1
|
Ly H. Recent global outbreaks of highly pathogenic and low-pathogenicity avian influenza A virus infections. Virulence 2024; 15:2383478. [PMID: 39054655 DOI: 10.1080/21505594.2024.2383478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Affiliation(s)
- Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
2
|
Tare DS, Pawar SD, Shil P, Atre NM. Structural and functional characterization of avian influenza H9N2 virus neuraminidase with a combination of five novel mutations. Arch Biochem Biophys 2024; 757:110041. [PMID: 38750923 DOI: 10.1016/j.abb.2024.110041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The influenza virus neuraminidase (NA) protein is responsible for actively cleaving the sialic acid (SA) bound to the viral hemagglutinin. In the present study, we identified a combination of five novel amino acid substitutions in the NA, conferring increased substrate binding and altered surface characteristics to a low pathogenic avian influenza (LPAI) H9N2 virus strain. The H9N2 strain reported from India, A/Environmental/India/1726265/2017 (H9N2-1726265) showed the combination of amino acid substitutions T149I, R249W, G346A, W403R and G435R, which were in the vicinity of the enzyme active site cavity. The strain A/chicken/India/99321/2009 (H9N2-99321) did not show these substitutions and was used for comparison. Virus elution was studied using turkey red blood cells (tRBCs). NA enzyme kinetics assays were carried out using the MUNANA substrate, which is an SA analogue. Homology modelling and molecular docking were performed to determine alterations in the surface characteristics and substrate binding. H9N2-1726265 showed enhanced elution from tRBCs. Enzyme kinetics revealed a lower KM of H9N2-1726265 (111.5 μM) as compared to H9N2-99321 (135.2 μM), indicating higher substrate binding affinity of H9N2-1726265, due to which the NA enzyme cleaved the SA more efficiently, leading to faster elution. Molecular docking revealed a greater number of binding interactions of H9N2-1726265 to SA as compared to H9N2-99321 corroborating the greater substrate binding affinity. Changes in the surface charge, hydrophobicity, and contour, were observed in H9N2-1726265 NA due to the five substitutions. Thus, the novel combination of five amino acids near the sialic acid binding site of NA, resulted in altered surface characteristics, higher substrate binding affinity, and virus elution.
Collapse
Affiliation(s)
- Deeksha S Tare
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Shailesh D Pawar
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India.
| | - Pratip Shil
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Nitin M Atre
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India
| |
Collapse
|
3
|
Ma L, Zheng H, Ke X, Gui R, Yao Z, Xiong J, Chen Q. Mutual antagonism of mouse-adaptation mutations in HA and PA proteins on H9N2 virus replication. Virol Sin 2024; 39:56-70. [PMID: 37967718 PMCID: PMC10877434 DOI: 10.1016/j.virs.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023] Open
Abstract
Avian H9N2 viruses have wide host range among the influenza A viruses. However, knowledge of H9N2 mammalian adaptation is limited. To explore the molecular basis of the adaptation to mammals, we performed serial lung passaging of the H9N2 strain A/chicken/Hunan/8.27 YYGK3W3-OC/2018 (3W3) in mice and identified six mutations in the hemagglutinin (HA) and polymerase acidic (PA) proteins. Mutations L226Q, T511I, and A528V of HA were responsible for enhanced pathogenicity and viral replication in mice; notably, HA-L226Q was the key determinant. Mutations T97I, I545V, and S594G of PA contributed to enhanced polymerase activity in mammalian cells and increased viral replication levels in vitro and in vivo. PA-T97I increased viral polymerase activity by accelerating the viral polymerase complex assembly. Our findings revealed that the viral replication was affected by the presence of PA-97I and/or PA-545V in combination with a triple-point HA mutation. Furthermore, the double- and triple-point PA mutations demonstrated antagonistic effect on viral replication when combined with HA-226Q. Notably, any combination of PA mutations, along with double-point HA mutations, resulted in antagonistic effect on viral replication. We also observed antagonism in viral replication between PA-545V and PA-97I, as well as between HA-528V and PA-545V. Our findings demonstrated that several antagonistic mutations in HA and PA proteins affect viral replication, which may contribute to the H9N2 virus adaptation to mice and mammalian cells. These findings can potentially contribute to the monitoring of H9N2 field strains for assessing their potential risk in mammals.
