1
|
Jansz N, Faulkner GJ. Viral genome sequencing methods: benefits and pitfalls of current approaches. Biochem Soc Trans 2024; 52:1431-1447. [PMID: 38747720 PMCID: PMC11346438 DOI: 10.1042/bst20231322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/27/2024]
Abstract
Whole genome sequencing of viruses provides high-resolution molecular insights, enhancing our understanding of viral genome function and phylogeny. Beyond fundamental research, viral sequencing is increasingly vital for pathogen surveillance, epidemiology, and clinical applications. As sequencing methods rapidly evolve, the diversity of viral genomics applications and catalogued genomes continues to expand. Advances in long-read, single molecule, real-time sequencing methodologies present opportunities to sequence contiguous, haplotype resolved viral genomes in a range of research and applied settings. Here we present an overview of nucleic acid sequencing methods and their applications in studying viral genomes. We emphasise the advantages of different viral sequencing approaches, with a particular focus on the benefits of third-generation sequencing technologies in elucidating viral evolution, transmission networks, and pathogenesis.
Collapse
Affiliation(s)
- Natasha Jansz
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J. Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Feng Y, He T, Zhang B, Yuan H, Zhou Y. Epidemiology and diagnosis technologies of human metapneumovirus in China: a mini review. Virol J 2024; 21:59. [PMID: 38454484 PMCID: PMC10921660 DOI: 10.1186/s12985-024-02327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Human metapneumovirus (HMPV) is a newly identified pathogen causing acute respiratory tract infections in young infants worldwide. Since the initial document of HMPV infection in China in 2003, Chinese scientists have made lots of efforts to prevent and control this disease, including developing diagnosis methods, vaccines and antiviral agents against HMPV, as well as conducting epidemiological investigations. However, effective vaccines or special antiviral agents against HMPV are currently not approved, thus developing early diagnosis methods and knowing its epidemiological characteristics will be beneficial for HMPV control. Here, we summarized current research focused on the epidemiological characteristics of HMPV in China and its available detection methods, which will be beneficial to increase the public awareness and disease control in the future.
Collapse
Affiliation(s)
- Yuan Feng
- Xiangtan Central Hospital, Xiangtan, 411100, Hunan, China
| | - Tao He
- Xiangtan Maternal and Child Health Hospital, Xiangtan, 411100, China
| | - Bo Zhang
- Xiangtan Central Hospital, Xiangtan, 411100, Hunan, China
| | - Haibin Yuan
- Xiangtan Central Hospital, Xiangtan, 411100, Hunan, China
| | - Yinfei Zhou
- Xiangtan Central Hospital, Xiangtan, 411100, Hunan, China.
| |
Collapse
|
3
|
Kim KW, Lee B, Eom S, Shin D, Park C, Kim S, Yi H. Universal primers for rift valley fever virus whole-genome sequencing. Sci Rep 2023; 13:18688. [PMID: 37907670 PMCID: PMC10618441 DOI: 10.1038/s41598-023-45848-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease causing acute hemorrhagic fever. Accurate identification of mutations and phylogenetic characterization of RVF virus (RVFV) require whole-genome analysis. Universal primers to amplify the entire RVFV genome from clinical samples with low copy numbers are currently unavailable. Thus, we aimed to develop universal primers applicable for all known RVFV strains. Based on the genome sequences available from public databases, we designed eight pairs of universal PCR primers covering the entire RVFV genome. To evaluate primer universality, four RVFV strains (ZH548, Kenya 56 (IB8), BIME-01, and Lunyo), encompassing viral phylogenetic diversity, were chosen. The nucleic acids of the test strains were chemically synthesized or extracted via cell culture. These RNAs were evaluated using the PCR primers, resulting in successful amplification with expected sizes (0.8-1.7 kb). Sequencing confirmed that the products covered the entire genome of the RVFV strains tested. Primer specificity was confirmed via in silico comparison against all non-redundant nucleotide sequences using the BLASTn alignment tool in the NCBI database. To assess the clinical applicability of the primers, mock clinical specimens containing human and RVFV RNAs were prepared. The entire RVFV genome was successfully amplified and sequenced at a viral concentration of 108 copies/mL. Given the universality, specificity, and clinical applicability of the primers, we anticipate that the RVFV universal primer pairs and the developed method will aid in RVFV phylogenomics and mutation detection.
Collapse
Affiliation(s)
- Kwan Woo Kim
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Banseok Lee
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
- Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea
| | - Sujeong Eom
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
- Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea
| | - Donghoon Shin
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
- Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea
| | - Changwoo Park
- Microbiological Analysis Team, Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
- Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Seil Kim
- Microbiological Analysis Team, Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea.
- Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea.
- Department of Bio-Analysis Science, University of Science and Technology, Daejeon, Republic of Korea.
| | - Hana Yi
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea.
- Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea.
