1
|
Bermudez TA, Brannon JR, Dudipala N, Reasoner S, Morales G, Wiebe M, Cecala M, DaCosta M, Beebout C, Amir O, Hadjifrangiskou M. Raising the alarm: fosfomycin resistance associated with non-susceptible inner colonies imparts no fitness cost to the primary bacterial uropathogen. Antimicrob Agents Chemother 2024; 68:e0080323. [PMID: 38078906 PMCID: PMC10777853 DOI: 10.1128/aac.00803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/11/2023] [Indexed: 01/11/2024] Open
Abstract
IMPORTANCE While fosfomycin resistance is rare, the observation of non-susceptible subpopulations among clinical Escherichia coli isolates is a common phenomenon during antimicrobial susceptibility testing (AST) in American and European clinical labs. Previous evidence suggests that mutations eliciting this phenotype are of high biological cost to the pathogen during infection, leading to current recommendations of neglecting non-susceptible colonies during AST. Here, we report that the most common route to fosfomycin resistance, as well as novel routes described in this work, does not impair virulence in uropathogenic E. coli, the major cause of urinary tract infections, suggesting a re-evaluation of current susceptibility guidelines is warranted.
Collapse
Affiliation(s)
- Tomas A. Bermudez
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John R. Brannon
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Seth Reasoner
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Grace Morales
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michelle Wiebe
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mia Cecala
- Vanderbilt University, Nashville, Tennessee, USA
| | | | - Connor Beebout
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Omar Amir
- Vanderbilt University, Nashville, Tennessee, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Infection, Immunology & Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Grilo T, Freire S, Miguel B, Martins LN, Menezes MF, Nordmann P, Poirel L, Sousa MJR, Aires-de-Sousa M. Occurrence of plasmid-mediated fosfomycin resistance (fos genes) among Escherichia coli isolates, Portugal. J Glob Antimicrob Resist 2023; 35:342-346. [PMID: 37553021 DOI: 10.1016/j.jgar.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVES To evaluate the occurrence of plasmid-mediated fos genes among fosfomycin-resistant Escherichia coli isolates collected from patients in Lisbon, Portugal, and characterize the fos-positive strains. METHODS A total of 19 186 E. coli isolates were prospectively collected between April 2022 and January 2023 from inpatients and outpatients at a private laboratory in Lisbon. Fosfomycin resistance was initially assessed by semi-automated systems and further confirmed by the disc diffusion method. Resistant isolates were investigated for plasmid-mediated fos genes (fosA1-fosA10, fosC and fosL1-fosL2) and extended-spectrum beta-lactamases (ESBLs) by PCR and sequencing. Multilocus sequence typing was performed to evaluate the clonal relationship among fos-carrying isolates. RESULTS Out of the 19 186 E. coli isolates, 100 were fosfomycin-resistant (0.5%), out of which 15 carried a fosA-like gene (15%). The most prevalent fosfomycin-resistant determinant was fosA3 (n = 11), followed by fosA4 (n = 4). Among the 15 FosA-producing isolates, 10 co-produced an ESBL (67%), being either of CTX-M-15 (n = 8) or CTX-M-14 (n = 2) types. The fosA3 gene was carried on IncFIIA-, IncFIB-, and IncY-type plasmids, whereas fosA4 was always located on IncFIB-type plasmids. Most FosA4-producing isolates belonged to a single sequence type ST2161, whereas isolates carrying the fosA3 gene were distributed into nine distinct genetic backgrounds. CONCLUSION The prevalence of fosfomycin-resistant E. coli isolates is still low in Portugal. Notably, 15% of fosfomycin-resistant isolates harbour a transferable fosA gene, among which there is a high rate of ESBL producers, turning traditional empirical therapeutical options used in Portugal (fosfomycin and amoxicillin-clavulanic acid) ineffective.
