid
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| | - Amen Shamim
- Department of Computer Science, University of Agriculture Faisalabad, Pakistan; Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | | | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Mohd Alaraj
- Faculty of Pharmacy, Jerash Private University, Jerash, Jordan
| | | | - Tehreem Ashraf
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
2
|
Xiaoli L, Peng Y, Williams MM, Lawrence M, Cassiday PK, Aneke JS, Pawloski LC, Shil SR, Rashid MO, Bhowmik P, Weil LM, Acosta AM, Shirin T, Habib ZH, Tondella ML, Weigand MR. Genomic characterization of cocirculating Corynebacterium diphtheriae and non-diphtheritic Corynebacterium species among forcibly displaced Myanmar nationals, 2017-2019. Microb Genom 2023; 9:001085. [PMID: 37712831 PMCID: PMC10569726 DOI: 10.1099/mgen.0.001085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/23/2023] [Indexed: 09/16/2023] Open
Abstract
Respiratory diphtheria is a serious infection caused by toxigenic Corynebacterium diphtheriae, and disease transmission mainly occurs through respiratory droplets. Between 2017 and 2019, a large diphtheria outbreak among forcibly displaced Myanmar nationals densely settled in Bangladesh was investigated. Here we utilized whole-genome sequencing (WGS) to characterize recovered isolates of C. diphtheriae and two co-circulating non-diphtheritic Corynebacterium (NDC) species - C. pseudodiphtheriticum and C. propinquum. C. diphtheriae isolates recovered from all 53 positive cases in this study were identified as toxigenic biovar mitis, exhibiting intermediate resistance to penicillin, and formed four phylogenetic clusters circulating among multiple refugee camps. Additional sequenced isolates collected from two patients showed co-colonization with non-toxigenic C. diphtheriae biovar gravis, one of which exhibited decreased susceptibility to the first-line antibiotics and harboured a novel 23-kb multidrug resistance plasmid. Results of phylogenetic reconstruction and virulence-related gene contents of the recovered NDC isolates indicated they were likely commensal organisms, though 80.4 %(45/56) were not susceptible to erythromycin, and most showed high minimum inhibition concentrations against azithromycin. These results demonstrate the high resolution with which WGS can aid molecular investigation of diphtheria outbreaks, through the quantification of bacterial genetic relatedness, as well as the detection of virulence factors and antibiotic resistance markers among case isolates.
Collapse
Affiliation(s)
- Lingzi Xiaoli
- ASRT, Inc, Atlanta, GA, USA
- Present address: Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yanhui Peng
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Margaret M. Williams
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Present address: Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Marlon Lawrence
- Laboratory Leadership Service, Division of Scientific Education and Professional Development, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Present address: Public Health Laboratory, Virgin Islands Department of Health, US Virgin Islands, USA
| | - Pamela K. Cassiday
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Janessa S. Aneke
- IHRC, Inc., Atlanta, GA, USA
- Present address: Université de Paris Cité, Learning Planet Institute, Paris, France
| | - Lucia C. Pawloski
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sadhona Rani Shil
- Institute of Epidemiology, Disease Control & Research, National Influenza Center, Dhaka, Bangladesh
| | - Mamun Or Rashid
- Institute of Epidemiology, Disease Control & Research, National Influenza Center, Dhaka, Bangladesh
| | - Proshanta Bhowmik
- Institute of Epidemiology, Disease Control & Research, National Influenza Center, Dhaka, Bangladesh
| | - Lauren M. Weil
- Epidemic Intelligence Service, Division of Scientific Education and Professional Development, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Present address: Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anna M. Acosta
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Present address: Director of Medical and Clinical Affairs, GSK Vaccines, USA
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control & Research, National Influenza Center, Dhaka, Bangladesh
| | - Zakir Hossain Habib
- Institute of Epidemiology, Disease Control & Research, National Influenza Center, Dhaka, Bangladesh
| | - M. Lucia Tondella
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael R. Weigand
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
3
|
Baker M, Zhang X, Maciel-Guerra A, Dong Y, Wang W, Hu Y, Renney D, Hu Y, Liu L, Li H, Tong Z, Zhang M, Geng Y, Zhao L, Hao Z, Senin N, Chen J, Peng Z, Li F, Dottorini T. Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China. NATURE FOOD 2023; 4:707-720. [PMID: 37563495 PMCID: PMC10444626 DOI: 10.1038/s43016-023-00814-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
China is the largest global consumer of antimicrobials and improving surveillance methods could help to reduce antimicrobial resistance (AMR) spread. Here we report the surveillance of ten large-scale chicken farms and four connected abattoirs in three Chinese provinces over 2.5 years. Using a data mining approach based on machine learning, we analysed 461 microbiomes from birds, carcasses and environments, identifying 145 potentially mobile antibiotic resistance genes (ARGs) shared between chickens and environments across all farms. A core set of 233 ARGs and 186 microbial species extracted from the chicken gut microbiome correlated with the AMR profiles of Escherichia coli colonizing the same gut, including Arcobacter, Acinetobacter and Sphingobacterium, clinically relevant for humans, and 38 clinically relevant ARGs. Temperature and humidity in the barns were also correlated with ARG presence. We reveal an intricate network of correlations between environments, microbial communities and AMR, suggesting multiple routes to improving AMR surveillance in livestock production.
Collapse
Affiliation(s)
- Michelle Baker
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Xibin Zhang
- Shandong New Hope Liuhe Group Co. Ltd and Qingdao Key Laboratory of Animal Feed Safety, Qingdao, People's Republic of China
| | | | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Yujie Hu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - David Renney
- Nimrod Veterinary Products Ltd., Moreton-in-Marsh, UK
| | - Yue Hu
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Longhai Liu
- Shandong Kaijia Food Co., Weifang, People's Republic of China
| | - Hui Li
- Luoyang Center for Disease Control and Prevention, Luoyang City, People's Republic of China
| | - Zhiqin Tong
- Luoyang Center for Disease Control and Prevention, Luoyang City, People's Republic of China
| | - Meimei Zhang
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang City, People's Republic of China
| | - Yingzhi Geng
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang City, People's Republic of China
| | - Li Zhao
- Agricultural Biopharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao City, People's Republic of China
| | - Zhihui Hao
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Beijing City, People's Republic of China
| | - Nicola Senin
- Department of Engineering, University of Perugia, Perugia, Italy
| | - Junshi Chen
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China.
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China.
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK.