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Nazir S, Kim KH, Kim L, Seo SE, Bae PK, An JE, Kwon OS. Discrimination of the H1N1 and H5N2 Variants of Influenza A Virus Using an Isomeric Sialic Acid-Conjugated Graphene Field-Effect Transistor. Anal Chem 2023; 95:5532-5541. [PMID: 36947869 DOI: 10.1021/acs.analchem.2c04273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
There has been a continuous effort to fabricate a fast, sensitive, and inexpensive system for influenza virus detection to meet the demand for effective screening in point-of-care testing. Herein, we report a sialic acid (SA)-conjugated graphene field-effect transistor (SA-GFET) sensor designed using α2,3-linked sialic acid (3'-SA) and α2,6-linked sialic acid (6'-SA) for the detection and discrimination of the hemagglutinin (HA) protein of the H5N2 and H1N1 viruses. 3'-SA and 6'-SA specific for H5 and H1 influenza were used in the SA-GFET to capture the HA protein of the influenza virus. The net charge of the captured viral sample led to a change in the electrical current of the SA-GFET platform, which could be correlated to the concentration of the viral sample. This SA-GFET platform exhibited a highly sensitive response in the range of 101-106 pfu mL-1, with a limit of detection (LOD) of 101 pfu mL-1 in buffer solution and a response time of approximately 10 s. The selectivity of the SA-GFET platform for the H1N1 and H5N2 influenza viruses was verified by testing analogous respiratory viruses, i.e., influenza B and the spike protein of SARS-CoV-2 and MERS-CoV, on the SA-GFET. Overall, the results demonstrate that the developed dual-channel SA-GFET platform can potentially serve as a highly efficient and sensitive sensing platform for the rapid detection of infectious diseases.
Collapse
Affiliation(s)
- Sophia Nazir
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biotechnology, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyung Ho Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Lina Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Pan Kee Bae
- BioNano Health Guard Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jai Eun An
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Oh Seok Kwon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biotechnology, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Das D, Lin CW, Chuang HS. LAMP-Based Point-of-Care Biosensors for Rapid Pathogen Detection. BIOSENSORS 2022; 12:bios12121068. [PMID: 36551035 PMCID: PMC9775414 DOI: 10.3390/bios12121068] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/01/2023]
Abstract
Seeking optimized infectious pathogen detection tools is of primary importance to lessen the spread of infections, allowing prompt medical attention for the infected. Among nucleic-acid-based sensing techniques, loop-mediated isothermal amplification is a promising method, as it provides rapid, sensitive, and specific detection of microbial and viral pathogens and has enormous potential to transform current point-of-care molecular diagnostics. In this review, the advances in LAMP-based point-of-care diagnostics assays developed during the past few years for rapid and sensitive detection of infectious pathogens are outlined. The numerous detection methods of LAMP-based biosensors are discussed in an end-point and real-time manner with ideal examples. We also summarize the trends in LAMP-on-a-chip modalities, such as classical microfluidic, paper-based, and digital LAMP, with their merits and limitations. Finally, we provide our opinion on the future improvement of on-chip LAMP methods. This review serves as an overview of recent breakthroughs in the LAMP approach and their potential for use in the diagnosis of existing and emerging diseases.
Collapse
Affiliation(s)
- Dhrubajyoti Das
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
6
|
Innes GK, Lambrou AS, Thumrin P, Thukngamdee Y, Tangwangvivat R, Doungngern P, Noradechanon K, Netrabukkana P, Meidenbauer K, Mehoke T, Heaney CD, Hinjoy S, Elayadi AN. Enhancing global health security in Thailand: Strengths and challenges of initiating a One Health approach to avian influenza surveillance. One Health 2022; 14:100397. [PMID: 35686140 PMCID: PMC9171517 DOI: 10.1016/j.onehlt.2022.100397] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
Infectious disease surveillance systems support early warning, promote preparedness, and inform public health response. Pathogens that have human, animal, and environmental reservoirs should be monitored through systems that incorporate a One Health approach. In 2016, Thailand's federal government piloted an avian influenza (AI) surveillance system that integrates stakeholders from human, animal, and environmental sectors, at the central level and in four provinces to monitor influenza A viruses within human, waterfowl, and poultry populations. This research aims to describe and evaluate Thailand's piloted AI surveillance system to inform strategies for strengthening and building surveillance systems relevant to One Health. We assessed this surveillance system using the United States Centers for Disease Control and Prevention's (U.S. CDC) “Guidelines for Evaluating Public Health Surveillance Systems” and added three novel metrics: transparency, interoperability, and security. In-depth key informant interviews were conducted with representatives among six Thai federal agencies and departments, the One Health coordinating unit, a corporate poultry producer, and the Thai Ministry of Public Health-U.S. CDC Collaborating Unit. Thailand's AI surveillance system demonstrated strengths in acceptability, simplicity, representativeness, and flexibility, and exhibited challenges in data quality, stability, security, interoperability, and transparency. System efforts may be strengthened through increasing laboratory integration, improving pathogen detection capabilities, implementing interoperable systems, and incorporating sustainable capacity building mechanisms. This innovative piloted surveillance system provides a strategic framework that can be used to develop, integrate, and bolster One Health surveillance approaches to combat emerging global pathogen threats and enhance global health security. Infectious disease surveillance systems are often siloed by host, pathogen, and route of entry. Thailand initiated an Avian Influenza surveillance system and adopted a One Health model. The system is strongest in acceptability, simplicity, representativeness, and flexibility.