Collapse
Affiliation(s)
- Liping Ma
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huabin Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianliang Ke
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Rui Gui
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongzi Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiasong Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Hubei Jiangxia Laboratory, Wuhan, 430207, China.
| |
Collapse
|
4
|
Yang J, Yan J, Zhang C, Li S, Yuan M, Zhang C, Shen C, Yang Y, Fu L, Xu G, Shi W, Ma Z, Luo TR, Bi Y. Genetic, biological and epidemiological study on a cluster of H9N2 avian influenza virus infections among chickens, a pet cat, and humans at a backyard farm in Guangxi, China. Emerg Microbes Infect 2023; 12:2143282. [PMID: 36328956 PMCID: PMC9769140 DOI: 10.1080/22221751.2022.2143282] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During an investigation in October 2018, two people with diarrhoea, mild abdominal pain, and mild arthralgia symptoms in Guangxi, China, were identified as infected by H9N2 avian influenza virus (AIV). Four H9N2 AIVs were isolated from one of two patients, a pet cat, and a dead chicken (two respective isolates from its lung and kidney tissues) bred by the patients at a backyard farm. Epidemiological investigation indicated that the newly bought chicken died first, and clinical syndromes appeared subsequently in the two owners and one cat. Furthermore, the two individuals possessed high H9N2-specific hemagglutination inhibition and microneutralization antibodies. Shared nucleotide sequence identity (99.9% - 100%) for all genes was detected in the four H9N2 isolates, and hemagglutinin (HA) T138A located on the receptor binding domain (RBD), resulted from nucleotide polymorphisms that were exclusively found in the isolate from the female patient. Moreover, HA K137N on the RBD was found in isolates from these three host species. Importantly, these four H9N2 isolates presented an exclusive binding preference for the human-type receptor (α2-6-SA), and could replicate and cause pathological changes in mice. Phylogenetic analyses showed that these four isolates clustered together and belonged to clade C1.2, lineage Y280. In addition, H9N2 viruses of human origin are genetically divergent and interspersed with the widespread poultry-origin H9N2 AIVs. All these results indicate a high risk of H9N2 AIVs in public health, and effective prevention and control measures against H9N2 AIVs should be considered and performed for both animal and human health.
Collapse
Affiliation(s)
- Jing Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jianhua Yan
- Laboratory of Animal Infectious Diseases, Medical College & College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, People’s Republic of China
| | - Cheng Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China,College of Life Science and Technology, Xinjiang University, Urumchi, People’s Republic of China
| | - Shanqin Li
- Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Manhua Yuan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Chunge Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Chenguang Shen
- School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Guanlong Xu
- China Institute of Veterinary Drug Control, Beijing, People’s Republic of China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People’s Republic of China
| | - Zhenghai Ma
- College of Life Science and Technology, Xinjiang University, Urumchi, People’s Republic of China
| | - Ting Rong Luo
- Laboratory of Animal Infectious Diseases, Medical College & College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, People’s Republic of China, Yuhai Bi CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; Ting Rong Luo Laboratory of Animal Infectious Diseases, Medical College & College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530005, People's Republic of China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China,University of Chinese Academy of Sciences, Beijing, People’s Republic of China, Yuhai Bi CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; Ting Rong Luo Laboratory of Animal Infectious Diseases, Medical College & College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530005, People's Republic of China
| |
Collapse
|
5
|
Tare DS, Pawar SD, Keng SS, Kode SS, Walimbe AM, Limaye VV, Mullick J. The evolution, characterization and phylogeography of avian influenza H9N2 viruses from India. Virology 2023; 579:9-28. [PMID: 36587605 DOI: 10.1016/j.virol.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The low pathogenic avian influenza H9N2 virus is a significant zoonotic agent and contributes genes to highly pathogenic avian influenza (HPAI) viruses. H9N2 viruses are prevalent in India with a reported human case. We elucidate the spatio-temporal origins of the H9N2 viruses from India. A total of 30H9N2 viruses were isolated from poultry and environmental specimens (years 2015-2020). Genome sequences of H9N2 viruses (2003-2020) from India were analyzed, revealing several substitutions. We found five reassortant genotypes. The HA, NA and PB2 genes belonged to the Middle-Eastern B sublineage; NP and M to the classical G1 lineage; PB1, PA and NS showed resemblance to genes from either HPAI-H7N3/H5N1 viruses. Molecular clock and phylogeography revealed that the introduction of all the genes to India took place around the year 2000. This is the first report of the genesis and evolution of the H9N2 viruses from India, and highlights the need for surveillance.