- Centre for Smart Food Research, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, People's Republic of China.
| |
Collapse
|
4
|
Arcari G, Hennart M, Badell E, Brisse S. Multidrug-resistant toxigenic Corynebacterium diphtheriae sublineage 453 with two novel resistance genomic islands. Microb Genom 2023; 9:mgen000923. [PMID: 36748453 PMCID: PMC9973851 DOI: 10.1099/mgen.0.000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Antimicrobial therapy is important for case management of diphtheria, but knowledge on the emergence of multidrug-resistance in Corynebacterium diphtheriae is scarce. We report on the genomic features of two multidrug-resistant toxigenic isolates sampled from wounds in France 3 years apart. Both isolates were resistant to spiramycin, clindamycin, tetracycline, kanamycin and trimethoprim-sulfamethoxazole. Genes ermX, cmx, aph(3')-Ib, aph(6)-Id, aph(3')-Ic, aadA1, dfrA15, sul1, cmlA, cmlR and tet(33) were clustered in two genomic islands, one consisting of two transposons and one integron, the other being flanked by two IS6100 insertion sequences. One isolate additionally presented mutations in gyrA and rpoB and was resistant to ciprofloxacin and rifampicin. Both isolates belonged to sublineage 453 (SL453), together with 25 isolates from 11 other countries (https://bigsdb.pasteur.fr/diphtheria/). SL453 is a cosmopolitan toxigenic sublineage of C. diphtheriae, a subset of which acquired multidrug resistance. Even though penicillin, amoxicillin and erythromycin, recommended as the first line in the treatment of diphtheria, remain active, surveillance of diphtheria should consider the risk of dissemination of multidrug-resistant strains and their genetic elements.
Collapse
Affiliation(s)
- Gabriele Arcari
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Department of Molecular Medicine, Sapienza Università di Roma, Rome, Italy
| | - Mélanie Hennart
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Collège doctoral, Sorbonne Université, F-75005 Paris, France
| | - Edgar Badell
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| |
Collapse
|
5
|
Jesus HNR, Ramos JN, Rocha DJPG, Alves DA, Silva CS, Cruz JVO, Vieira VV, Souza C, Santos LS, Navas J, Ramos RTJ, Azevedo V, Aguiar ERGR, Mattos-Guaraldi AL, Pacheco LGC. The pan-genome of the emerging multidrug-resistant pathogen Corynebacterium striatum. Funct Integr Genomics 2022; 23:5. [PMID: 36534203 DOI: 10.1007/s10142-022-00932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Corynebacterium striatum, a common constituent of the human skin microbiome, is now considered an emerging multidrug-resistant pathogen of immunocompromised and chronically ill patients. However, little is known about the molecular mechanisms in the transition from colonization to the multidrug-resistant (MDR) invasive phenotype in clinical isolates. This study performed a comprehensive pan-genomic analysis of C. striatum, including isolates from "normal skin microbiome" and from MDR infections, to gain insights into genetic factors contributing to pathogenicity and multidrug resistance in this species. For this, three novel genome sequences were obtained from clinical isolates of C. striatum of patients from Brazil, and other 24 complete or draft C. striatum genomes were retrieved from GenBank, including the ATCC6940 isolate from the Human Microbiome Project. Analysis of C. striatum strains demonstrated the presence of an open pan-genome (α = 0.852803) containing 3816 gene families, including 15 antimicrobial resistance (AMR) genes and 32 putative virulence factors. The core and accessory genomes included 1297 and 1307 genes, respectively. The identified AMR genes are primarily associated with resistance to aminoglycosides and tetracyclines. Of these, 66.6% are present in genomic islands, and four AMR genes, including aac(6')-ib7, are located in a class 1-integron. In conclusion, our data indicated that C. striatum possesses genomic characteristics favorable to the invasive phenotype, with high genomic plasticity, a robust genetic arsenal for iron acquisition, and important virulence determinants and AMR genes present in mobile genetic elements.
Collapse
Affiliation(s)
- Hendor N R Jesus
- Multicenter Post-Graduate Program in Biochemistry and Molecular Biology (PMBqBM), Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Juliana N Ramos
- Laboratory of Diphtheria and Corinebacteria of Clinical Relevance, School of Medical Sciences, Rio de Janeiro State University - LDCIC/FCM/UERJ, Rio de Janeiro, RJ, Brazil
| | - Danilo J P G Rocha
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Daniele A Alves
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.,Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina S Silva
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - João V O Cruz
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Verônica V Vieira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brazil
| | - Cassius Souza
- Laboratory of Diphtheria and Corinebacteria of Clinical Relevance, School of Medical Sciences, Rio de Janeiro State University - LDCIC/FCM/UERJ, Rio de Janeiro, RJ, Brazil
| | - Louisy S Santos
- Laboratory of Diphtheria and Corinebacteria of Clinical Relevance, School of Medical Sciences, Rio de Janeiro State University - LDCIC/FCM/UERJ, Rio de Janeiro, RJ, Brazil
| | - Jesus Navas
- Cantabria University, Instituto de Investigación Valdecilla (IDIVAL), Santander, Spain
| | - Rommel T J Ramos
- Institute of Biological Sciences, Federal University of Para, Belem, PA, Brazil.,Biological Engineering Laboratory, Science and Technology Park Guama, Belem, PA, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eric R G R Aguiar
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, BA, Brazil
| | - Ana L Mattos-Guaraldi
- Laboratory of Diphtheria and Corinebacteria of Clinical Relevance, School of Medical Sciences, Rio de Janeiro State University - LDCIC/FCM/UERJ, Rio de Janeiro, RJ, Brazil
| | - Luis G C Pacheco
- Multicenter Post-Graduate Program in Biochemistry and Molecular Biology (PMBqBM), Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil. .,Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
6
|
Unbridled Integrons: A Matter of Host Factors. Cells 2022; 11:cells11060925. [PMID: 35326376 PMCID: PMC8946536 DOI: 10.3390/cells11060925] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/29/2022] Open
Abstract
Integrons are powerful recombination systems found in bacteria, which act as platforms capable of capturing, stockpiling, excising and reordering mobile elements called cassettes. These dynamic genetic machineries confer a very high potential of adaptation to their host and have quickly found themselves at the forefront of antibiotic resistance, allowing for the quick emergence of multi-resistant phenotypes in a wide range of bacterial species. Part of the success of the integron is explained by its ability to integrate various environmental and biological signals in order to allow the host to respond to these optimally. In this review, we highlight the substantial interconnectivity that exists between integrons and their hosts and its importance to face changing environments. We list the factors influencing the expression of the cassettes, the expression of the integrase, and the various recombination reactions catalyzed by the integrase. The combination of all these host factors allows for a very tight regulation of the system at the cost of a limited ability to spread by horizontal gene transfer and function in remotely related hosts. Hence, we underline the important consequences these factors have on the evolution of integrons. Indeed, we propose that sedentary chromosomal integrons that were less connected or connected via more universal factors are those that have been more successful upon mobilization in mobile genetic structures, in contrast to those that were connected to species-specific host factors. Thus, the level of specificity of the involved host factors network may have been decisive for the transition from chromosomal integrons to the mobile integrons, which are now widespread. As such, integrons represent a perfect example of the conflicting relationship between the ability to control a biological system and its potential for transferability.