Collapse
|
7
|
Wiriyachaiporn N, Sirikaew S, Bamrungsap S, Limcharoen T, Polkankosit P, Roeksrungruang P, Ponlamuangdee K. A simple fluorescence-based lateral flow test platform for rapid influenza B virus screening. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1687-1694. [PMID: 33861235 DOI: 10.1039/d0ay01988g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple fluorescence-based lateral flow test platform for rapid influenza B virus screening as a model target molecule was successfully developed. In this work, Cy5-loaded silica nanoparticles were directly conjugated to monoclonal antibodies, specific to the influenza B nucleoprotein, via a direct physisorption method and used as detector probes. Using this approach, the signal response to the detection was further determined using a fluorescent signal intensity measurement method via a portable reader, in combination with fluorescence imaging analysis. The degree to which the fluorescence signal response is detected is proportional to the amount of the target virus protein present in the system, reflected by the accumulation of the formed particle-antibody conjugates within the test system. Under optimized conditions, the system is capable of detecting the influenza B virus protein at a level of 0.55 μg per test within 30 min, using small sample volumes as low as 100 μL (R2 = 0.9544). In addition to its simplicity, further application of the system in detecting the influenza B virus protein was demonstrated using the viral transport media as specimen matrices. It was also shown that the system can perform the detection without cross-reactivity to other closely related respiratory viruses.
Collapse
Affiliation(s)
- Natpapas Wiriyachaiporn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | | | | | | | | | | | | |
Collapse
|
8
|
Chen S, He C, Li Y, Li Z, Melançon CE. A computational toolset for rapid identification of SARS-CoV-2, other viruses and microorganisms from sequencing data. Brief Bioinform 2021; 22:924-935. [PMID: 33003197 PMCID: PMC7543257 DOI: 10.1093/bib/bbaa231] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/03/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
In this paper, we present a toolset and related resources for rapid identification of viruses and microorganisms from short-read or long-read sequencing data. We present fastv as an ultra-fast tool to detect microbial sequences present in sequencing data, identify target microorganisms and visualize coverage of microbial genomes. This tool is based on the k-mer mapping and extension method. K-mer sets are generated by UniqueKMER, another tool provided in this toolset. UniqueKMER can generate complete sets of unique k-mers for each genome within a large set of viral or microbial genomes. For convenience, unique k-mers for microorganisms and common viruses that afflict humans have been generated and are provided with the tools. As a lightweight tool, fastv accepts FASTQ data as input and directly outputs the results in both HTML and JSON formats. Prior to the k-mer analysis, fastv automatically performs adapter trimming, quality pruning, base correction and other preprocessing to ensure the accuracy of k-mer analysis. Specifically, fastv provides built-in support for rapid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) identification and typing. Experimental results showed that fastv achieved 100% sensitivity and 100% specificity for detecting SARS-CoV-2 from sequencing data; and can distinguish SARS-CoV-2 from SARS, Middle East respiratory syndrome and other coronaviruses. This toolset is available at: https://github.com/OpenGene/fastv.
Collapse
Affiliation(s)
- Shifu Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. He also serves as chief technology officer of HaploX Biotechnology. He is the initiator of OpenGene projects and a contributor to many open source tools
| | - Changshou He
- department of bioinformatics, HaploX Biotechnology
| | - Yingqiang Li
- department of bioinformatics, HaploX Biotechnology
| | - Zhicheng Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. His research interests lie mainly in imaging genomics
| | - Charles E Melançon
- department of research and development, HaploX Biotechnology. His research interests lie mainly in next-generation sequencing and bioinformatics
| |
Collapse
|
9
|
Roberts A, Chauhan N, Islam S, Mahari S, Ghawri B, Gandham RK, Majumdar SS, Ghosh A, Gandhi S. Graphene functionalized field-effect transistors for ultrasensitive detection of Japanese encephalitis and Avian influenza virus. Sci Rep 2020; 10:14546. [PMID: 32884083 PMCID: PMC7471952 DOI: 10.1038/s41598-020-71591-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 01/21/2023] Open
Abstract
Graphene, a two-dimensional nanomaterial, has gained immense interest in biosensing applications due to its large surface-to-volume ratio, and excellent electrical properties. Herein, a compact and user-friendly graphene field effect transistor (GraFET) based ultrasensitive biosensor has been developed for detecting Japanese Encephalitis Virus (JEV) and Avian Influenza Virus (AIV). The novel sensing platform comprised of carboxy functionalized graphene on Si/SiO2 substrate for covalent immobilization of monoclonal antibodies of JEV and AIV. The bioconjugation and fabrication process of GraFET was characterized by various biophysical techniques such as Ultraviolet-Visible (UV-Vis), Raman, Fourier-Transform Infrared (FT-IR) spectroscopy, optical microscopy, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The change in the resistance due to antigen-antibody interaction was monitored in real time to evaluate the electrical response of the sensors. The sensors were tested in the range of 1 fM to 1 μM for both JEV and AIV antigens, and showed a limit of detection (LOD) upto 1 fM and 10 fM for JEV and AIV respectively under optimised conditions. Along with ease of fabrication, the GraFET devices were highly sensitive, specific, reproducible, and capable of detecting ultralow levels of JEV and AIV antigen. Moreover, these devices can be easily integrated into miniaturized FET-based real-time sensors for the rapid, cost-effective, and early Point of Care (PoC) diagnosis of JEV and AIV.