Collapse
Affiliation(s)
- Teresa Grilo
- Laboratory of Molecular Biology, Portuguese Red Cross, Lisboa, Portugal
| | - Samanta Freire
- Laboratory of Molecular Biology, Portuguese Red Cross, Lisboa, Portugal
| | - Bruno Miguel
- Centro Medicina Laboratorial - Germano de Sousa, Lisboa, Portugal
| | | | - Maria Favila Menezes
- Centro Medicina Laboratorial - Germano de Sousa, Lisboa, Portugal; Hospital CUF Descobertas, Lisboa, Portugal
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Maria José Rego Sousa
- Centro Medicina Laboratorial - Germano de Sousa, Lisboa, Portugal; Hospital CUF Descobertas, Lisboa, Portugal
| | - Marta Aires-de-Sousa
- Escola Superior de Saúde da Cruz Vermelha Portuguesa - Lisboa (ESSCVP-Lisboa), Lisboa, Portugal; Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa (UNL), Oeiras, Portugal.
| |
Collapse
|
3
|
Mattioni Marchetti V, Hrabak J, Bitar I. Fosfomycin resistance mechanisms in Enterobacterales: an increasing threat. Front Cell Infect Microbiol 2023; 13:1178547. [PMID: 37469601 PMCID: PMC10352792 DOI: 10.3389/fcimb.2023.1178547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial resistance is well-known to be a global health and development threat. Due to the decrease of effective antimicrobials, re-evaluation in clinical practice of old antibiotics, as fosfomycin (FOS), have been necessary. FOS is a phosphonic acid derivate that regained interest in clinical practice for the treatment of complicated infection by multi-drug resistant (MDR) bacteria. Globally, FOS resistant Gram-negative pathogens are raising, affecting the public health, and compromising the use of the antibiotic. In particular, the increased prevalence of FOS resistance (FOSR) profiles among Enterobacterales family is concerning. Decrease in FOS effectiveness can be caused by i) alteration of FOS influx inside bacterial cell or ii) acquiring antimicrobial resistance genes. In this review, we investigate the main components implicated in FOS flow and report specific mutations that affect FOS influx inside bacterial cell and, thus, its effectiveness. FosA enzymes were identified in 1980 from Serratia marcescens but only in recent years the scientific community has started studying their spread. We summarize the global epidemiology of FosA/C2/L1-2 enzymes among Enterobacterales family. To date, 11 different variants of FosA have been reported globally. Among acquired mechanisms, FosA3 is the most spread variant in Enterobacterales, followed by FosA7 and FosA5. Based on recently published studies, we clarify and represent the molecular and genetic composition of fosA/C2 genes enviroment, analyzing the mechanisms by which such genes are slowly transmitting in emerging and high-risk clones, such as E. coli ST69 and ST131, and K. pneumoniae ST11. FOS is indicated as first line option against uncomplicated urinary tract infections and shows remarkable qualities in combination with other antibiotics. A rapid and accurate identification of FOSR type in Enterobacterales is difficult to achieve due to the lack of commercial phenotypic susceptibility tests and of rapid systems for MIC detection.
Collapse
Affiliation(s)
- Vittoria Mattioni Marchetti
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| |
Collapse
|
4
|
Lysitsas M, Chatzipanagiotidou I, Billinis C, Valiakos G. Fosfomycin Resistance in Bacteria Isolated from Companion Animals (Dogs and Cats). Vet Sci 2023; 10:vetsci10050337. [PMID: 37235420 DOI: 10.3390/vetsci10050337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Fosfomycin is an old antibacterial agent, which is currently used mainly in human medicine, in uncomplicated Urinary Tract Infections (UTIs). The purpose of this review is to investigate the presence and the characteristics of Fosfomycin resistance in bacteria isolated from canine or feline samples, estimate the possible causes of the dissemination of associated strains in pets, and underline the requirements of prospective relevant studies. Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines were used for the search of current literature in two databases. A total of 33 articles were finally included in the review. Relevant data were tracked down, assembled, and compared. Referring to the geographical distribution, Northeast Asia was the main area of origin of the studies. E. coli was the predominant species detected, followed by other Enterobacteriaceae, Staphylococci, and Pseudomonas spp. FosA and fosA3 were the more frequently encountered Antimicrobial Resistance Genes (ARGs) in the related Gram-negative isolates, while fosB was regularly encountered in Gram-positive ones. The majority of the strains were multidrug-resistant (MDR) and co-carried resistance genes against several classes of antibiotics and especially β-Lactams, such as blaCTX-M and mecA. These results demonstrate the fact that the cause of the spreading of Fosfomycin-resistant bacteria among pets could be the extended use of other antibacterial agents, that promote the prevalence of MDR, epidemic strains among an animal population. Through the circulation of these strains into a community, a public health issue could arise. Further research is essential though, for the comprehensive consideration of the issue, as the current data are limited.