Collapse
|
7
|
Chanh HQ, Trieu HT, Vuong HNT, Hung TK, Phan TQ, Campbell J, Pley C, Yacoub S. Novel Clinical Monitoring Approaches for Reemergence of Diphtheria Myocarditis, Vietnam. Emerg Infect Dis 2022; 28:282-290. [PMID: 35075995 PMCID: PMC8798685 DOI: 10.3201/eid2802.210555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Diphtheria is a life-threatening, vaccine-preventable disease caused by toxigenic Corynebacterium bacterial species that continues to cause substantial disease and death worldwide, particularly in vulnerable populations. Further outbreaks of vaccine-preventable diseases are forecast because of health service disruptions caused by the coronavirus disease pandemic. Diphtheria causes a spectrum of clinical disease, ranging from cutaneous forms to severe respiratory infections with systemic complications, including cardiac and neurologic. In this synopsis, we describe a case of oropharyngeal diphtheria in a 7-year-old boy in Vietnam who experienced severe myocarditis complications. We also review the cardiac complications of diphtheria and discuss how noninvasive bedside imaging technologies to monitor myocardial function and hemodynamic parameters can help improve the management of this neglected infectious disease.
Collapse
|
8
|
Leyton-Carcaman B, Abanto M. Beyond to the Stable: Role of the Insertion Sequences as Epidemiological Descriptors in Corynebacterium striatum. Front Microbiol 2022; 13:806576. [PMID: 35126341 PMCID: PMC8811144 DOI: 10.3389/fmicb.2022.806576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
In recent years, epidemiological studies of infectious agents have focused mainly on the pathogen and stable components of its genome. The use of these stable components makes it possible to know the evolutionary or epidemiological relationships of the isolates of a particular pathogen. Under this approach, focused on the pathogen, the identification of resistance genes is a complementary stage of a bacterial characterization process or an appendix of its epidemiological characterization, neglecting its genetic components’ acquisition or dispersal mechanisms. Today we know that a large part of antibiotic resistance is associated with mobile elements. Corynebacterium striatum, a bacterium from the normal skin microbiota, is also an opportunistic pathogen. In recent years, reports of infections and nosocomial outbreaks caused by antimicrobial multidrug-resistant C. striatum strains have been increasing worldwide. Despite the different existing mobile genomic elements, there is evidence that acquired resistance genes are coupled to insertion sequences in C. striatum. This perspective article reviews the insertion sequences linked to resistance genes, their relationship to evolutionary lineages, epidemiological characteristics, and the niches the strains inhabit. Finally, we evaluate the potential of the insertion sequences for their application as a descriptor of epidemiological scenarios, allowing us to anticipate the emergence of multidrug-resistant lineages.
Collapse
|
9
|
Qiu T, Wu D, Zhang L, Zou D, Sun Y, Gao M, Wang X. A comparison of antibiotics, antibiotic resistance genes, and bacterial community in broiler and layer manure following composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14707-14719. [PMID: 33219508 DOI: 10.1007/s11356-020-11469-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Animal manure is an important source of antibiotics and antibiotic resistance genes (ARGs) in the environment. However, the difference of antibiotic residues and ARG profiles in layer and broiler manure as well as their compost remains unexplored. In this study, we investigated the profiles of twelve antibiotics, seventeen ARGs, and class 1 integrase gene (intI1) in layer and broiler manure, and the corresponding compost at large-scale. Compared with layer manure, broiler manure exhibited approximately six times more residual tetracyclines, especially chlortetracycline. The relative abundances of qnrS and ermA genes in broiler manure were significantly higher than those in layer manure. The concentration of tetracyclines not only had a significantly positive correlation with tetracycline resistance genes (tetA and tetC) but was also positively correlated with quinolone resistance (qepA, qnrB, and qnrS) and macrolide resistance (ermA and ermT). Most ARGs in manure were reduced after composting. However, the relative abundance of sulfonamide resistance gene sul1 increased up to 2.41% after composting, which was significantly higher than that of broiler (0.41%) and layer (0.62%) manure. The associated bacterial community was characterized by high-throughput 16S rRNA gene sequencing. The relative abundances of thermophilic bacteria had significant positive correlations with the abundance of sul1 in compost. The composting has a significant impact on the ARG-associated gut microbes in poultry manure. Variation partitioning analysis indicated that the change of bacterial community compositions and antibiotics contributed partially to the shift in ARG profiles. The results indicate that at industry-scale production broiler manure had more antibiotics and ARGs than layer manure did, and composting decreased most ARG abundances in poultry manure except for sulfonamide resistance genes.
Collapse
Affiliation(s)
- Tianlei Qiu
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, People's Republic of China
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Dan Wu
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, People's Republic of China
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Lixin Zhang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Dexun Zou
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Yanmei Sun
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, People's Republic of China
| | - Min Gao
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, People's Republic of China
| | - Xuming Wang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, People's Republic of China.