Collapse
Affiliation(s)
- Deeksha S Tare
- ICMR-National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Shailesh D Pawar
- ICMR-National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021, India.
| | - Sachin S Keng
- ICMR-National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Sadhana S Kode
- ICMR-National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Atul M Walimbe
- ICMR-National Institute of Virology, 20-A, Dr. Babasaheb Ambedkar Road, Pune, 411001, India
| | - Vinayak V Limaye
- Disease Investigation Section, Western Regional Disease Diagnostic Laboratory, Aundh, Pune, 411007, India
| | - Jayati Mullick
- ICMR-National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021, India
| |
Collapse
|
6
|
Genetic Evolution of Avian Influenza A (H9N2) Viruses Isolated from Domestic Poultry in Uganda Reveals Evidence of Mammalian Host Adaptation, Increased Virulence and Reduced Sensitivity to Baloxavir. Viruses 2022; 14:v14092074. [PMID: 36146881 PMCID: PMC9505320 DOI: 10.3390/v14092074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
A (H9N2) avian influenza A viruses were first detected in Uganda in 2017 and have since established themselves in live bird markets. The aim of this study was to establish the subsequent genetic evolution of H9N2 viruses in Uganda. Cloacal samples collected from live bird market stalls in Kampala from 2017 to 2019 were screened by RT-PCR for influenza A virus and H9N2 viruses were isolated in embryonated eggs. One hundred and fifty H9N2 isolates were subjected to whole genome sequencing on the Illumina MiSeq platform. The sequence data analysis and comparison with contemporary isolates revealed that the virus was first introduced into Uganda in 2014 from ancestors in the Middle East. There has since been an increase in nucleotide substitutions and reassortments among the viruses within and between live bird markets, leading to variations in phylogeny of the different segments, although overall diversity remained low. The isolates had several mutations such as HA-Q226L and NS-I106M that enable mammalian host adaptation, NP-M105V, PB1-D3V, and M1-T215A known for increased virulence/pathogenicity and replication, and PA-E199D, NS-P42S, and M2-S31N that promote drug resistance. The PA-E199D substitution in particular confers resistance to the endonuclease inhibitor Baloxavir acid, which is one of the new anti-influenza drugs. Higher EC50 was observed in isolates with a double F105L+E199D substitution that may suggest a possible synergistic effect. These H9N2 viruses have established an endemic situation in live bird markets in Uganda because of poor biosecurity practices and therefore pose a zoonotic threat. Regular surveillance is necessary to further generate the needed evidence for effective control strategies and to minimize the threats.
Collapse
|
7
|
Xu Y, Wojtczak D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 2022; 220:104740. [DOI: 10.1016/j.biosystems.2022.104740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/02/2022] [Accepted: 07/16/2022] [Indexed: 11/26/2022]
|
8
|
Potdar V, Brijwal M, Lodha R, Yadav P, Jadhav S, Choudhary ML, Choudhary A, Vipat V, Gupta N, Deorari AK, Dar L, Abraham P. Identification of Human Case of Avian Influenza A(H5N1) Infection, India. Emerg Infect Dis 2022; 28:1269-1273. [PMID: 35608874 PMCID: PMC9155886 DOI: 10.3201/eid2806.212246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A 11-year-old boy with acute myeloid leukemia was brought for treatment of severe acute respiratory infection in the National Capital Region, New Delhi, India. Avian influenza A(H5N1) infection was laboratory confirmed. Complete genome analysis indicated hemagglutinin gene clade 2.3.2.1a. We found the strain to be susceptible to amantadine and neuraminidase inhibitors.