Collapse
Affiliation(s)
- Akanksha Roberts
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India
| | - Neha Chauhan
- Department of Physics, Indian Institute of Science (IISc), Bangalore, 560012, India
| | - Saurav Islam
- Department of Physics, Indian Institute of Science (IISc), Bangalore, 560012, India
| | - Subhasis Mahari
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India
| | - Bhaskar Ghawri
- Department of Physics, Indian Institute of Science (IISc), Bangalore, 560012, India
| | - Ravi Kumar Gandham
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India
| | - S S Majumdar
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India
| | - Arindam Ghosh
- Department of Physics, Indian Institute of Science (IISc), Bangalore, 560012, India
- Center for Nanoscience and Engineering, Indian Institute of Science (IISc), Bangalore, 560012, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India.
| |
Collapse
|
10
|
Jeong S, Park MJ, Song W, Kim HS. Advances in laboratory assays for detecting human metapneumovirus. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:608. [PMID: 32566634 PMCID: PMC7290561 DOI: 10.21037/atm.2019.12.42] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human metapneumovirus (HMPV) is one of the major causes of acute respiratory tract infection (ARI) and shows high morbidity and mortality, particularly in children and immunocompromised patients. Various methods for detecting HMPV have been developed and applied in clinical laboratories. When reviewing the literature, we found that polymerase chain reaction (PCR)-based assays have been most frequently and consistently used to detect HMPV. The most commonly used method was multiplex reverse transcriptase-PCR (RT-PCR; 57.4%), followed by real-time RT-PCR (38.3%). Multiplex RT-PCR became the more popular method in 2011-2019 (69.7%), in contrast to 2001-2009 (28.6%). The advent of multiplex PCR in detecting broader viral pathogens in one run and coinfected viruses influenced the change in user preference. Further, newly developed microarray technologies and ionization mass spectrometry were introduced in 2011-2019. Viral culture (including shell vial assays) and fluorescent immunoassays (with or without culture) were once the mainstays. However, the percentage of studies employing culture and fluorescent immunoassays decreased from 21.4% in 2001-2010 to 15.2% in 2011-2019. Meanwhile, the use of PCR-based methods of HMPV detection increased from 78.6% in 2001-2010 to 84.8% in 2011-2019. The increase in PCR-based methods might have occurred because PCR methods demonstrated better diagnostic performance, shorter hands-on and run times, less hazards to laboratory personnel, and more reliable results than traditional methods. When using these assays, it is important to acquire a comprehensive understanding of the principles, advantages, disadvantages, and precautions for data interpretation. In the future, the combination of nanotechnology and advanced genetic platforms such as next-generation sequencing will benefit patients with HMPV infection by facilitating efficient therapeutic intervention. Analytical and clinical validation are required before using new techniques in clinical laboratories.
Collapse
Affiliation(s)
- Seri Jeong
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Min-Jeong Park
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Wonkeun Song
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Hyon-Suk Kim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Tang C, He Z, Liu H, Xu Y, Huang H, Yang G, Xiao Z, Li S, Liu H, Deng Y, Chen Z, Chen H, He N. Application of magnetic nanoparticles in nucleic acid detection. J Nanobiotechnology 2020; 18:62. [PMID: 32316985 PMCID: PMC7171821 DOI: 10.1186/s12951-020-00613-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleic acid is the main material for storing, copying, and transmitting genetic information. Gene sequencing is of great significance in DNA damage research, gene therapy, mutation analysis, bacterial infection, drug development, and clinical diagnosis. Gene detection has a wide range of applications, such as environmental, biomedical, pharmaceutical, agriculture and forensic medicine to name a few. Compared with Sanger sequencing, high-throughput sequencing technology has the advantages of larger output, high resolution, and low cost which greatly promotes the application of sequencing technology in life science research. Magnetic nanoparticles, as an important part of nanomaterials, have been widely used in various applications because of their good dispersion, high surface area, low cost, easy separation in buffer systems and signal detection. Based on the above, the application of magnetic nanoparticles in nucleic acid detection was reviewed.
Collapse
Affiliation(s)
- Congli Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Ziyu He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hongmei Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yuyue Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Gaojian Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Ziqi Xiao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 China
| |
Collapse
|
12
|
Zhang N, Wang L, Deng X, Liang R, Su M, He C, Hu L, Su Y, Ren J, Yu F, Du L, Jiang S. Recent advances in the detection of respiratory virus infection in humans. J Med Virol 2020; 92:408-417. [PMID: 31944312 DOI: 10.1002/jmv.v92.410.1002/jmv.25674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/12/2020] [Indexed: 05/24/2023]
Abstract
Respiratory tract viral infection caused by viruses or bacteria is one of the most common diseases in human worldwide, while those caused by emerging viruses, such as the novel coronavirus, 2019-nCoV that caused the pneumonia outbreak in Wuhan, China most recently, have posed great threats to global public health. Identification of the causative viral pathogens of respiratory tract viral infections is important to select an appropriate treatment, save people's lives, stop the epidemics, and avoid unnecessary use of antibiotics. Conventional diagnostic tests, such as the assays for rapid detection of antiviral antibodies or viral antigens, are widely used in many clinical laboratories. With the development of modern technologies, new diagnostic strategies, including multiplex nucleic acid amplification and microarray-based assays, are emerging. This review summarizes currently available and novel emerging diagnostic methods for the detection of common respiratory viruses, such as influenza virus, human respiratory syncytial virus, coronavirus, human adenovirus, and human rhinovirus. Multiplex assays for simultaneous detection of multiple respiratory viruses are also described. It is anticipated that such data will assist researchers and clinicians to develop appropriate diagnostic strategies for timely and effective detection of respiratory virus infections.