| |
Collapse
|
10
|
Molecular and Epidemiological Characterization of Toxigenic and Nontoxigenic Corynebacterium diphtheriae, Corynebacterium belfantii, Corynebacterium rouxii, and Corynebacterium ulcerans Isolates Identified in Spain from 2014 to 2019. J Clin Microbiol 2021; 59:JCM.02410-20. [PMID: 33298610 DOI: 10.1128/jcm.02410-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/21/2020] [Indexed: 11/20/2022] Open
Abstract
This study examines the microbiological and epidemiological characteristics of toxigenic and nontoxigenic Corynebacterium isolates submitted to the national reference laboratory in Spain, between 2014 and 2019, in order to describe the current situation and improve our knowledge regarding these emerging pathogens. Epidemiological information was extracted from the Spanish Surveillance System. Microbiological and molecular characterization was carried out using phenotypic methods, multilocus sequence typing (MLST), whole-genome sequencing (WGS), and core genome MLST (cgMLST). Thirty-nine isolates were analyzed. Twenty-one isolates were identified as Corynebacterium diphtheriae (6 toxigenic), 14 as C. belfantii, 4 as C. ulcerans (3 toxigenic), and 1 as C. rouxii One C. diphtheriae isolate was identified as nontoxigenic tox gene bearing (NTTB). Ages of patients ranged from 1 to 89 years, with 10% (3/30) of nontoxigenic and 22% (2/9) of toxigenic isolates collected from children less than 15 years. Twenty-five of the patients were males (17/30 in nontoxigenic; 8/9 in toxigenic). MLST identified 28 sequence types (STs), of which 7 were described for the first time in Spain. WGS analysis showed that 10 isolates, including 3 toxigenic isolates, harbored a variety of antibiotic resistance genes in addition to the high prevalence of penicillin resistance phenotypically demonstrated. Phylogenetic analysis revealed one cluster of isolates from family members. Risk information was available for toxigenic isolates (9/39); 3 patients reported recent travels to countries of endemicity and 3 had contact with cats/dogs. One unvaccinated child with respiratory diphtheria had a fatal outcome. Including nontoxigenic Corynebacterium infections in disease surveillance and using WGS could further improve current surveillance.
Collapse
|
11
|
Hennart M, Panunzi LG, Rodrigues C, Gaday Q, Baines SL, Barros-Pinkelnig M, Carmi-Leroy A, Dazas M, Wehenkel AM, Didelot X, Toubiana J, Badell E, Brisse S. Population genomics and antimicrobial resistance in Corynebacterium diphtheriae. Genome Med 2020; 12:107. [PMID: 33246485 PMCID: PMC7694903 DOI: 10.1186/s13073-020-00805-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background Corynebacterium diphtheriae, the agent of diphtheria, is a genetically diverse bacterial species. Although antimicrobial resistance has emerged against several drugs including first-line penicillin, the genomic determinants and population dynamics of resistance are largely unknown for this neglected human pathogen. Methods Here, we analyzed the associations of antimicrobial susceptibility phenotypes, diphtheria toxin production, and genomic features in C. diphtheriae. We used 247 strains collected over several decades in multiple world regions, including the 163 clinical isolates collected prospectively from 2008 to 2017 in France mainland and overseas territories. Results Phylogenetic analysis revealed multiple deep-branching sublineages, grouped into a Mitis lineage strongly associated with diphtheria toxin production and a largely toxin gene-negative Gravis lineage with few toxin-producing isolates including the 1990s ex-Soviet Union outbreak strain. The distribution of susceptibility phenotypes allowed proposing ecological cutoffs for most of the 19 agents tested, thereby defining acquired antimicrobial resistance. Penicillin resistance was found in 17.2% of prospective isolates. Seventeen (10.4%) prospective isolates were multidrug-resistant (≥ 3 antimicrobial categories), including four isolates resistant to penicillin and macrolides. Homologous recombination was frequent (r/m = 5), and horizontal gene transfer contributed to the emergence of antimicrobial resistance in multiple sublineages. Genome-wide association mapping uncovered genetic factors of resistance, including an accessory penicillin-binding protein (PBP2m) located in diverse genomic contexts. Gene pbp2m is widespread in other Corynebacterium species, and its expression in C. glutamicum demonstrated its effect against several beta-lactams. A novel 73-kb C. diphtheriae multiresistance plasmid was discovered. Conclusions This work uncovers the dynamics of antimicrobial resistance in C. diphtheriae in the context of phylogenetic structure, biovar, and diphtheria toxin production and provides a blueprint to analyze re-emerging diphtheria. Supplementary information Supplementary information accompanies this paper at 10.1186/s13073-020-00805-7.
Collapse
Affiliation(s)
- Melanie Hennart
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Collège doctoral, Sorbonne Université, F-75005, Paris, France
| | - Leonardo G Panunzi
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Français de Bioinformatique, CNRS UMS 3601, Evry, France
| | - Carla Rodrigues
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Quentin Gaday
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université de Paris, F-75015, Paris, France
| | - Sarah L Baines
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | | | - Annick Carmi-Leroy
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Melody Dazas
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Anne Marie Wehenkel
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université de Paris, F-75015, Paris, France
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| | - Julie Toubiana
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France.,Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants Malades, APHP, Université de Paris, Paris, France
| | - Edgar Badell
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France. .,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France.
| |
Collapse
|
12
|
Husada D, Soegianto SDP, Kurniawati IS, Hendrata AP, Irawan E, Kartina L, Puspitasari D, Basuki PS, Ismoedijanto. First-line antibiotic susceptibility pattern of toxigenic Corynebacterium diphtheriae in Indonesia. BMC Infect Dis 2019; 19:1049. [PMID: 31829153 PMCID: PMC6907133 DOI: 10.1186/s12879-019-4675-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/29/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Diphtheria has been reported as an outbreak in some regions in Indonesia, most especially in East Java Province. Resistance to penicillin, erythromycin, and other antibiotics, single or multiple, has been reported in several studies. This study aims to evaluate the first-line antibiotic susceptibility pattern of toxigenic Corynebacterium diphtheriae isolates. METHODS This descriptive observational study was performed from August to November 2018. C. diphtheriae isolates were collected from diphtheria patients and carriers in East Java from 2012 to 2017 and kept at the Balai Besar Laboratorium Kesehatan Daerah Surabaya or the Public Health Laboratory of Surabaya. Sample selection was done by random cluster sampling. The sensitivity test by E-test®of the five antibiotics (penicillin, oxacillin, erythromycin, azithromycin, and clarithromycin) was done to determine the minimum inhibitory concentration (MIC). The Clinical and Laboratory Standards Institute M45A (2015) Corynebacterium spp. for penicillin and erythromycin was used as standard. RESULTS From 114 targeted isolates, 108 were viable and toxigenic. The E-test was performed on the viable isolates. The majority of the hosts were male (58.3%), with median (range) age of 6.5 (1-14) years. Half of the samples were from the 1 to 5-year-old age group. The isolates were acquired much more from patients (78.7%) than carriers (21.3%) and from pharyngeal swab (74.1%). Most of these isolates were from Madura Island (47.2%) and the northern and eastern parts of the province (horseshoe area). Mitis isolates were the major variant (76.9%). The susceptibility pattern of C. diphtheriae to erythromycin was better than that to penicillin. The E-test result for penicillin was 68.52% susceptible, 31.48% intermediate, and 0% resistant (MIC range, < 0.016 to 2 μg/L) and for erythromycin (MIC range, < 0.016 to > 256 μg/L) was 85.2% susceptible, 12% intermediate, and 2.8% resistant The MIC range for oxacillin was 1 to 96 μg/L, while for both azithromycin and clarithromycin were < 0.016 to > 256 μg/L. CONCLUSION The susceptibility rate of C. diphtheriae to erythromycin is higher than that to penicillin. The regular update of antibiotic selection to the national guidelines is recommended. The MIC reference standard to azithromycin and clarithromycin is also needed.