Collapse
|
9
|
Inhibition of the antigen-presenting ability of dendritic cells by non-structural protein 2 of influenza A virus. Vet Microbiol 2022; 267:109392. [DOI: 10.1016/j.vetmic.2022.109392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/18/2022]
|
10
|
Cui H, Che G, de Jong MCM, Li X, Liu Q, Yang J, Teng Q, Li Z, Beerens N. The PB1 gene from H9N2 avian influenza virus showed high compatibility and increased mutation rate after reassorting with a human H1N1 influenza virus. Virol J 2022; 19:20. [PMID: 35078489 PMCID: PMC8788113 DOI: 10.1186/s12985-022-01745-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/12/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Reassortment between human and avian influenza viruses (AIV) may result in novel viruses with new characteristics that may threaten human health when causing the next flu pandemic. A particular risk may be posed by avian influenza viruses of subtype H9N2 that are currently massively circulating in domestic poultry in Asia and have been shown to infect humans. In this study, we investigate the characteristics and compatibility of a human H1N1 virus with avian H9N2 derived genes. METHODS The polymerase activity of the viral ribonucleoprotein (RNP) complex as combinations of polymerase-related gene segments derived from different reassortment events was tested in luciferase reporter assays. Reassortant viruses were generated by reverse genetics. Gene segments of the human WSN-H1N1 virus (A/WSN/1933) were replaced by gene segments of the avian A2093-H9N2 virus (A/chicken/Jiangsu/A2093/2011), which were both the Hemagglutinin (HA) and Neuraminidase (NA) gene segments in combination with one of the genes involved in the RNP complex (either PB2, PB1, PA or NP). The growth kinetics and virulence of reassortant viruses were tested on cell lines and mice. The reassortant viruses were then passaged for five generations in MDCK cells and mice lungs. The HA gene of progeny viruses from different passaging paths was analyzed using Next-Generation Sequencing (NGS). RESULTS We discovered that the avian PB1 gene of H9N2 increased the polymerase activity of the RNP complex in backbone of H1N1. Reassortant viruses were able to replicate in MDCK and DF1 cells and mice. Analysis of the NGS data showed a higher substitution rate for the PB1-reassortant virus. In particular, for the PB1-reassortant virus, increased virulence for mice was measured by increased body weight loss after infection in mice. CONCLUSIONS The higher polymerase activity and increased mutation frequency measured for the PB1-reassortant virus suggests that the avian PB1 gene of H9N2 may drive the evolution and adaptation of reassortant viruses to the human host. This study provides novel insights in the characteristics of viruses that may arise by reassortment of human and avian influenza viruses. Surveillance for infections with H9N2 viruses and the emergence of the reassortant viruses in humans is important for pandemic preparedness.
Collapse
Affiliation(s)
- Hongrui Cui
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
- Quantitative Veterinary Epidemiology, Animal Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Guangsheng Che
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
| | - Mart C M de Jong
- Quantitative Veterinary Epidemiology, Animal Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Xuesong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
| | - Qinfang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
| | - Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
| | - Qiaoyang Teng
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China.
| | - Nancy Beerens
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221RA, Lelystad, The Netherlands.
| |
Collapse
|
11
|
Ripa RN, Sealy JE, Raghwani J, Das T, Barua H, Masuduzzaman M, Saifuddin A, Huq MR, Uddin MI, Iqbal M, Brown I, Lewis NS, Pfeiffer D, Fournie G, Biswas PK. Molecular epidemiology and pathogenicity of H5N1 and H9N2 avian influenza viruses in clinically affected chickens on farms in Bangladesh. Emerg Microbes Infect 2021; 10:2223-2234. [PMID: 34753400 PMCID: PMC8635652 DOI: 10.1080/22221751.2021.2004865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Avian influenza virus (AIV) subtypes H5N1 and H9N2 co-circulate in poultry in Bangladesh, causing significant bird morbidity and mortality. Despite their importance to the poultry value chain, the role of farms in spreading and maintaining AIV infections remains poorly understood in most disease-endemic settings. To address this crucial gap in our knowledge, we conducted a cross-sectional study between 2017 and 2019 in the Chattogram Division of Bangladesh in clinically affected and dead chickens in farms with suspected AIV infection. Viral prevalence of each subtype was approximately 10% among farms for which veterinary advice was sought, indicating a high level of virus circulation in chicken farms despite the low number of reported outbreaks. The level of co-circulation of both subtypes on farms was high, with our study suggesting that in the field, the co-circulation of H5N1 and H9N2 can modulate disease severity, which could facilitate an underestimated level of AIV transmission in the poultry value chain. Finally, using newly generated whole-genome sequences, we investigate the evolutionary history of a small subset of H5N1 and H9N2 viruses. Our analyses revealed that for both subtypes, the sampled viruses were genetically most closely related to other viruses isolated in Bangladesh and represented multiple independent incursions. However, due to lack of longitudinal surveillance in this region, it is difficult to ascertain whether these viruses emerged from endemic strains circulating in Bangladesh or from neighbouring countries. We also show that amino acids at putative antigenic residues underwent a distinct replacement during 2012 which coincides with the use of H5N1 vaccines.