Collapse
Affiliation(s)
- Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Lili Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Xiaoqian Deng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Ruiying Liang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Meng Su
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Chen He
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Lanfang Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Yudan Su
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Jing Ren
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Fei Yu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Zhang N, Wang L, Deng X, Liang R, Su M, He C, Hu L, Su Y, Ren J, Yu F, Du L, Jiang S. Recent advances in the detection of respiratory virus infection in humans. J Med Virol 2020; 92:408-417. [PMID: 31944312 PMCID: PMC7166954 DOI: 10.1002/jmv.25674] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
Respiratory tract viral infection caused by viruses or bacteria is one of the most common diseases in human worldwide, while those caused by emerging viruses, such as the novel coronavirus, 2019‐nCoV that caused the pneumonia outbreak in Wuhan, China most recently, have posed great threats to global public health. Identification of the causative viral pathogens of respiratory tract viral infections is important to select an appropriate treatment, save people's lives, stop the epidemics, and avoid unnecessary use of antibiotics. Conventional diagnostic tests, such as the assays for rapid detection of antiviral antibodies or viral antigens, are widely used in many clinical laboratories. With the development of modern technologies, new diagnostic strategies, including multiplex nucleic acid amplification and microarray‐based assays, are emerging. This review summarizes currently available and novel emerging diagnostic methods for the detection of common respiratory viruses, such as influenza virus, human respiratory syncytial virus, coronavirus, human adenovirus, and human rhinovirus. Multiplex assays for simultaneous detection of multiple respiratory viruses are also described. It is anticipated that such data will assist researchers and clinicians to develop appropriate diagnostic strategies for timely and effective detection of respiratory virus infections. Respiratory tract viral infection including 2019‐nCoV poses great threats worldwide. Currently available and novel emerging diagnostic methods are summarized for several common respiratory viruses, including influenza virus, human respiratory syncytial virus, coronavirus, human adenovirus and human rhinovirus. Multiplex assays for simultaneous detection of multiple respiratory viruses are also described. This review is aimed to assist researchers and clinicians to develop timely and effective diagnostic strategies to detect respiratory virus infections.
Collapse
Affiliation(s)
- Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Lili Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Xiaoqian Deng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Ruiying Liang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Meng Su
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Chen He
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Lanfang Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Yudan Su
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Jing Ren
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Fei Yu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York.,Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Kim GS, Kim TS, Son JS, Lai VD, Park JE, Wang SJ, Jheong WH, Mo IP. The difference of detection rate of avian influenza virus in the wild bird surveillance using various methods. J Vet Sci 2020; 20:e56. [PMID: 31565899 PMCID: PMC6769331 DOI: 10.4142/jvs.2019.20.e56] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/17/2019] [Accepted: 08/28/2019] [Indexed: 11/20/2022] Open
Abstract
Korea is located within the East Asian-Australian flyway of wild migratory birds during the fall and winter seasons. Consequently, the likelihood of introduction of numerous subtypes and pathotypes of the Avian influenza (AI) virus to Korea has been thought to be very high. In the current study, we surveyed wild bird feces for the presence of AI virus that had been introduced to Korea between September 2017 and February 2018. To identify and characterize the AI virus, we employed commonly used methods, namely, virus isolation (VI) via egg inoculation, real-time reverse transcription-polymerase chain reaction (rRT-PCR), conventional RT-PCR (cRT-PCR) and a newly developed next generation sequencing (NGS) approach. In this study, 124 out of 11,145 fresh samples of wild migratory birds tested were rRT-PCR positive; only 52.0% of VI positive samples were determined as positive by rRT-PCR from fecal supernatant. Fifty AI virus specimens were isolated from fresh fecal samples and typed. The cRT-PCR subtyping results mostly coincided with the NGS results, although NGS detected the presence of 11 HA genes and four NA genes that were not detected by cRT-PCR. NGS analysis confirmed that 12% of the identified viruses were mixed-subtypes which were not detected by cRT-PCR. Prevention of the occurrence of AI virus requires a workflow for rapid and accurate virus detection and verification. However, conventional methods of detection have some limitations. Therefore, different methods should be combined for optimal surveillance, and further studies are needed in aspect of the introduction and application of new methods such as NGS.