Collapse
Affiliation(s)
- Marios Lysitsas
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece
| | | | | | - George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece
| |
Collapse
|
5
|
Analysis of Whole-Genome Sequences of Pathogenic Gram-Positive and Gram-Negative Isolates from the Same Hospital Environment to Investigate Common Evolutionary Trends Associated with Horizontal Gene Exchange, Mutations and DNA Methylation Patterning. Microorganisms 2023; 11:microorganisms11020323. [PMID: 36838287 PMCID: PMC9961978 DOI: 10.3390/microorganisms11020323] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Hospital-acquired infections are a generally recognized problem for healthcare professionals. Clinical variants of Gram-negative and Gram-positive pathogens are characterized with enhanced antibiotic resistance and virulence due to mutations and the horizontal acquisition of respective genetic determinants. In this study, two Escherichia coli, two Klebsiella pneumoniae, three Pseudomonas aeruginosa, two Staphylococcus aureus, one Staphylococcus epidermidis and one Streptococcus pneumoniae showing broad spectra of antibiotic resistance were isolated from patients suffering from nosocomial infections in a local hospital in Almaty, Kazakhstan. The aim of the study was to compare general and species-specific pathways of the development of virulence and antibiotic resistance through opportunistic pathogens causing hospital-acquired infections. The whole-genome PacBio sequencing of the isolates allowed for the genotyping and identification of antibiotic resistance and virulence genetic determinants located in the chromosomes, plasmids and genomic islands. It was concluded that long-read sequencing is a useful tool for monitoring the epidemiological situation in hospitals. Marker antibiotic resistance mutations common for different microorganisms were identified, which were acquired due to antibiotic-selective pressure in the same clinical environment. The genotyping and identification of strain-specific DNA methylation motifs were found to be promising in estimating the risks associated with hospital infection outbreaks and monitoring the distribution and evolution of nosocomial pathogens.
Collapse
|
6
|
Turner AK, Yasir M, Bastkowski S, Telatin A, Page AJ, Charles IG, Webber MA. A genome-wide analysis of Escherichia coli responses to fosfomycin using TraDIS-Xpress reveals novel roles for phosphonate degradation and phosphate transport systems. J Antimicrob Chemother 2021; 75:3144-3151. [PMID: 32756955 PMCID: PMC7566553 DOI: 10.1093/jac/dkaa296] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Fosfomycin is an antibiotic that has seen a revival in use due to its unique mechanism of action and efficacy against isolates resistant to many other antibiotics. In Escherichia coli, fosfomycin often selects for loss-of-function mutations within the genes encoding the sugar importers, GlpT and UhpT. There has, however, not been a genome-wide analysis of the basis for fosfomycin susceptibility reported to date. Methods Here we used TraDIS-Xpress, a high-density transposon mutagenesis approach, to assay the role of all genes in E. coli involved in fosfomycin susceptibility. Results The data confirmed known fosfomycin susceptibility mechanisms and identified new ones. The assay was able to identify domains within proteins of importance and revealed essential genes with roles in fosfomycin susceptibility based on expression changes. Novel mechanisms of fosfomycin susceptibility that were identified included those involved in glucose metabolism and phosphonate catabolism (phnC-M), and the phosphate importer, PstSACB. The impact of these genes on fosfomycin susceptibility was validated by measuring the susceptibility of defined inactivation mutants. Conclusions This work reveals a wider set of genes that contribute to fosfomycin susceptibility, including core sugar metabolism genes and two systems involved in phosphate uptake and metabolism previously unrecognized as having a role in fosfomycin susceptibility.