Collapse
Affiliation(s)
- Ripatun Nahar Ripa
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Joshua E Sealy
- Avian influenza viruses group, the Pirbright institute, Ash road, Pirbright, Woking, GU24 0NF, United Kingdom
| | | | - Tridip Das
- Poultry Research and Training Centre, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Himel Barua
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Masuduzzaman
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Akm Saifuddin
- Department of Physiology, Biochemistry and Pharmacology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Reajul Huq
- District Livestock Office, Chattogram, Department of Livestock Services, Bangladesh
| | - Mohammad Inkeyas Uddin
- Poultry Research and Training Centre, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Munir Iqbal
- Avian influenza viruses group, the Pirbright institute, Ash road, Pirbright, Woking, GU24 0NF, United Kingdom
| | - Ian Brown
- Animal and Plant Health Agency-Weybridge, Woodham lane, Addlestone, KT15 3NB, United Kingdom
| | - Nicola S Lewis
- The Royal Veterinary College, Hawkshead lane, Brookmans park, Hatfield, AL9 7TA, United Kingdom.,Animal and Plant Health Agency-Weybridge, Woodham lane, Addlestone, KT15 3NB, United Kingdom
| | - Dirk Pfeiffer
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, China
| | - Guillaume Fournie
- The Royal Veterinary College, Hawkshead lane, Brookmans park, Hatfield, AL9 7TA, United Kingdom
| | - Paritosh Kumar Biswas
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
12
|
Cáceres CJ, Rajao DS, Perez DR. Airborne Transmission of Avian Origin H9N2 Influenza A Viruses in Mammals. Viruses 2021; 13:v13101919. [PMID: 34696349 PMCID: PMC8540072 DOI: 10.3390/v13101919] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Influenza A viruses (IAV) are widespread viruses affecting avian and mammalian species worldwide. IAVs from avian species can be transmitted to mammals including humans and, thus, they are of inherent pandemic concern. Most of the efforts to understand the pathogenicity and transmission of avian origin IAVs have been focused on H5 and H7 subtypes due to their highly pathogenic phenotype in poultry. However, IAV of the H9 subtype, which circulate endemically in poultry flocks in some regions of the world, have also been associated with cases of zoonotic infections. In this review, we discuss the mammalian transmission of H9N2 and the molecular factors that are thought relevant for this spillover, focusing on the HA segment. Additionally, we discuss factors that have been associated with the ability of these viruses to transmit through the respiratory route in mammalian species. The summarized information shows that minimal amino acid changes in the HA and/or the combination of H9N2 surface genes with internal genes of human influenza viruses are enough for the generation of H9N2 viruses with the ability to transmit via aerosol.