Collapse
Affiliation(s)
- Dominicus Husada
- Department of Child Health, Faculty of Medicine Universitas Airlangga/Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| | - Sugi Deny Pranoto Soegianto
- Department of Child Health, Faculty of Medicine Universitas Airlangga/Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| | | | | | - Eveline Irawan
- Balai Besar Laboratorium Kesehatan Daerah (BBLK), Surabaya, Indonesia
| | - Leny Kartina
- Department of Child Health, Faculty of Medicine Universitas Airlangga/Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| | - Dwiyanti Puspitasari
- Department of Child Health, Faculty of Medicine Universitas Airlangga/Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| | - Parwati Setiono Basuki
- Department of Child Health, Faculty of Medicine Universitas Airlangga/Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| | - Ismoedijanto
- Department of Child Health, Faculty of Medicine Universitas Airlangga/Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| |
Collapse
|
13
|
Genetically Encoded Photosensitizers as Light-Triggered Antimicrobial Agents. Int J Mol Sci 2019; 20:ijms20184608. [PMID: 31533368 PMCID: PMC6769541 DOI: 10.3390/ijms20184608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/08/2023] Open
Abstract
Diseases caused by multi-drug resistant pathogens have become a global concern. Therefore, new approaches suitable for treating these bacteria are urgently needed. In this study, we analyzed genetically encoded photosensitizers (PS) related to the green fluorescent protein (GFP) or light-oxygen-voltage (LOV) photoreceptors for their exogenous applicability as light-triggered antimicrobial agents. Depending on their specific photophysical properties and photochemistry, these PSs can produce different toxic ROS (reactive oxygen species) such as O2•− and H2O2 via type-I, as well as 1O2 via type-II reaction in response to light. By using cell viability assays and microfluidics, we could demonstrate differences in the intracellular and extracellular phototoxicity of the applied PS. While intracellular expression and exogenous supply of GFP-related PSs resulted in a slow inactivation of E. coli and pathogenic Gram-negative and Gram-positive bacteria, illumination of LOV-based PSs such as the singlet oxygen photosensitizing protein SOPP3 resulted in a fast and homogeneous killing of these microbes. Furthermore, our data indicate that the ROS type and yield as well as the localization of the applied PS protein can strongly influence the antibacterial spectrum and efficacy. These findings open up new opportunities for photodynamic inactivation of pathogenic bacteria.
Collapse
|
14
|
Antibiotic resistance genes in the Actinobacteria phylum. Eur J Clin Microbiol Infect Dis 2019; 38:1599-1624. [PMID: 31250336 DOI: 10.1007/s10096-019-03580-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
The Actinobacteria phylum is one of the oldest bacterial phyla that have a significant role in medicine and biotechnology. There are a lot of genera in this phylum that are causing various types of infections in humans, animals, and plants. As well as antimicrobial agents that are used in medicine for infections treatment or prevention of infections, they have been discovered of various genera in this phylum. To date, resistance to antibiotics is rising in different regions of the world and this is a global health threat. The main purpose of this review is the molecular evolution of antibiotic resistance in the Actinobacteria phylum.
Collapse
|
15
|
Subtractive proteomics revealed plausible drug candidates in the proteome of multi-drug resistant Corynebacterium diphtheriae. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
16
|
Hage-Hülsmann J, Grünberger A, Thies S, Santiago-Schübel B, Klein AS, Pietruszka J, Binder D, Hilgers F, Domröse A, Drepper T, Kohlheyer D, Jaeger KE, Loeschcke A. Natural biocide cocktails: Combinatorial antibiotic effects of prodigiosin and biosurfactants. PLoS One 2018; 13:e0200940. [PMID: 30024935 PMCID: PMC6053208 DOI: 10.1371/journal.pone.0200940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/05/2018] [Indexed: 11/18/2022] Open
Abstract
Bacterial secondary metabolites are naturally produced to prevail amongst competitors in a shared habitat and thus represent a valuable source for antibiotic discovery. The transformation of newly discovered antibiotic compounds into effective drugs often requires additional surfactant components for drug formulation. Nature may also provide blueprints in this respect: A cocktail of two compounds consisting of the antibacterial red pigment prodigiosin and the biosurfactant serrawettin W1 is naturally produced by the bacterium Serratia marcescens, which occurs in highly competitive habitats including soil. We show here a combinatorial antibacterial effect of these compounds, but also of prodigiosin mixed with other (bio)surfactants, against the soil-dwelling bacterium Corynebacterium glutamicum taken as a model target bacterium. Prodigiosin exerted a combinatorial inhibitory effect with all tested surfactants in a disk diffusion assay which was especially pronounced in combination with N-myristoyltyrosine. Minimal inhibitory and bactericidal concentrations (MIC and MBC) of the individual compounds were 2.56 μg/mL prodigiosin and 32 μg/mL N-myristoyltyrosine, and the MIC of prodigiosin was decreased by 3 orders of magnitude to 0.005 μg/mL in the presence of 16 μg/mL N-myristoyltyrosine, indicative of synergistic interaction. Investigation of bacterial survival revealed similar combinatorial effects; moreover, antagonistic effects were observed at higher compound concentrations. Finally, the investigation of microcolony formation under combined application of concentrations just below the MBC revealed heterogeneity of responses with cell death or delayed growth. In summary, this study describes the combinatorial antibacterial effects of microbial biomolecules, which may have ecological relevance by inhibiting cohabiting species, but shall furthermore inspire drug development in the combat of infectious disease.