Collapse
Affiliation(s)
- A Keith Turner
- Quadram Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UQ, UK
| | - Muhammad Yasir
- Quadram Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UQ, UK
| | - Sarah Bastkowski
- Quadram Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UQ, UK
| | - Andrea Telatin
- Quadram Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UQ, UK
| | - Andrew J Page
- Quadram Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UQ, UK
| | - Ian G Charles
- Quadram Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UQ, UK.,Norwich Medical School, Norwich Research Park, Colney Lane, Norwich NR4 7TJ, UK
| | - Mark A Webber
- Quadram Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UQ, UK.,Norwich Medical School, Norwich Research Park, Colney Lane, Norwich NR4 7TJ, UK
| |
Collapse
|
7
|
Prevalence, detection and characterisation of fosfomycin-resistant Escherichia coli strains carrying fosA genes in Community of Madrid, Spain. J Glob Antimicrob Resist 2021; 25:137-141. [PMID: 33757820 DOI: 10.1016/j.jgar.2021.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/10/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The aim of this this study was to describe the presence of different variants of the fosA gene in fosfomycin-resistant Escherichia coli strains in Madrid, Spain. METHODS fos genes were searched for in 55 E. coli strains collected from seven representative hospitals located in Madrid. A phenotypic screening test was performed following the disk diffusion method with sodium phosphonoformate added as described by Nakamura et al. Additionally, a molecular study based on PCR was used to confirm the screening results. Positive strains for fos genes were further subjected to whole-genome sequencing (WGS). RESULTS Phenotypic screening was positive in 9/55 strains (16.4%), although genotypic detection was positive in only 3 (fosA3, fosA4 and fosA6). Thus, the prevalence of fos genes in Madrid was 5.5% (3/55). WGS data were not available for the fosA6-positive strain. One isolate with fosA3 (ST69) carried a blaCTX-M-55 gene and seven virulence genes (air, eilA, iha, iss, lpfA, sat and senB). The fosA4-positive isolate (ST4038) carried the virulence genes iss, lpfA, iroN and mchF. Both fos genes were located between two IS26 mobile elements of a plasmid. CONCLUSION We detected the presence of different variants of plasmid-mediated fosA genes in fosfomycin-resistant E. coli strains in Madrid, Spain. Despite the few reports in Europe, it would be of interest to monitor the spread of these acquired resistance genes.
Collapse
|
8
|
Vianello MA, Cardoso B, Fuentes-Castillo D, Moura Q, Esposito F, Fuga B, Lincopan N, Egito EST. International high-risk clone of fluoroquinolone-resistant Escherichia coli O15:H1-D-ST393 in remote communities of Brazilian Amazon. INFECTION GENETICS AND EVOLUTION 2021; 91:104808. [PMID: 33737229 DOI: 10.1016/j.meegid.2021.104808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/07/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
The global dissemination of multidrug-resistant Escherichia coli lineages belonging to high- risk clones poses a significant public health threat. Herein we report the identification and genomic profiling of two multidrug-resistant E. coli strains [BL-II-03(2) and BL-II-11(3)] belonging to the O15:H1-D-ST393 (clonal complex 31) worldwide spread clone, isolated from fecal samples of indigenous peoples belonging to two different ethnic groups of remote communities of Brazilian Amazon. Genomic analysis revealed genes and mutations conferring resistance to β-lactams [blaTEM-1], aminoglycosides [aadA5, aph(3″)-Ib, aph(6)-Id], tetracyclines [tetB], sulfamethoxazole/trimethoprim [sul1, sul2, dfrA17], and fluoroquinolones [gyrA (D87N, S83L), parC (S80I, S57T), parE (L416F)]; and presence of IncQ1, IncFIA, and IncFIB(pB171) plasmids. On the other hand, phylogenomics of globally reported E. coli ST393 assigned E. coli strains BL-II-03(2) and BL-II-11(3) to a cluster comprising human isolates from Australia, Canada, China, Sweden, and United States of America. These results might provide valuable information for understanding dissemination of intercontinental multidrug-resistant clones in remote communities with low levels of antibiotic exposure.
Collapse
Affiliation(s)
- Marco Aurelio Vianello
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Brenda Cardoso
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Danny Fuentes-Castillo
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculty of Pharmacy, Universidade of São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculty of Pharmacy, Universidade of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculty of Pharmacy, Universidade of São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
9
|
Zurfluh K, Treier A, Schmitt K, Stephan R. Mobile fosfomycin resistance genes in Enterobacteriaceae-An increasing threat. Microbiologyopen 2020; 9:e1135. [PMID: 33128341 PMCID: PMC7755807 DOI: 10.1002/mbo3.1135] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial resistance is one of the major threats to the health and welfare of both humans and animals. The shortage of new antimicrobial agents has led to the re-evaluation of old antibiotics such as fosfomycin as a potential regimen for treating multidrug-resistant bacteria especially extended-spectrum-beta-lactamase- and carbapenemase-producing Enterobacteriaceae. Fosfomycin is a broad-spectrum bactericidal antibiotic that inhibits the initial step of the cell wall biosynthesis. Fosfomycin resistance can occur due to mutation in the drug uptake system or by the acquisition of fosfomycin-modifying enzymes. In this review, we focus on mobile fosfomycin-resistant genes encoding glutathione-S-transferase which are mainly responsible for fosfomycin resistance in Enterobacteriaceae, that is, fosA and its subtypes, fosC2, and the recently described fosL1-L2. We summarized the proposed origins of the different resistance determinants and highlighted the different plasmid types which are attributed to the dissemination of fosfomycin-modifying enzymes. Thereby, IncF and IncN plasmids play a predominant role. The detection of mobile fosfomycin-resistant genes in Enterobacteriaceae has increased in recent years. Similar to the situation in (East) Asia, the most frequently detected fosfomycin-resistant gene in Europe is fosA3. Mobile fosfomycin-resistant genes have been detected in isolates of human, animal, food, and environmental origin which leads to a growing concern regarding the risk of spread of such bacteria, especially Escherichia coli and Salmonella, at the human-animal-environment interface.