Collapse
|
13
|
Identification and molecular characterization of H9N2 viruses carrying multiple mammalian adaptation markers in resident birds in central-western wetlands in India. INFECTION GENETICS AND EVOLUTION 2021; 94:105005. [PMID: 34293481 DOI: 10.1016/j.meegid.2021.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
We report here a targeted risk-based study to investigate the presence of influenza A viruses at the migratory-wild-domestic bird interface across the major wetlands of central India's Maharashtra state during the winter migration season. The H9N2 viruses have been isolated and confirmed in 3.86% (33/854) of the fecal samples of resident birds. To investigate the genetic pools of H9N2 circulating in resident birds, we sequenced two isolates of H9N2 from distant wetlands. Sequence and phylogenetic analyses have shown that these viruses are triple reassortants, with HA, NA, NP, and M genes belonging to G1 sub-lineage (A/quail/Hong Kong/G1/1997), PB2, PB1, and NS genes originating from the prototype Eurasian lineage (A/mallard/France/090360/2009) and PA gene deriving from Y439/Korean-like (A/duck/Hong Kong/Y439/97) sub-lineage. It was confirmed not only that four of their gene segments had a high genetic association with the zoonotic H9N2 virus, A/Human/India/TCM2581/2019, but also that they had many molecular markers associated with mammalian adaptation and enhanced virulence in mammals including the unique multiple basic amino acids, KSKR↓GLF at the HA cleavage site, and analog N-and O-glycosylation patterns on HA with that of the zoonotic H9N2 virus. Furthermore, future experiments would be to characterize these isolates biologically to address the public health concern. Importantly, due to the identification of these viruses at a strategic geographical location in India (a major stop-over point in the Central Asian flyway), these novel viruses also pose a possible threat to be exported to other regions via migratory/resident birds. Consequently, systematic investigation and active monitoring are a prerequisite for identifying and preventing the spread of viruses of zoonotic potential by enforcing strict biosecurity measures.
Collapse
|
14
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Baldinelli F. Avian influenza overview August - December 2020. EFSA J 2020; 18:e06379. [PMID: 33343738 PMCID: PMC7744019 DOI: 10.2903/j.efsa.2020.6379] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Between 15 August and 7 December 2020, 561highly pathogenic avian influenza (HPAI) virus detections were reported in 15EU/EEA countries and UK in wild birds, poultry andcaptive birds, with Germany (n=370), Denmark (n=65), the Netherlands (n=57) being the most affected countries.The majority of the detections have been reported in wild birds(n=510), primarily in barnacle goose, greylag goose, andEurasian wigeon. Raptors have also been detected infected, particularly common buzzard. The majority of the birds had been found dead or moribund,however, there are also reports ofHPAI virus infection in apparently healthy ducks or geese.A total of 43 HPAI outbreaks were notified in poultry;with signs of avian influenza infection being observed in at least 33 outbreaks;the most likely source of infection was indirect contact with wild birds. Three HPAI virus subtypes, A(H5N8) (n=518), A(H5N5) (n=17) and A(H5N1) (n=6),and four different genotypes were identified, suggesting the occurrence of multiple virus introductions into Europe.The reassortant A(H5N1) virus identified in EU/EEA countries has acquired gene segments from low pathogenic viruses and is not related to A(H5N1) viruses of e.g. clade 2.3.2.1c causing human infections outside of Europe. As the autumn migration of wild waterbirds to their wintering areasin Europe continues, and given the expected local movements of these birds, there is still a high risk of introduction andfurther spread ofHPAI A(H5) viruses within Europe.The risk of virus spread from wild birds to poultry is high and Member States should enforce in 'high risk areas' of their territories the measures provided for in Commission Implementing Decision (EU) 2018/1136.Detection of outbreaks in breeder farms in Denmark, the Netherlands and United Kingdom, highlight also the risk of introduction via contaminated materials (bedding/straw) and equipment.Maintaining high and sustainable surveillance and biosecurityparticularly in high-risk areas is of utmost importance. Two human cases due to zoonoticA(H5N1) and A(H9N2) avian influenza virus infection were reportedduring the reporting period. The risk for the general population as well as travel-related imported human cases are assessed as very low.
