1
|
Sasidharan A, Harrison CJ, Selvarangan R. Diagnosis, management, and outcomes of parechovirus infections in infants: an overview. J Clin Microbiol 2024; 62:e0113923. [PMID: 38647282 PMCID: PMC11237800 DOI: 10.1128/jcm.01139-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Parechovirus A (PeV-A) infections have been detected with increasing frequency in US infants under 6 months of age, leading to a Centers for Disease Control and Prevention (CDC) health advisory in July 2022. Clinicians are advised to consider PeV-A laboratory testing of blood and cerebrospinal fluid when infants present with unexplained fever, sepsis-like illness, or neurological issues. Clinical laboratories are encouraged to offer in-house molecular testing for PeV-A to avoid diagnostic delays, unnecessary use of antibiotics, and prolonged hospitalization of infants presenting with sepsis-like illness. While data are evolving on potential neurodevelopmental sequelae after PeV-A infant central nervous system infections, most infected infants return to baseline health for age. This review examines the PeV-A literature with a focus on PeV-A3, including aspects of epidemiology, clinical presentations/management, laboratory diagnostics, genotyping, and post-infectious sequelae related to PeV-A infections in infants.
Collapse
Affiliation(s)
- Anjana Sasidharan
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital and Clinics, Kansas City, Missouri, USA
| | | | - Rangaraj Selvarangan
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital and Clinics, Kansas City, Missouri, USA
| |
Collapse
|
2
|
Bubba L, Broberg EK, Fischer TK, Simmonds P, Harvala H. Parechovirus A Circulation and Testing Capacities in Europe, 2015-2021. Emerg Infect Dis 2024; 30:234-244. [PMID: 38270192 PMCID: PMC10826775 DOI: 10.3201/eid3002.230647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Parechovirus infections usually affect neonates and young children; manifestations vary from asymptomatic to life-threatening. We describe laboratory capacity in Europe for assessing parechovirus circulation, seasonality, and epidemiology. We used retrospective anonymized data collected from parechovirus infection case-patients identified in Europe during January 2015-December 2021. Of 21 laboratories from 18 countries that participated in the study, 16 (76%) laboratories with parechovirus detection capacity reported 1,845 positive samples; 12/16 (75%) with typing capability successfully identified 517 samples. Parechovirus A3 was the most common type (n = 278), followed by A1 (153), A6 (50), A4 (13), A5 (22), and A14 (1). Clinical data from 1,269 participants highlighted correlation of types A3, A4, and A5 with severe disease in neonates. We observed a wide capacity in Europe to detect, type, and analyze parechovirus data. To enhance surveillance and response for PeV outbreaks, sharing typing protocols and data on parechovirus-positive cases should be encouraged.
Collapse
|
3
|
Bozzola E, Barni S, Barone C, Perno CF, Maggioni A, Villani A. Human parechovirus meningitis in children: state of the art. Ital J Pediatr 2023; 49:144. [PMID: 37880789 PMCID: PMC10601212 DOI: 10.1186/s13052-023-01550-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Human Parechovirus is a common cause of infection occurring especially during the first years of life. It may present with a broad spectrum of manifestations, ranging from a pauci-symptomatic infection to a sepsis-like or central nervous system disease. Aim of this study is to explore the knowledge on Parechovirus meningitis. According to the purpose of the study, a systematic review of the literature focusing on reports on central nervous system. Parechovirus infection of children was performed following PRISMA criteria. Out of the search, 304 papers were identified and 81 records were included in the revision dealing with epidemiology, clinical manifestations, laboratory findings, imaging, therapy and outcome. Parechovirus meningitis incidence may vary all over the world and outbreaks may occur. Fever is the most common symptom, followed by other non-specific signs and symptoms including irritability, poor feeding, skin rash or seizures. Although several reports describe favourable short-term neurodevelopmental outcomes at discharge after Parechovirus central nervous system infection, a specific follow up and the awareness on the risk of sequelae should be underlined in relation to the reported negative outcome. Evidence seems to suggest a correlation between magnetic imaging resonance alteration and a poor outcome.