Collapse
Affiliation(s)
- Katrin Zurfluh
- Institute for Food Safety and HygieneVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Andrea Treier
- Institute for Food Safety and HygieneVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Kira Schmitt
- Institute for Food Safety and HygieneVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Roger Stephan
- Institute for Food Safety and HygieneVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
10
|
The importance of using whole genome sequencing and extended spectrum beta-lactamase selective media when monitoring antimicrobial resistance. Sci Rep 2020; 10:19880. [PMID: 33199763 PMCID: PMC7670430 DOI: 10.1038/s41598-020-76877-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
To tackle the problem of antimicrobial resistance (AMR) surveillance programmes are in place within Europe applying phenotypic methods, but there are plans for implementing whole genome sequencing (WGS). We tested the benefits of WGS using Escherichia coli collected from pig surveillance performed between 2013 to 2017. WGS was performed on 498 E. coli producing ESBL and AmpC enzymes, recovered from pig caeca on MacConkey + cefotaxime (McC + CTX) agar, as recommended by the European Commission, or ESBL agar, used additionally by United Kingdom. Our results indicated WGS was extremely useful for monitoring trends for specific ESBL genes, as well as a plethora of AMR genotypes, helping to establish their prevalence and co-linkage to certain plasmids. Recovery of isolates with multi-drug resistance (MDR) genotypes was lower from McC + CTX than ESBL agar. The most widespread ESBL genes belonged to the blaCTX-M family. blaCTX-M-1 dominated all years, and was common in two highly stable IncI1 MDR plasmids harbouring (blaCTX-M-1,sul2, tetA) or (blaCTX-M-1, aadA5, sul2, dfrA17), in isolates which were phylogenetically dissimilar, suggesting plasmid transmission. Therefore, WGS provided a wealth of data on prevalence of AMR genotypes and plasmid persistence absent from phenotypic data and, also, demonstrated the importance of culture media for detecting ESBL E. coli.
Collapse
|
11
|
Loras C, Mendes AC, Peixe L, Novais Â, Alós JI. Escherichia coli resistant to fosfomycin from urinary tract infections: Detection of the fosA3 gene in Spain. J Glob Antimicrob Resist 2020; 21:414-416. [DOI: 10.1016/j.jgar.2020.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
|
12
|
Demirci-Duarte S, Unalan-Altintop T, Eser OK, Cakar A, Altun B, Sancak B, Gur D. Prevalence of O25b-ST131 clone and fosfomycin resistance in urinary Escherichia coli isolates and their relation to CTX-M determinant. Diagn Microbiol Infect Dis 2020; 98:115098. [PMID: 32603974 DOI: 10.1016/j.diagmicrobio.2020.115098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/30/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
Escherichia coli ST131 clone and H30-R/H30-Rx subclones are the most common multidrug-resistant high-risk clones in UTIs. Antimicrobial susceptibility of fosfomycin was compared to five other agents in consecutively collected 299 urinary isolates using the agar dilution method. Prevalence of the ST131 clone and the occurrence of blaCTX-M were also investigated. Overall resistance to fosfomycin, cefuroxime, and ceftriaxone were 2.7%, 35.4%, and 30.1% respectively. fosA, fosA3, and fosC2 genes were not detected. In isolates resistant to ciprofloxacin (34.7%), the prevalence of ST131 clone was 31.7%, of which 81.8% belonged to H30-R and 66.7% to H30-Rx subclones. None of the isolates of the ST131 clone were resistant to fosfomycin. However, blaCTX-M occurred in 57.6% of the isolates among this clone, 62.9% in H30-R and 68.2% in H30-Rx subclones. The results of this study suggest that fosfomycin resistance is not prevalent in urinary isolates, however, blaCTX-Mpositive ST131 clone is quite common.