Collapse
|
15
|
Adlhoch C, Fusaro A, Kuiken T, Niqueux É, Staubach C, Terregino C, Muñoz Guajardo I, Baldinelli F. Avian influenza overview May - August 2020. EFSA J 2020; 18:e06270. [PMID: 33281980 PMCID: PMC7525800 DOI: 10.2903/j.efsa.2020.6270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Between 16 May and 15 August 2020, seven highly pathogenic avian influenza (HPAI) A(H5N8) virus outbreaks were reported in Europe in poultry, with one outbreak reported in Bulgaria(n=1) andsix in Hungary (n=6) and one low pathogenic avian influenza (LPAI) A(H5N3) virus outbreak was reported in poultry in Italy. All six outbreaks detected in Hungary were secondary outbreaks and seem to be the tail end of the HPAI A(H5N8) epidemic that wasobserved in poultry over the winter and spring in central Europe from December 2019 (n=334).Genetic analysis of the HPAI A(H5N8) viruses isolated during this reporting period from Bulgaria and Hungary did not identify any major changes compared tothe viruses collected in the respective countries during the first months of 2020. This suggests a persistence of the virus in the two countries rather than new introductions via infectedwild birds. HPAI A(H5N8) virus has been detected in poultry and wild birds in western Russia within the reporting period, and as of the middle of September also in Kazakhstan. The presence of HPAI virus in western Russiaand in north Kazakhstan,spatially associated with autumnmigration routes of wild waterbirds, is of concern due to the possible spread of the virus via wild birds migrating to the EU.It is highly recommended thatMember States take appropriate measures to promptly detect suspected cases of HPAI, including increasing biosecurity measures. According to past experiences (2005-2006 and 2016-2017 epidemic waves), the northern and eastern European areas might be at higher risk of virus introduction in the coming autumn-winter seasonand should be the key regions where prompt response measures to early detect the virusshould be set up. One human case due to A(H9N2) avian influenza virus infection was reported during the reporting period.
Collapse
|
16
|
Adlhoch C, Fusaro A, Kuiken T, Smietanka K, Staubach C, Guajardo M, Baldinelli F. Avian influenza overview August - November2019. EFSA J 2020; 17:e05988. [PMID: 32626216 PMCID: PMC7008850 DOI: 10.2903/j.efsa.2019.5988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Between 16 August and 15 November 2019, one low pathogenic avian influenza (LPAI) A(H5) outbreak in poultry in France was reported in Europe. Genetic characterisation reveals that the virusclusterswith Eurasian LPAI viruses. No highly pathogenic avian influenza (HPAI) outbreaks in birds were notified in Europe in the relevant period for this report. HPAI A(H5N6) viruswas identified in chickens in Nigeria, this isthe first report of HPAI A(H5N6) from the African continent.FewerHPAI outbreaks in Asia and Africa were reported during the time period for this report compared with the previous reporting period. Apart from the long‐term epidemic of HPAI A(H5N2)in Taiwan, only six HPAI outbreakswere reported in domestic birds from Nepal, South Africa and Taiwan. Furthermore, no HPAI detections fromwild birds were reported worldwide in the relevant time period forthis report.Even if the risk of incursion of HPAI from wild birds into poultryestablishments in Europe is currently assessed as low, it is important to maintain passive surveillance activities. The focus should be on wild bird species that are in the revised list of target species in order to detect any incursion of HPAI virus early and initiate a warning.Despite the decrease in the number of avian influenza outbreaks over recent months, it is important to maintain a high alert level andhigh standard of biosecurity onpoultry establishments.In Europe, no human infections due toHPAI viruses detected in wild bird or poultry outbreaks, have been reported. The risk of zoonotic transmission to the general public in Europe is considered to be very low.
Collapse
|
17
|
Adlhoch C, Fusaro A, Kuiken T, Niqueux E, Staubach C, Terregino C, Guajardo IM, Baldinelli F. Avian influenza overview February - May 2020. EFSA J 2020; 18:e06194. [PMID: 32874346 PMCID: PMC7448026 DOI: 10.2903/j.efsa.2020.6194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Between 16 February and 15 May 2020, 290highly pathogenic avian influenza (HPAI) A(H5) virus outbreakswere reported in Europe in poultry (n=287), captive birds (n=2) and wild birds (n=1)in Bulgaria, Czechia,Germany,Hungary andPolandand two low pathogenic avian influenza (LPAI) A(H7N1) virus outbreaks were reported in poultry in Italy. 258 of 287 poultry outbreaks detected in Europe were secondary outbreaks, suggesting that in the large majoryty of cases the spread of the virus was not due to wild birds.Allthe HPAI outbreaks were A(H5N8) apart from three,which were reported as A(H5N2) from Bulgaria. Genetic analysis of the HPAI A(H5N8) viruses isolated from the eastern and central European countries indicates that this is a reassortant between HPAI A(H5N8) viruses from Africa and LPAI viruses from Eurasia. Two distict subtypes were identified in Bulgaria, a novel reassortant A(H5N2) and A(H5N8) that is persisting in the country since 2016. There could be several reasons why only very few HPAI cases were detected in wild birds in this 2019-2020 epidemic season and a better knowledge of wild bird movements and virus-host interaction (e.g. susceptibility of the hosts to this virus) could help to understand the reasons for poor detection of HPAI infected wild birds. In comparison with the last reporting period, a decreasing number of HPAI A(H5)-affected countries and outbreaks were reported from outside Europe. However, there is considerable uncertainty regarding the current epidemiological situation in many countries out of Europe. Four human cases due to A(H9N2) virus infection were reported during the reporting period from China.