Collapse
Affiliation(s)
- Elena Bozzola
- Pediatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Sarah Barni
- Pediatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Barone
- Pediatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Federico Perno
- Multimodal Research Area, Microbiology and Diagnostics of Immunology Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | | | - Alberto Villani
- Pediatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Li W, Gao Z, Yan H, Tian Y, Liu B, Shen L, Wang Y, Jia L, Zhang D, Wang Q. Prevalence and genetic diversity of Parechovirus A in children with diarrhea in Beijing, China, 2017-2019. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 111:105435. [PMID: 37059255 DOI: 10.1016/j.meegid.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
We analyzed the prevalence and genotypes of Parechovirus A (PeV-A) in children with diarrhea in Beijing, China, 2017-2019. A total of 1734 stool samples collected from children <5 years of age with diarrhea were tested for the presence of PeV-A. Viral RNA was detected by real-time RT-PCR, and then genotyped by nested RT-PCR. We detected PeV-A in 93 (5.4%, 93/1734) samples, of which 87 could be genotyped by amplification of either the complete or partial VP1 region or the VP3/VP1 junction region. The median age of PeV-A infected children was 10 months. Most PeV-A infections were observed between August and November, with a peak in September. Seven known genotypes of PeV-A1A, -A1B, -A3, -A4, -A6, -A8 and -A11 were detected and PeV-A1B was the most prevalent genotype. Coinfection with other diarrheal viruses was observed in 30.1% (28/93) of PeV-A positive samples. All strains of PeV-A1A, -A1B, -A4 and -A6 obtained in this study contained the arginine-glycine-aspartic (RGD) motif, while all strains of PeV-A3, -A8 and -A11 lacked it. This study revealed a high genetic diversity of PeV-A circulating in Beijing and PeV-A11 was reported for the first time in children with diarrhea in China.
Collapse
Affiliation(s)
- Weihong Li
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Zhiyong Gao
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Hanqiu Yan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yi Tian
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Baiwei Liu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Lingyu Shen
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yu Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Lei Jia
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Daitao Zhang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China.
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control.
| |
Collapse
|
5
|
Mizuta K, Itagaki T, Chikaoka S, Wada M, Ikegami T, Sendo D, Iseki C, Shimizu Y, Abe S, Komabayashi K, Aoki Y, Ikeda T. Recombinant parechovirus A3 possibly causes various clinical manifestations, including myalgia; findings in Yamagata, Japan in 2019. Infect Dis (Lond) 2022; 54:632-650. [PMID: 35579425 DOI: 10.1080/23744235.2022.2069857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Parechovirus A3 was first reported in 2004 and has been recognized as a causative agent of mild and severe infections in children. Since we first reported an outbreak of adult parechovirus A3-associated myalgia in Yamagata, Japan in 2008, this disease has since been recognized across Japan, but has not yet been reported from other countries. AIM We analysed 19 cases of parechovirus A3 infections identified in Yamagata in 2019 to further clarify the epidemiology of this disease. METHODS We performed phylogenetic analyses of parechovirus A3 isolates and analysed the clinical manifestations and the genomic clusters. RESULTS There were two clusters, with cluster 2019B replacing 2019 A around October/November. Phylogenetic analysis revealed that 2019B cluster strains and Australian recombinant strains, which appeared between 2012 and 2013, were grouped in one cluster at non-structural protein regions, suggesting that the ancestor to these regions of 2019B cluster strains were Australian recombinant lineage strains. The strains from both clusters caused various infections in children including myalgia. These findings strongly support that parechovirus A3 strains cause myalgia and other paediatric infections irrespective of the virus strains involved, including recombinant strains. . CONCLUSIONS We have reported repeatedly sporadic cases of myalgia and here showed that recombinant strains also cause myalgia. We hope our experiences will help better understand these infections and possibly result in detection of more cases in the world.