Collapse
Affiliation(s)
- Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Alexander Grünberger
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Multiscale Bioengineering, Bielefeld University, Bielefeld, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Beatrix Santiago-Schübel
- Central Division of Analytical Chemistry ZEA-3: Analytik/Biospec, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Sebastian Klein
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Jörg Pietruszka
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Dennis Binder
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Domröse
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Dietrich Kohlheyer
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Aachener Verfahrenstechnik (AVT.MSB), RWTH Aachen University, Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
- * E-mail:
| |
Collapse
|
17
|
Barraud O, Peyre M, Couvé-Deacon E, Chainier D, Bahans C, Guigonis V, Ploy MC, Bedu A, Garnier F. Antibiotic Resistance Acquisition in the First Week of Life. Front Microbiol 2018; 9:1467. [PMID: 30022973 PMCID: PMC6039568 DOI: 10.3389/fmicb.2018.01467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
Objectives: The fetus is considered sterile but recent studies have suggested that gut colonization could start before birth. Scarce data are available for the acquisition of resistant Gram-negative bacteria (GNB) during the first days of life. Several studies have shown that integrons play a major role in antibiotic resistance acquisition. In this work, we studied the dynamics of human intestinal acquisition of GNB and integrons during the first days of life. Methods: Meconium was collected at birth and a stool sample before hospital discharge (days 2 or 3) on 185 term neonates. GNB were searched by culture on each sample and class 1, 2, and 3 integrons from each GNB or directly from samples. Eight risk factors for integron and GNB acquisition were studied. Results: We isolated 228 GNB, 46 from meconium and the remainder from stools. No link was found between GNB isolation and antibiotic exposure during delivery, but antibiotic exposure during labor significantly selected blaTEM-positive amoxicillin-resistant Enterobacteria. Two-thirds of GNB were antibiotic-susceptible and most of the resistant isolates were acquired after birth. Integrons were detected in 18 of the 228 GNB isolates from 3 meconium and 20 stools. Antibiotic administration during delivery and vaginal carriage of Streptococcus agalactiae appeared as risk factors for integron acquisition. Conclusion: Gram-negative bacteria and integrons are mostly acquired after birth during the first days of life even if for some term neonates, meconium was not sterile. Antibiotic administration during delivery is a major risk for integron acquisition and for selection of amoxicillin-resistant Enterobacteria.
Collapse
Affiliation(s)
- Olivier Barraud
- INSERM, CHU Limoges, UMR 1092, Université de Limoges, Limoges, France
| | - Marianne Peyre
- Service de Pédiatrie, Hôpital Femme Mère Enfant, Limoges, France
| | | | - Delphine Chainier
- INSERM, CHU Limoges, UMR 1092, Université de Limoges, Limoges, France
| | - Claire Bahans
- Service de Pédiatrie, Hôpital Femme Mère Enfant, Limoges, France.,Comité Hme REcherche Clinique, Hôpital Femme Mère Enfant, Limoges, France
| | - Vincent Guigonis
- Service de Pédiatrie, Hôpital Femme Mère Enfant, Limoges, France.,Comité Hme REcherche Clinique, Hôpital Femme Mère Enfant, Limoges, France
| | - Marie-Cécile Ploy
- INSERM, CHU Limoges, UMR 1092, Université de Limoges, Limoges, France
| | - Antoine Bedu
- Service de Pédiatrie, Hôpital Femme Mère Enfant, Limoges, France.,Comité Hme REcherche Clinique, Hôpital Femme Mère Enfant, Limoges, France
| | - Fabien Garnier
- INSERM, CHU Limoges, UMR 1092, Université de Limoges, Limoges, France
| |
Collapse
|
18
|
Hassan SS, Jamal SB, Radusky LG, Tiwari S, Ullah A, Ali J, Behramand, de Carvalho PVSD, Shams R, Khan S, Figueiredo HCP, Barh D, Ghosh P, Silva A, Baumbach J, Röttger R, Turjanski AG, Azevedo VAC. The Druggable Pocketome of Corynebacterium diphtheriae: A New Approach for in silico Putative Druggable Targets. Front Genet 2018; 9:44. [PMID: 29487617 PMCID: PMC5816920 DOI: 10.3389/fgene.2018.00044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/30/2018] [Indexed: 01/20/2023] Open
Abstract
Diphtheria is an acute and highly infectious disease, previously regarded as endemic in nature but vaccine-preventable, is caused by Corynebacterium diphtheriae (Cd). In this work, we used an in silico approach along the 13 complete genome sequences of C. diphtheriae followed by a computational assessment of structural information of the binding sites to characterize the “pocketome druggability.” To this end, we first computed the “modelome” (3D structures of a complete genome) of a randomly selected reference strain Cd NCTC13129; that had 13,763 open reading frames (ORFs) and resulted in 1,253 (∼9%) structure models. The amino acid sequences of these modeled structures were compared with the remaining 12 genomes and consequently, 438 conserved protein sequences were obtained. The RCSB-PDB database was consulted to check the template structures for these conserved proteins and as a result, 401 adequate 3D models were obtained. We subsequently predicted the protein pockets for the obtained set of models and kept only the conserved pockets that had highly druggable (HD) values (137 across all strains). Later, an off-target host homology analyses was performed considering the human proteome using NCBI database. Furthermore, the gene essentiality analysis was carried out that gave a final set of 10-conserved targets possessing highly druggable protein pockets. To check the target identification robustness of the pipeline used in this work, we crosschecked the final target list with another in-house target identification approach for C. diphtheriae thereby obtaining three common targets, these were; hisE-phosphoribosyl-ATP pyrophosphatase, glpX-fructose 1,6-bisphosphatase II, and rpsH-30S ribosomal protein S8. Our predicted results suggest that the in silico approach used could potentially aid in experimental polypharmacological target determination in C. diphtheriae and other pathogens, thereby, might complement the existing and new drug-discovery pipelines.