Collapse
Affiliation(s)
- Selay Demirci-Duarte
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey.
| | - Tugce Unalan-Altintop
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
| | - Ozgen Koseoglu Eser
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
| | - Aslı Cakar
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
| | - Belgin Altun
- Hacettepe University Hospital, Central Microbiology Laboratory, Ankara, Turkey
| | - Banu Sancak
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
| | - Deniz Gur
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
| |
Collapse
|
13
|
Seok H, Choi JY, Wi YM, Park DW, Peck KR, Ko KS. Fosfomycin Resistance in Escherichia coli Isolates from South Korea and in vitro Activity of Fosfomycin Alone and in Combination with Other Antibiotics. Antibiotics (Basel) 2020; 9:antibiotics9030112. [PMID: 32155809 PMCID: PMC7148487 DOI: 10.3390/antibiotics9030112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
We investigated fosfomycin susceptibility in Escherichia coli clinical isolates from South Korea, including community-onset, hospital-onset, and long-term care facility (LTCF)-onset isolates. The resistance mechanisms and genotypes of fosfomycin-resistant isolates were also identified. Finally, the in vitro efficacy of combinations of fosfomycin with other antibiotics were examined in susceptible or extended spectrum β-lactamase (ESBL)-producing E. coli isolates. The fosfomycin resistance rate was 6.7% and was significantly higher in LTCF-onset isolates than community-onset and hospital-onset isolates. Twenty-one sequence types (STs) were identified among 19 fosfomycin-resistant E. coli isolates, showing diverse genotypes. fosA3 was found in only two isolates, and diverse genetic variations were identified in three genes associated with fosfomycin resistance, namely, GlpT, UhpT, and MurA. Some fosfomycin-resistant E. coli isolates carried no mutations. In vitro time-kill assays showed that fosfomycin alone did not exhibit an excellent killing activity, compared with ciprofloxacin in susceptible isolates and with ertapenem in ESBL producers. However, combining fosfomycin with cefixime or piperacillin-tazobactam eradicated susceptible or ESBL-producing isolates, respectively, even with 0.5× minimum inhibitory concentrations. Overall, we found a relatively high fosfomycin resistance rate in E. coli isolates from South Korea. Based on their genotypes and resistance mechanisms, most of the fosfomycin-resistant E. coli isolates might occur independently. Antibiotic combinations with fosfomycin could be a suitable therapeutic option for infections caused by E. coli isolates.
Collapse
Affiliation(s)
- Hyeri Seok
- Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea; (H.S.); (D.W.P.)
| | - Ji Young Choi
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Yu Mi Wi
- Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea;
| | - Dae Won Park
- Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea; (H.S.); (D.W.P.)
| | - Kyong Ran Peck
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
- Correspondence: ; Tel.: +82-31-299-6223
| |
Collapse
|
14
|
Fosfomycin resistance mediated by fos genes remains rare among extended-spectrum beta-lactamase-producing Escherichia coli clinical isolates recovered from the urine of patients evaluated at Canadian hospitals (CANWARD, 2007-2017). Diagn Microbiol Infect Dis 2019; 96:114962. [PMID: 31859022 DOI: 10.1016/j.diagmicrobio.2019.114962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/30/2019] [Accepted: 12/02/2019] [Indexed: 11/22/2022]
Abstract
Among 162 isolates of extended-spectrum beta-lactamase-(ESBL)-producing Escherichia coli recovered from the urine of Canadian patients (2007-2017), five (3.1%) were not susceptible in vitro to fosfomycin (MIC ≥128 μg/mL). These isolates underwent whole genome sequencing to assess for the presence of fos genes. The fosA3 gene was detected in one isolate.