Collapse
Affiliation(s)
- Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | | | - Shuji Chikaoka
- Department of Paediatrics, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Manabu Wada
- Department of Neurology, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Toru Ikegami
- Department of Paediatrics, Tendo City Hospital, Yamagata, Japan
| | - Dai Sendo
- Department of Paediatrics, Okitama Public General Hospital, Yamagata, Japan
| | - Chifumi Iseki
- Department of Neurology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yukitoshi Shimizu
- Department of Paediatrics, Yamagata City Hospital Saiseikan, Yamagata, Japan
| | - Shuichi Abe
- Department of Infectious Diseases, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Kenichi Komabayashi
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Yoko Aoki
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Tatsuya Ikeda
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| |
Collapse
|
6
|
Genetic analysis of human parechovirus type 5 isolated from children in Sapporo, Japan in the summer of 2018. J Infect Chemother 2022; 28:714-717. [DOI: 10.1016/j.jiac.2022.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
|
7
|
Zhang XA, Zhao RQ, Chen JJ, Yuan Y, Tang X, Zhou ZW, Ren L, Lu QB, Wang YN, Zhang HY, Zhang PH, Fang LQ, Zhou HS, Liu EM, Xu HM, Liu W. The Identification and Genetic Characterization of Parechovirus Infection Among Pediatric Patients With Wide Clinical Spectrum in Chongqing, China. Front Microbiol 2021; 12:709849. [PMID: 34594310 PMCID: PMC8477803 DOI: 10.3389/fmicb.2021.709849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
Human parechoviruses (HPeVs) are important causes of infection in children. However, without a comprehensive and persistent surveillance, the epidemiology and clinical features of HPeV infection remain ambiguous. We performed a hospital-based surveillance study among three groups of pediatric patients with acute respiratory infection (Group 1), acute diarrhea (Group 2), and hand, foot and mouth disease (Group 3) in Chongqing, China, from 2009 to 2015. Among 10,212 tested patients, 707 (6.92%) were positive for HPeV, with the positive rates differing significantly among three groups (Group 1, 3.43%; Group 2, 14.94%; Group 3, 3.55%; P < 0.001). The co-infection with other pathogens was detected in 75.2% (531/707) of HPeV-positive patients. Significant negative interaction between HPeV and Parainfluenza virus (PIV) (P = 0.046, OR = 0.59, 95% CI = 0.34–0.98) and positive interactions between HPeV and Enterovirus (EV) (P = 0.015, OR = 2.28, 95% CI = 1.23–4.73) were identified. Among 707 HPeV-positive patients, 592 (83.73%) were successfully sequenced, and 10 genotypes were identified, with HPeV1 (n = 396), HPeV4 (n = 86), and HPeV3 (n = 46) as the most frequently seen. The proportion of genotypes differed among three groups (P < 0.001), with HPeV1 and HPeV4 overrepresented in Group 2 and HPeV6 overrepresented in Group 3. The spatial patterns of HPeV genotypes disclosed more close clustering of the currently sequenced strains than those from other countries/regions, although they were indeed mixed. Three main genotypes (HPeV1, HPeV3, and HPeV4) had shown distinct seasonal peaks, highlighting a bi-annual cycle of all HpeV and two genotypes (HPeV 1 and HPeV 4) with peaks in odd-numbered years and with peaks in even-numbered years HPeV3. Significantly higher HPeV1 viral loads were associated with severe diarrhea in Group 2 (P = 0.044), while associated with HPeV single infection than HPeV-EV coinfection among HFMD patients (P = 0.001). It’s concluded that HPeV infection was correlated with wide clinical spectrum in pediatric patients with a high variety of genotypes determined. Still no clinical significance can be confirmed, which warranted more molecular surveillance in the future.
Collapse
Affiliation(s)
- Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rui-Qiu Zhao
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yang Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiang Tang
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zi-Wei Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Luo Ren
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qin-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Yu-Na Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hai-Yang Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Pan-He Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hai-Sheng Zhou
- Key Laboratory of Dermatology, Anhui Medical University, Hefei, China.,Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
| | - En-Mei Liu
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hong-Mei Xu
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing, China
| |
Collapse
|
8
|
Keeren K, Böttcher S, Diedrich S. Enterovirus Surveillance (EVSurv) in Germany. Microorganisms 2021; 9:2005. [PMID: 34683328 PMCID: PMC8538599 DOI: 10.3390/microorganisms9102005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
The major aim of the enterovirus surveillance (EVSurv) in Germany is to prove the absence of poliovirus circulation in the framework of the Global Polio Eradication Program (GPEI). Therefore, a free-of-charge enterovirus diagnostic is offered to all hospitals for patients with symptoms compatible with a polio infection. Within the quality proven laboratory network for enterovirus diagnostic (LaNED), stool and cerebrospinal fluid (CSF) samples from patients with suspected aseptic meningitis/encephalitis or acute flaccid paralysis (AFP) are screened for enterovirus (EV), typing is performed in all EV positive sample to exclude poliovirus infections. Since 2006, ≈200 hospitals from all 16 German federal states have participated annually. On average, 2500 samples (70% stool, 28% CSF) were tested every year. Overall, the majority of the patients studied are children <15 years. During the 15-year period, 53 different EV serotypes were detected. While EV-A71 was most frequently detected in infants, E30 dominated in older children and adults. Polioviruses were not detected. The German enterovirus surveillance allows monitoring of the circulation of clinically relevant serotypes resulting in continuous data about non-polio enterovirus epidemiology.