Collapse
Affiliation(s)
- Gang San Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Tae Sik Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Joo Sung Son
- Avian Disease Laboratory, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Van Dam Lai
- Avian Disease Laboratory, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Jung Eun Park
- Environmental Health Research Division, National Institute of Environmental Research, Incheon 22689, Korea
| | - Seung Jun Wang
- Environmental Health Research Division, National Institute of Environmental Research, Incheon 22689, Korea
| | - Weon Hwa Jheong
- Environmental Health Research Division, National Institute of Environmental Research, Incheon 22689, Korea
| | - In Pil Mo
- Avian Disease Laboratory, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.
| |
Collapse
|
15
|
Keller MW, Rambo-Martin BL, Wilson MM, Ridenour CA, Shepard SS, Stark TJ, Neuhaus EB, Dugan VG, Wentworth DE, Barnes JR. Direct RNA Sequencing of the Coding Complete Influenza A Virus Genome. Sci Rep 2018; 8:14408. [PMID: 30258076 PMCID: PMC6158192 DOI: 10.1038/s41598-018-32615-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/05/2018] [Indexed: 12/01/2022] Open
Abstract
For the first time, a coding complete genome of an RNA virus has been sequenced in its original form. Previously, RNA was sequenced by the chemical degradation of radiolabeled RNA, a difficult method that produced only short sequences. Instead, RNA has usually been sequenced indirectly by copying it into cDNA, which is often amplified to dsDNA by PCR and subsequently analyzed using a variety of DNA sequencing methods. We designed an adapter to short highly conserved termini of the influenza A virus genome to target the (-) sense RNA into a protein nanopore on the Oxford Nanopore MinION sequencing platform. Utilizing this method with total RNA extracted from the allantoic fluid of influenza rA/Puerto Rico/8/1934 (H1N1) virus infected chicken eggs (EID50 6.8 × 109), we demonstrate successful sequencing of the coding complete influenza A virus genome with 100% nucleotide coverage, 99% consensus identity, and 99% of reads mapped to influenza A virus. By utilizing the same methodology one can redesign the adapter in order to expand the targets to include viral mRNA and (+) sense cRNA, which are essential to the viral life cycle, or other pathogens. This approach also has the potential to identify and quantify splice variants and base modifications, which are not practically measurable with current methods.
Collapse
Affiliation(s)
- Matthew W Keller
- Oak Ridge Institute of Science and Education (ORISE), Oak Ridge, Tennessee, USA
| | | | | | | | - Samuel S Shepard
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Thomas J Stark
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Elizabeth B Neuhaus
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Vivien G Dugan
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - John R Barnes
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA.
| |
Collapse
|
16
|
Sposito AJ, Kurdekar A, Zhao J, Hewlett I. Application of nanotechnology in biosensors for enhancing pathogen detection. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018. [PMID: 29528198 DOI: 10.1002/wnan.1512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rapid detection and identification of pathogenic microorganisms is fundamental to minimizing the spread of infectious disease, and informing clinicians on patient treatment strategies. This need has led to the development of enhanced biosensors that utilize state of the art nanomaterials and nanotechnology, and represent the next generation of diagnostics. A primer on nanoscale biorecognition elements such as, nucleic acids, antibodies, and their synthetic analogs (molecular imprinted polymers), will be presented first. Next the application of various nanotechnologies for biosensor transduction will be discussed, along with the inherent nanoscale phenomenon that leads to their improved performance and capabilities in biosensor systems. A future outlook on characterization and quality assurance, nanotoxicity, and nanomaterial integration into lab-on-a-chip systems will provide the closing thoughts. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Alex J Sposito
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Aditya Kurdekar
- Laboratories for Nanoscience and Nanotechnology Research, Sri Sathya Sai Institute of Higher Learning, Anantapur, India
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Indira Hewlett
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
17
|
Wang CH, Nie K, Zhang Y, Wang J, Zhou SF, Li XN, Zhou HY, Qi SX, Ma XJ. An Improved Barcoded Oligonucleotide Primers-based Next-generation Sequencing Approach for Direct Identification of Viral Pathogens in Clinical Specimens. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2017; 30:22-34. [PMID: 28245896 PMCID: PMC7136949 DOI: 10.3967/bes2017.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To provide a feasible and cost-effective next-generation sequencing (NGS) method for accurate identification of viral pathogens in clinical specimens, because enormous limitations impede the clinical use of common NGS, such as high cost, complicated procedures, tremendous data analysis, and high background noise in clinical samples. METHODS Viruses from cell culture materials or clinical specimens were identified following an improved NGS procedure: reduction of background noise by sample preprocessing, viral enrichment by barcoded oligonucleotide (random hexamer or non-ribosomal hexanucleotide) primer-based amplification, fragmentation-free library construction and sequencing of one-tube mixtures, as well as rapid data analysis using an in-house pipeline. RESULTS NGS data demonstrated that both barcoded primer sets were useful to simultaneously capture multiple viral pathogens in cell culture materials or clinical specimens and verified that hexanucleotide primers captured as many viral sequences as hexamers did. Moreover, direct testing of clinical specimens using this improved hexanucleotide primer-based NGS approach provided further detailed genotypes of enteroviruses causing hand, foot, and mouth disease (HFMD) and identified other potential viruses or differentiated misdiagnosis events. CONCLUSION The improved barcoded oligonucleotide primer-based NGS approach is simplified, time saving, cost effective, and appropriate for direct identification of viral pathogens in clinical practice.