Collapse
|
15
|
Elliott ZS, Barry KE, Cox HL, Stoesser N, Carroll J, Vegesana K, Kotay S, Sheppard AE, Wailan A, Crook DW, Parikh H, Mathers AJ. The Role of fosA in Challenges with Fosfomycin Susceptibility Testing of Multispecies Klebsiella pneumoniae Carbapenemase-Producing Clinical Isolates. J Clin Microbiol 2019; 57:e00634-19. [PMID: 31340992 PMCID: PMC6760957 DOI: 10.1128/jcm.00634-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/08/2019] [Indexed: 01/27/2023] Open
Abstract
With multidrug-resistant (MDR) Enterobacterales on the rise, a nontoxic antimicrobial agent with a unique mechanism of action such as fosfomycin seems attractive. However, establishing accurate fosfomycin susceptibility testing for non-Escherichia coli isolates in a clinical microbiology laboratory remains problematic. We evaluated fosfomycin susceptibility by multiple methods with 96 KPC-producing clinical isolates of multiple strains and species collected at a single center between 2008 and 2016. In addition, we assessed the presence of fosfomycin resistance genes from whole-genome sequencing (WGS) data using NCBI's AMRFinder and custom HMM search. Susceptibility testing was performed using a glucose-6-phosphate-supplemented fosfomycin Etest and Kirby-Bauer disk diffusion (DD) assays, and the results were compared to those obtained by agar dilution. Clinical Laboratory and Standards Institute (CLSI) breakpoints for E. coli were applied for interpretation. Overall, 63% (60/96) of isolates were susceptible by Etest, 70% (67/96) by DD, and 88% (84/96) by agar dilution. fosA was detected in 80% (70/88) of previously sequenced isolates, with species-specific associations and alleles, and fosA-positive isolates were associated with higher MIC distributions. Disk potentiation testing was performed using sodium phosphonoformate to inhibit fosA and showed significant increases in the zone diameter of DD testing for isolates that were fosA positive compared to those that were fosA negative. The addition of sodium phosphonoformate (PPF) corrected 10/14 (71%) major errors in categorical agreement with agar dilution. Our results indicate that fosA influences the inaccuracy of susceptibility testing by methods readily available in a clinical laboratory compared to agar dilution. Further research is needed to determine the impact of fosA on clinical outcomes.
Collapse
Affiliation(s)
- Zachary S Elliott
- Department of Pharmacy Services, University of Virginia Health System, Charlottesville, Virginia, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Katie E Barry
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Heather L Cox
- Department of Pharmacy Services, University of Virginia Health System, Charlottesville, Virginia, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Nicole Stoesser
- Modernizing Medical Microbiology Consortium, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Joanne Carroll
- Clinical Microbiology, Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Kasi Vegesana
- Health Information & Technology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Shireen Kotay
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Anna E Sheppard
- Modernizing Medical Microbiology Consortium, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Alex Wailan
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Derrick W Crook
- Modernizing Medical Microbiology Consortium, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, University of Oxford in partnership with Public Health England, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Hardik Parikh
- School of Medicine Research Computing, University of Virginia, Charlottesville, Virginia, USA
| | - Amy J Mathers
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
- Clinical Microbiology, Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
16
|
Lupo A, Saras E, Madec JY, Haenni M. Emergence of blaCTX-M-55 associated with fosA, rmtB and mcr gene variants in Escherichia coli from various animal species in France. J Antimicrob Chemother 2019; 73:867-872. [PMID: 29340602 DOI: 10.1093/jac/dkx489] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/29/2017] [Indexed: 01/19/2023] Open
Abstract
Objectives In Asian countries, blaCTX-M-55 is the second most common ESBL-encoding gene. blaCTX-M-55 frequently co-localizes with fosA and rmtB genes on epidemic plasmids, which remain sporadic outside Asia. During 2010-13, we investigated CTX-M-55-producing Escherichia coli isolates and their co-resistance to fosfomycin, aminoglycosides, fluoroquinolones and colistin as part of a global survey of ESBLs in animals in France. Methods blaCTX-M-55, fosA, rmtB and plasmidic quinolone and colistin resistance genes were characterized by PCR, sequencing and hybridization experiments. Plasmids were classified according to their incompatibility groups and subtypes. Genotyping was performed by MLST and repetitive extragenic palindromic sequence-based PCR. Results Twenty-one E. coli isolates from bovines (n = 16), dogs (n = 2), horses (n = 2) and a monkey harboured blaCTX-M-55, were MDR and belonged to ST744 (n = 9) and 10 other clones. blaCTX-M-55 was mostly located on IncF (n = 19), but also on IncI1 (n = 2) plasmids. On IncF33:A1:B1 plasmids, blaCTX-M-55 co-localized with the rmtB and aac(6')-Ib genes and in one isolate with the fosA3 allele. Ten IncF46:A-:B20 plasmids, which were found in different clones from unrelated animals, also carried the mcr-3 gene. blaCTX-M-55-carrying IncF18:A-:B1 plasmids were found in different animal species from distinct locations and periods, and one additionally carried the fosA4 gene. One isolate harboured the mcr-1 gene, which did not co-localize with blaCTX-M-55. Conclusions A large diversity of E. coli clones and plasmid types supported the spread of blaCTX-M-55, together with atypical resistance genes, in various animal species in France. fosA and rmtB genes are emerging among animals in Europe and this issue is of concern for public health.