Collapse
Affiliation(s)
- Kathrin Keeren
- Secretary of the National Commission for Polio Eradication in Germany, Robert Koch Institute, 13353 Berlin, Germany;
| | - Sindy Böttcher
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
| | | | - Sabine Diedrich
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
| |
Collapse
|
9
|
Skanke LH, Lysvand H, Heimdal I, Moe N, Krokstad S, Christensen A, Risnes K, Nordbø SA, Døllner H. Parechovirus A in Hospitalized Children With Respiratory Tract Infections: A 10-Year-Long Study From Norway. J Pediatric Infect Dis Soc 2021; 10:722-729. [PMID: 33899922 PMCID: PMC8364331 DOI: 10.1093/jpids/piab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The role of Parechovirus A (PeV-A) in hospitalized children with respiratory tract infections (RTIs) is unclear. We studied the occurrence and impact of PeV-A over 10 years. METHODS Children from Sør-Trøndelag County, Norway, hospitalized with RTI and a comparison group of asymptomatic children admitted to elective surgery, were prospectively enrolled from 2006 to 2016. Nasopharyngeal aspirates were cultured and analyzed with polymerase chain reaction tests for PeV-A and 19 other pathogens. The cycle threshold levels of PeV-A were reported as measures of viral genomic loads. Parechovirus A-positive samples were genotyped by amplification and sequencing of the VP3/VP1 junction. RESULTS Parechovirus A was detected in 8.8% (323/3689) patients with RTI and in 10.1% (45/444) of the children in the comparison group (P = .34). Parechovirus A genotyping (n = 188) revealed PeV-A1 (n = 121), PeV-A3 (n = 15), PeV-A5 (n = 6), and PeV-A6 (n = 46). Viral codetections occurred in 95% of patients and in 84% of the children in the comparison group (P = .016). In multivariable logistic regression analysis, RTI was unrelated to PeV-A genomic loads, adjusted for other viruses and covariates. Similar results were found for PeV-A1 and PeV-A6. CONCLUSIONS Parechovirus A and viral codetections were common in hospitalized children with RTI and asymptomatic children in a comparison group. Our findings suggest that PeV-A has a limited role in hospitalized children with RTI.
Collapse
Affiliation(s)
- Lars Høsøien Skanke
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Hilde Lysvand
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Inger Heimdal
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nina Moe
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Sidsel Krokstad
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Andreas Christensen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kari Risnes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway,Department of Research and Innovation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Svein Arne Nordbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Døllner
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway,Corresponding author: Henrik Døllner, MD, PhD, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway. E-mail:
| |
Collapse
|
10
|
Elling R. Parechoviren und das „red, hot, angry baby“. Monatsschr Kinderheilkd 2020. [DOI: 10.1007/s00112-020-00906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
An Emerging Human Parechovirus Type 5 Causing Sepsis-Like Illness in Infants in Australia. Viruses 2019; 11:v11100913. [PMID: 31623340 PMCID: PMC6832754 DOI: 10.3390/v11100913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023] Open
Abstract
Human parechovirus (HPeV), particularly type 3 (HPeV3), is an important cause of sepsis-/meningitis-like illness in young infants. Laboratory records identified a total of ten HPeV-positive cases in Southeastern Australia between January and July 2019. The HPeV present in these cases were typed by Sanger sequencing of the partial viral capsid protein 1 (VP1) region and selected cases were further characterised by additional Sanger or Ion Torrent near-full length virus sequencing. In seven of the ten cases, an HPeV type 5 (HPeV5) was identified, and in the remaining three cases, an HPeV type 1 was identified. The HPeV5-positive cases were infants under the age of 3 months admitted to hospital with fever, rash, lethargy and/or sepsis-like clinical signs. Near full-length virus sequencing revealed that the HPeV5 was most likely a recombinant virus, with structural genes most similar to an HPeV5 from Belarus in 2018, and a polymerase gene most similar to an HPeV3 from Australia in 2013/14. While HPeV5 is not typically associated with severe clinical signs, the HPeV5 identified here may have been able to cause more severe disease in young infants through the acquisition of genes from a more virulent HPeV.
Collapse
|