Collapse
Affiliation(s)
- Syed S Hassan
- Department of Chemistry, Islamia College University Peshawar, Peshawar, Pakistan
| | - Syed B Jamal
- PG Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Leandro G Radusky
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandeep Tiwari
- PG Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Asad Ullah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, Pakistan
| | - Javed Ali
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Behramand
- Department of Chemistry, Islamia College University Peshawar, Peshawar, Pakistan
| | - Paulo V S D de Carvalho
- PG Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rida Shams
- Department of Chemistry, Islamia College University Peshawar, Peshawar, Pakistan
| | - Sabir Khan
- Department of Analytical Chemistry, Institute of Chemistry, São Paulo State University, São Paulo, Brazil
| | - Henrique C P Figueiredo
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Debmalya Barh
- PG Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Artur Silva
- Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Richard Röttger
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Adrián G Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,INQUIMAE/UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vasco A C Azevedo
- PG Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
19
|
Chainier D, Barraud O, Masson G, Couve-Deacon E, François B, Couquet CY, Ploy MC. Integron Digestive Carriage in Human and Cattle: A "One Health" Cultivation-Independent Approach. Front Microbiol 2017; 8:1891. [PMID: 29021787 PMCID: PMC5624303 DOI: 10.3389/fmicb.2017.01891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/15/2017] [Indexed: 01/14/2023] Open
Abstract
Objectives: Dissemination of antimicrobial resistance (AMR) is a global issue that requires the adoption of a "One-Health" approach promoting integration of human and animal health. Besides culture-dependent techniques frequently used for AMR surveillance, cultivation-independent methods can give additional insights into the diversity and reservoir of AMR genetic determinants. Integrons are molecular markers that can provide overall and reliable estimation of AMR dissemination. In this study, considering the "One-Health" approach, we have analyzed the integron digestive carriage from stools of humans and cattle living in a same area and exposed to different antibiotic selection pressures. Methods: Three collections of human [general population (GP) and intensive care unit patients (ICUs)] and bovine (BOV) stool samples were analyzed. The three main classes of integrons were detected using a multiplex qPCR both from total DNA extracted from stools, and from Gram-negative bacteria obtained by culture after an enrichment step. Results: With the cultivation-independent approach, integron carriage was 43.8, 52.7, and 65.6% for GP, ICU, and BOV respectively, percentages being at least twofold higher to those obtained with the cultivation-dependent approach. Class 1 integrons were the most prevalent; class 2 integrons seemed more associated to cattle than to humans; no class 3 integron was detected. The integron carriage was not significantly different between GP and ICU populations according to the antibiotic consumption, whatever the approach. Conclusion: The cultivation-independent approach constitutes a complementary exploratory method to investigate the integron digestive carriage of humans and bovines, notably within subjects under antibiotic treatment. The high frequency of carriage of integrons in the gut is of clinical significance, integrons being able to easily acquire and exchange resistant genes under antibiotic selective pressure and so leading to the dissemination of resistant bacteria.
Collapse
Affiliation(s)
| | - Olivier Barraud
- INSERM, CHU Limoges, UMR 1092, Université Limoges, Limoges, France
| | - Geoffrey Masson
- INSERM, CHU Limoges, UMR 1092, Université Limoges, Limoges, France
| | | | - Bruno François
- INSERM, CHU Limoges, UMR 1092, Université Limoges, Limoges, France.,INSERM, CIC1435, CHU Limoges, Limoges, France
| | - Claude-Yves Couquet
- Laboratoire Départemental d'Analyses et de Recherches de la Haute-Vienne, Limoges, France
| | | |
Collapse
|
20
|
Wangkanont K, Winton VJ, Forest KT, Kiessling LL. Conformational Control of UDP-Galactopyranose Mutase Inhibition. Biochemistry 2017; 56:3983-3992. [PMID: 28608671 PMCID: PMC5739916 DOI: 10.1021/acs.biochem.7b00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
UDP-galactopyranose mutase (Glf or UGM) catalyzes the formation of uridine 5'-diphosphate-α-d-galactofuranose (UDP-Galf) from UDP-galactopyranose (UDP-Galp). The enzyme is required for the production of Galf-containing glycans. UGM is absent in mammals, but members of the Corynebacterineae suborder require UGM for cell envelope biosynthesis. The need for UGM in some pathogens has prompted the search for inhibitors that could serve as antibiotic leads. Optimizing inhibitor potency, however, has been challenging. The UGM from Klebsiella pneumoniae (KpUGM), which is not required for viability, is more effectively impeded by small-molecule inhibitors than are essential UGMs from species such as Mycobacterium tuberculosis or Corynebacterium diphtheriae. Why KpUGM is more susceptible to inhibition than other orthologs is not clear. One potential source of difference is UGM ortholog conformation. We previously determined a structure of CdUGM bound to a triazolothiadiazine inhibitor in the open form, but it was unclear whether the small-molecule inhibitor bound this form or to the closed form. By varying the terminal tag (CdUGM-His6 and GSG-CdUGM), we crystallized CdUGM to capture the enzyme in different conformations. These structures reveal a pocket in the active site that can be exploited to augment inhibitor affinity. Moreover, they suggest the inhibitor binds the open form of most prokaryotic UGMs but can bind the closed form of KpUGM. This model and the structures suggest strategies for optimizing inhibitor potency by exploiting UGM conformational flexibility.
Collapse
Affiliation(s)
- Kittikhun Wangkanont
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Valerie J. Winton
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Katrina T. Forest
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Department of Bacteriology University of Wisconsin-Madison, Madison, WI, 53706, USA,Corresponding authors: Katrina T. Forest (Tel. 608-265-3566, ) and Laura L. Kiessling (Tel. 608-262-0541, )
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Corresponding authors: Katrina T. Forest (Tel. 608-265-3566, ) and Laura L. Kiessling (Tel. 608-262-0541, )
| |
Collapse
|
21
|
Benamrouche N, Hasnaoui S, Badell E, Guettou B, Lazri M, Guiso N, Rahal K. Microbiological and molecular characterization of Corynebacterium diphtheriae isolated in Algeria between 1992 and 2015. Clin Microbiol Infect 2016; 22:1005.e1-1005.e7. [PMID: 27585941 DOI: 10.1016/j.cmi.2016.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 11/24/2022]
Abstract
The objectives of this study were to undertake the microbiological and molecular characterization of Corynebacterium diphtheriae isolates collected in Algeria during epidemic and post-epidemic periods between 1992 and 2015. Microbiological characterization includes the determination of biotype and toxigenicity status using phenotypic and genotypic methods. Antimicrobial susceptibility was determined by the E-test method. Molecular characterization was performed by multi-locus sequence typing. In total, there were 157 cases of C. diphtheriae isolates, 127 in patients with respiratory diphtheria and 30 with ozena. Isolates with a mitis biotype were predominant (122 out of 157; 77.7%) followed by belfanti (28 out of 157; 17.8%) and gravis biotype (seven out of 157; 4.5%). Toxigenic isolates were predominant in the period 1992-2006 (74 out of 134) whereas in the period 2007-2015, only non-toxigenic isolates circulated (23 out of 23). All 157 isolates were susceptible to erythromycin, gentamicin, vancomycin and cotrimoxazole. Reduced susceptibility to penicillin G, cefotaxime, tetracycline and chloramphenicol was detected in 90 (57.3%), 88 (56.1%), 112 (71.3%) and 90 (57.3%) isolates, respectively. Multi-locus sequence typing analysis indicates that sequence type 116 (ST-116) was the most frequent, with 65 out of 100 isolates analysed, in particular during the epidemic period 1992-1999 (57 out of 65 isolates). In the post-epidemic period, 2000-2015, 13 different sequence types were isolated. All belfanti isolates (ten out of 100 isolates) belonged to closely related sequence types grouped in a phylogenetically distinct eBurst group and were collected exclusively in ozena cases. In conclusion, the epidemic period was associated with ST-116 while the post-epidemic period was characterized by more diversity. Belfanti isolates are grouped in a phylogenetically distinct clonal complex.