Collapse
Affiliation(s)
- Chun Hua Wang
- Key Laboratory for Medical Virology, National Health and Fam-ily Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Kai Nie
- Key Laboratory for Medical Virology, National Health and Fam-ily Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yi Zhang
- Key Laboratory for Medical Virology, National Health and Fam-ily Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ji Wang
- Key Laboratory for Medical Virology, National Health and Fam-ily Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shuai Feng Zhou
- Key Laboratory for Medical Virology, National Health and Fam-ily Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Center for Disease Prevention and Control of Hunan Province, Changsha 410005, Hunan, China
| | - Xin Na Li
- Key Laboratory for Medical Virology, National Health and Fam-ily Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hang Yu Zhou
- Key Laboratory for Medical Virology, National Health and Fam-ily Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shun Xiang Qi
- Institute for Viral Disease Control and Prevention, Center for Disease Control and Prevention of Hebei, Shijiazhuang 050000, Hebei, China
| | - Xue Jun Ma
- Key Laboratory for Medical Virology, National Health and Fam-ily Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
18
|
Ali R, Blackburn RM, Kozlakidis Z. Next-Generation Sequencing and Influenza Virus: A Short Review of the Published Implementation Attempts. HAYATI JOURNAL OF BIOSCIENCES 2016. [DOI: 10.1016/j.hjb.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
19
|
Zhao J, Liu J, Vemula SV, Lin C, Tan J, Ragupathy V, Wang X, Mbondji-wonje C, Ye Z, Landry ML, Hewlett I. Sensitive Detection and Simultaneous Discrimination of Influenza A and B Viruses in Nasopharyngeal Swabs in a Single Assay Using Next-Generation Sequencing-Based Diagnostics. PLoS One 2016; 11:e0163175. [PMID: 27658193 PMCID: PMC5033603 DOI: 10.1371/journal.pone.0163175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/02/2016] [Indexed: 11/18/2022] Open
Abstract
Reassortment of 2009 (H1N1) pandemic influenza virus (pdH1N1) with other strains may produce more virulent and pathogenic forms, detection and their rapid characterization is critical. In this study, we reported a “one-size-fits-all” approach using a next-generation sequencing (NGS) detection platform to extensively identify influenza viral genomes for diagnosis and determination of novel virulence and drug resistance markers. A de novo module and other bioinformatics tools were used to generate contiguous sequence and identify influenza types/subtypes. Of 162 archived influenza-positive patient specimens, 161(99.4%) were positive for either influenza A or B viruses determined using the NGS assay. Among these, 135(83.3%) were A(H3N2), 14(8.6%) were A(pdH1N1), 2(1.2%) were A(H3N2) and A(pdH1N1) virus co-infections and 10(6.2%) were influenza B viruses. Of the influenza A viruses, 66.7% of A(H3N2) viruses tested had a E627K mutation in the PB2 protein, and 87.8% of the influenza A viruses contained the S31N mutation in the M2 protein. Further studies demonstrated that the NGS assay could achieve a high level of sensitivity and reveal adequate genetic information for final laboratory confirmation. The current diagnostic platform allows for simultaneous identification of a broad range of influenza viruses, monitoring emerging influenza strains with pandemic potential that facilitating diagnostics and antiviral treatment in the clinical setting and protection of the public health.
Collapse
Affiliation(s)
- Jiangqin Zhao
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
- * E-mail: (JZ); (IH)
| | - Jikun Liu
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Sai Vikram Vemula
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Corinna Lin
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Jiying Tan
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Viswanath Ragupathy
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Xue Wang
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Christelle Mbondji-wonje
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Zhiping Ye
- DVP/OVRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Marie L. Landry
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520, United States of America
| | - Indira Hewlett
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
- * E-mail: (JZ); (IH)
| |
Collapse
|
20
|
Okamatsu M, Hiono T, Kida H, Sakoda Y. Recent developments in the diagnosis of avian influenza. Vet J 2016; 215:82-6. [DOI: 10.1016/j.tvjl.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/25/2016] [Accepted: 05/12/2016] [Indexed: 01/27/2023]
|
21
|
Liu J, Zhao J, Petrochenko P, Zheng J, Hewlett I. Sensitive detection of influenza viruses with Europium nanoparticles on an epoxy silica sol-gel functionalized polycarbonate-polydimethylsiloxane hybrid microchip. Biosens Bioelectron 2016; 86:150-155. [PMID: 27362253 DOI: 10.1016/j.bios.2016.06.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/23/2016] [Accepted: 06/14/2016] [Indexed: 12/01/2022]
Abstract
In an effort to develop new tools for diagnosing influenza in resource-limited settings, we fabricated a polycarbonate (PC)-polydimethylsiloxane (PDMS) hybrid microchip using a simple epoxy silica sol-gel coating/bonding method and employed it in sensitive detection of influenza virus with Europium nanoparticles (EuNPs). The incorporation of sol-gel material in device fabrication provided functionalized channel surfaces ready for covalent immobilization of primary antibodies and a strong bonding between PDMS substrates and PC supports without increasing background fluorescence. In microchip EuNP immunoassay (µENIA) of inactivated influenza viruses, replacing native PDMS microchips with hybrid microchips allowed the achievement of a 6-fold increase in signal-to-background ratio, a 12-fold and a 6-fold decreases in limit-of-detection (LOD) in influenza A and B tests respectively. Using influenza A samples with known titers, the LOD of influenza µENIA on hybrid microchips was determined to be ~10(4) TCID50 titer/mL and 10(3)-10(4) EID50 titer/mL. A comparison test indicated that the sensitivity of influenza µENIA enhanced using the hybrid microchips even surpassed that of a commercial laboratory influenza ELISA test. In addition to the sensitivity improvement, assay variation was clearly reduced when hybrid microchips instead of native PDMS microchips were used in the µENIA tests. Finally, infectious reference viruses and nasopharyngeal swab patient specimens were successfully tested using μENIA on hybrid microchip platforms, demonstrating the potential of this unique microchip nanoparticle assay in clinical diagnosis of influenza. Meanwhile, the tests showed the necessity of using nucleic acid confirmatory tests to clarify ambiguous test results obtained from prototype or developed point-of-care testing devices for influenza diagnosis.