Collapse
Affiliation(s)
- Agnese Lupo
- Université de Lyon - ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Estelle Saras
- Université de Lyon - ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Jean-Yves Madec
- Université de Lyon - ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- Université de Lyon - ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| |
Collapse
|
17
|
Cottell JL, Webber MA. Experiences in fosfomycin susceptibility testing and resistance mechanism determination in Escherichia coli from urinary tract infections in the UK. J Med Microbiol 2019; 68:161-168. [DOI: 10.1099/jmm.0.000901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Jennifer L. Cottell
- 1Department of Microbiology, Northampton General Hospital NHS Trust, Cliftonville, Northampton NN1 5BD, UK
- 2Quadram Institute, Norwich Research Park, Colney Lane, Norwich, NR4 7UA, UK
- †Present address: Micropathology Ltd, University of Warwick Science Park, Venture Centre, Sir William Lyons Road, Coventry CV4 7EZ, UK
| | - Mark A. Webber
- 2Quadram Institute, Norwich Research Park, Colney Lane, Norwich, NR4 7UA, UK
- 3Norwich Medical School, Norwich Research Park, Colney Lane, Norwich NR4 7TJ, UK
| |
Collapse
|
18
|
Benzerara Y, Gallah S, Hommeril B, Genel N, Decré D, Rottman M, Arlet G. Emergence of Plasmid-Mediated Fosfomycin-Resistance Genes among Escherichia coli Isolates, France. Emerg Infect Dis 2018; 23:1564-1567. [PMID: 28820368 PMCID: PMC5572872 DOI: 10.3201/eid2309.170560] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
FosA, a glutathione S-transferase that inactivates fosfomycin, has been reported as the cause of enzymatic resistance to fosfomycin. We show that multiple lineages of FosA-producing extended spectrum β-lactamase Escherichia coli have circulated in France since 2012, potentially reducing the efficacy of fosfomycin in treating infections with antimicrobial drug–resistant gram-negative bacilli.
Collapse
|
19
|
ESBL-producing Escherichia coli
and Its Rapid Rise among Healthy People. Food Saf (Tokyo) 2017; 5:122-150. [PMID: 32231938 DOI: 10.14252/foodsafetyfscj.2017011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
Since around the 2000s, Escherichia coli (E. coli) resistant to both oxyimino-cephalosporins and fluoroquinolones has remarkably increased worldwide in clinical settings. The kind of E. coli is also identified in patients suffering from community-onset infectious diseases such as urinary tract infections. Moreover, recoveries of multi-drug resistant E. coli from the feces of healthy people have been increasingly documented in recent years, although the actual state remains uncertain. These E. coli isolates usually produce extended-spectrum β-lactamase (ESBL), as well as acquisition of amino acid substitutions in the quinolone-resistance determining regions (QRDRs) of GyrA and/or ParC, together with plasmid-mediated quinolone resistance determinants such as Qnr, AAC(6')-Ib-cr, and QepA. The actual state of ESBL-producing E. coli in hospitalized patients has been carefully investigated in many countries, while that in healthy people still remains uncertain, although high fecal carriage rates of ESBL producers in healthy people have been reported especially in Asian and South American countries. The issues regarding the ESBL producers have become very complicated and chaotic due to rapid increase of both ESBL variants and plasmids mediating ESBL genes, together with the emergence of various "epidemic strains" or "international clones" of E. coli and Klebsiella pneumoniae harboring transferable-plasmids carrying multiple antimicrobial resistance genes. Thus, the current state of ESBL producers outside hospital settings was overviewed together with the relation among those recovered from livestock, foods, pets, environments and wildlife from the viewpoint of molecular epidemiology. This mini review may contribute to better understanding about ESBL producers among people who are not familiar with the antimicrobial resistance (AMR) threatening rising globally.
Collapse
|
20
|
Menacing Emergence of Fosfomycin Resistance Among Klebsiella pneumoniae Carbapenemase–2-Producing K. pneumoniae Driven by Prior Use in Critically Ill Patients. Infect Control Hosp Epidemiol 2016; 37:748-9. [DOI: 10.1017/ice.2016.68] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|