Collapse
Affiliation(s)
- N Benamrouche
- Medical Bacteriology Laboratory, Institut Pasteur, Algiers, Algeria.
| | - S Hasnaoui
- Medical Bacteriology Laboratory, Institut Pasteur, Algiers, Algeria
| | - E Badell
- Molecular Prevention and Therapy of Human Diseases Unit, Institut Pasteur, Paris, France
| | - B Guettou
- Medical Bacteriology Laboratory, Institut Pasteur, Algiers, Algeria
| | - M Lazri
- Medical Bacteriology Laboratory, Institut Pasteur, Algiers, Algeria
| | - N Guiso
- Molecular Prevention and Therapy of Human Diseases Unit, Institut Pasteur, Paris, France
| | - K Rahal
- Medical Bacteriology Laboratory, Institut Pasteur, Algiers, Algeria
| |
Collapse
|
22
|
In Vitro Activity of 22 Antimicrobial Agents against Corynebacterium and Microbacterium Species Referred to the Canadian National Microbiology Laboratory. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.clinmicnews.2015.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Nardelli M, Scalzo PM, Ramírez MS, Quiroga MP, Cassini MH, Centrón D. Class 1 integrons in environments with different degrees of urbanization. PLoS One 2012; 7:e39223. [PMID: 22761743 PMCID: PMC3382206 DOI: 10.1371/journal.pone.0039223] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/17/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Class 1 integrons are one of the most successful elements in the acquisition, expression and spread of antimicrobial resistance genes (ARG) among clinical isolates. Little is known about the gene flow of the components of the genetic platforms of class 1 integrons within and between bacterial communities. Thus it is important to better understand the interactions among "environmental" intI1, its genetic platforms and its distribution with human activities. METHODOLOGY/PRINCIPAL FINDINGS An evaluation of two types of genetic determinants, ARG (sul1 and qacE1/qacEΔ1 genes) and lateral genetic elements (LGE) (intI1, ISCR1 and tniC genes) in a model of a culture-based method without antibiotic selection was conducted in a gradient of anthropogenic disturbances in a Patagonian island recognized as being one of the last regions containing wild areas. The intI1, ISCR1 genes and intI1 pseudogenes that were found widespread throughout natural communities were not associated with urbanization (p>0.05). Each ARG that is embedded in the most common genetic platform of clinical class 1 integrons, showed different ecological and molecular behaviours in environmental samples. While the sul1 gene frequency was associated with urbanization, the qacE1/qacEΔ1 gene showed an adaptive role to several habitats. CONCLUSIONS/SIGNIFICANCE The high frequency of intI1 pseudogenes suggests that, although intI1 has a deleterious impact within several genomes, it can easily be disseminated among natural bacterial communities. The widespread occurrence of ISCR1 and intI1 throughout Patagonian sites with different degree of urbanization, and within different taxa, could be one of the causes of the increasing frequency of multidrug-resistant isolates that have characterized Argentina for decades. The flow of ARG and LGE between natural and clinical communities cannot be explained with a single general process but is a direct consequence of the interaction of multiple factors operating at molecular, ecological, phylogenetic and historical levels.
Collapse
Affiliation(s)
- Maximiliano Nardelli
- Laboratorio de Investigaciones de los Mecanismos de Resistencia a Antibióticos, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Marina Scalzo
- Laboratorio de Investigaciones de los Mecanismos de Resistencia a Antibióticos, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Soledad Ramírez
- Laboratorio de Investigaciones de los Mecanismos de Resistencia a Antibióticos, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Paula Quiroga
- Laboratorio de Investigaciones de los Mecanismos de Resistencia a Antibióticos, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Hernán Cassini
- Grupo GEMA, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
- Laboratorio de Biología del Comportamiento, IBYME, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Centrón
- Laboratorio de Investigaciones de los Mecanismos de Resistencia a Antibióticos, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
24
|
Zakikhany K, Efstratiou A. Diphtheria in Europe: current problems and new challenges. Future Microbiol 2012; 7:595-607. [DOI: 10.2217/fmb.12.24] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diphtheria, caused by toxigenic strains of Corynebacterium diphtheriae, is an ancient disease with high incidence and mortality that has always been characterized by epidemic waves of occurrence. Whilst towards the beginning of the 1980s, many European countries were progressing towards the elimination of diphtheria, an epidemic re-emergence of diphtheria in the Russian Federation and the Newly Independent States of the former Soviet Union demonstrated a continuous threat of the disease into the 1990s. At present, the epidemic is under control and only sporadic cases are observed in Europe. However, the circulation of toxigenic strains is still observed in all parts of the world, posing a constant threat to the population with low levels of seroprotection. More recently, Corynebacterium ulcerans has been increasingly isolated as emerging zoonotic agent of diphtheria from companion animals such as cats or dogs, indicating the enduring threat of this thought-to-be controlled disease.
Collapse
Affiliation(s)
- Katherina Zakikhany
- The European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Androulla Efstratiou
- Health Protection Agency (HPA), Microbiology Services Divison: Colindale, Respiratory & Systemic Infection Laboratory (RSIL), WHO Global Collaborating Centre for Diphtheria, London, UK
| |
Collapse
|
25
|
Stalder T, Barraud O, Casellas M, Dagot C, Ploy MC. Integron involvement in environmental spread of antibiotic resistance. Front Microbiol 2012; 3:119. [PMID: 22509175 PMCID: PMC3321497 DOI: 10.3389/fmicb.2012.00119] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/13/2012] [Indexed: 11/13/2022] Open
Abstract
The spread of antibiotic-resistant bacteria is a growing problem and a public health issue. In recent decades, various genetic mechanisms involved in the spread of resistance genes among bacteria have been identified. Integrons - genetic elements that acquire, exchange, and express genes embedded within gene cassettes (GC) - are one of these mechanisms. Integrons are widely distributed, especially in Gram-negative bacteria; they are carried by mobile genetic elements, plasmids, and transposons, which promote their spread within bacterial communities. Initially studied mainly in the clinical setting for their involvement in antibiotic resistance, their role in the environment is now an increasing focus of attention. The aim of this review is to provide an in-depth analysis of recent studies of antibiotic-resistance integrons in the environment, highlighting their potential involvement in antibiotic-resistance outside the clinical context. We will focus particularly on the impact of human activities (agriculture, industries, wastewater treatment, etc.).
Collapse
|