Collapse
Affiliation(s)
- Jikun Liu
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States.
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Peter Petrochenko
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Jiwen Zheng
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Indira Hewlett
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States.
| |
Collapse
|
22
|
Vemula SV, Zhao J, Liu J, Wang X, Biswas S, Hewlett I. Current Approaches for Diagnosis of Influenza Virus Infections in Humans. Viruses 2016; 8:96. [PMID: 27077877 PMCID: PMC4848591 DOI: 10.3390/v8040096] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Despite significant advancement in vaccine and virus research, influenza continues to be a major public health concern. Each year in the United States of America, influenza viruses are responsible for seasonal epidemics resulting in over 200,000 hospitalizations and 30,000–50,000 deaths. Accurate and early diagnosis of influenza viral infections are critical for rapid initiation of antiviral therapy to reduce influenza related morbidity and mortality both during seasonal epidemics and pandemics. Several different approaches are currently available for diagnosis of influenza infections in humans. These include viral isolation in cell culture, immunofluorescence assays, nucleic acid amplification tests, immunochromatography-based rapid diagnostic tests, etc. Newer diagnostic approaches are being developed to overcome the limitations associated with some of the conventional detection methods. This review discusses diagnostic approaches currently available for detection of influenza viruses in humans.
Collapse
Affiliation(s)
- Sai Vikram Vemula
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Jikun Liu
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Xue Wang
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Santanu Biswas
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Indira Hewlett
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
23
|
Amen O, Vemula SV, Zhao J, Ibrahim R, Hussein A, Hewlett IK, Moussa S, Mittal SK. Identification and characterization of a highly pathogenic H5N1 avian influenza A virus during an outbreak in vaccinated chickens in Egypt. Virus Res 2015; 210:337-43. [PMID: 26363196 DOI: 10.1016/j.virusres.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/07/2015] [Accepted: 09/04/2015] [Indexed: 11/19/2022]
Abstract
Highly pathogenic avian influenza A (HPAI) H5N1 viruses continue to be a major veterinary and public health problem in Egypt. Continued surveillance of these viruses is necessary to devise strategies to control the spread of the virus and to monitor its evolutionary patterns. This is a report of the identification of a variant strain of HPAI H5N1 virus during an outbreak in 2010 in vaccinated chicken flocks in a poultry farm in Assiut, Egypt. Vaccination of chickens with an oil-emulsified inactivated A/chicken/Mexico/232/94 (H5N2) vaccine induced high levels of hemagglutination inhibition (HI) antibody titers reaching up to 9 log2. However, all flocks irrespective of the number of vaccine doses and the resultant HI titer levels came down with severe influenza infections. The qRT-PCR and rapid antigen test confirmed the influenza virus to be from H5N1 subtype. Sequencing of the hemagglutinin (HA) gene fragment from ten independent samples demonstrated that a single H5N1 strain was involved. This strain belonged to clade 2.2.1 and had several mutations in the receptor-binding site of the HA protein, thereby producing a variant strain of HPAI H5N1 virus which was antigenically different from the parent clade 2.2.1 virus circulating in Egypt at that time. In order to define the variability in HPAI H5N1 viruses over time in Egypt, we sequenced another H5N1 virus that was causing infections in chickens in 2014. Phylogenetic analysis revealed that both viruses had further distanced from the parent virus circulating during 2010. This study highlights that the antigenic mutations in HPAI H5N1 viruses represent a definitive challenge for the development of an effective vaccine for poultry. Overall, the results emphasize the need for continued surveillance of H5N1 outbreaks and extensive characterization of virus isolates from vaccinated and non-vaccinated poultry populations to better understand genetic changes and their implications.
Collapse
Affiliation(s)
- O Amen
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; Poultry Diseases Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - S V Vemula
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - J Zhao
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - R Ibrahim
- Poultry Diseases Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - A Hussein
- Department of Animal Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - I K Hewlett
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - S Moussa
- Poultry Diseases Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - S K Mittal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|