Collapse
|
18
|
Adlhoch C, Fusaro A, Kuiken T, Niqueux E, Staubach C, Terregino C, Guajardo IM, Baldinelli F. Avian influenza overview November 2019- February2020. EFSA J 2020; 18:e06096. [PMID: 32874270 PMCID: PMC7448010 DOI: 10.2903/j.efsa.2020.6096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Between 16 November 2019 and 15 February 2020, 36 highly pathogenic avian influenza (HPAI) A(H5N8) virus outbreakswere reported in Europe in poultry (n=34), captive birds (n=1) and wild birds (n=2), in Poland, Hungary, Slovakia, Romania, Germany, Czechiaand Ukraine,one HPAI outbreakcaused by a simultaneous infection with A(H5N2) and A(H5N8) was reported in poultry in Bulgaria, andtwo low pathogenic avian influenza (LPAI) A(H5) virus outbreaks were reported in poultryin the United Kingdom and in Denmark. Genomic characterisation of the HPAI A(H5N8) viruses suggests that they are reassortants of HPAI A(H5N8) viruses from Africa and LPAI viruses from Eurasia. It is likely that this reassortment occurred in wild migratory birds in Asia during the summer and then spread to eastern Europe with the autumnmigration. This is the first time that wild bird migration from Africa to Eurasia has been implicated in the long-distance spread of HPAI viruses to the EU. Given the late incursion of HPAI A(H5N8) virus into the EU in this winter season (first outbreak reported on 30 December 2019), its overall restriction to eastern Europe, and the approaching spring migration, the risk of the virus spreadingfurther in the west via wild birds is decreasing for the coming months. Genetic analysis of the HPAI A(H5N2) and A(H5N8) viruses detected in the Bulgarian outbreak reveals that these virusesare both related to the 2018-19 Bulgarian HPAI A(H5N8) viruses and not to the HPAI A(H5N8) viruses currently circulating in Europe.An increasing number of HPAI A(H5N1), A(H5N2), A(H5N5) and A(H5N6) virus outbreaks in poultry in Asia were reported during the time period for this report compared with the previous reporting period. Single outbreaks of HPAI A(H5N8) virus were notified by Saudi Arabia and South Africa. Furthermore, in contrast to the last report, HPAI virus-positive wild birds were reported from Israel and one of the key migration areas in northern China.Two human cases due to A(H9N2) virus infection were reported during the reporting period.
Collapse
|
19
|
Bhatta TR, Chamings A, Vibin J, Klaassen M, Alexandersen S. Detection of a Reassortant H9N2 Avian Influenza Virus with Intercontinental Gene Segments in a Resident Australian Chestnut Teal. Viruses 2020; 12:E88. [PMID: 31940999 PMCID: PMC7019556 DOI: 10.3390/v12010088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
The present study reports the genetic characterization of a low-pathogenicity H9N2 avian influenza virus, initially from a pool and subsequently from individual faecal samples collected from Chestnut teals (Anas castanea) in southeastern Australia. Phylogenetic analyses of six full gene segments and two partial gene segments obtained from next-generation sequencing showed that this avian influenza virus, A/Chestnut teal/Australia/CT08.18/12952/2018 (H9N2), was a typical, low-pathogenicity, Eurasian aquatic bird lineage H9N2 virus, albeit containing the North American lineage nucleoprotein (NP) gene segment detected previously in Australian wild birds. This is the first report of a H9N2 avian influenza virus in resident wild birds in Australia, and although not in itself a cause of concern, is a clear indication of spillover and likely reassortment of influenza viruses between migratory and resident birds, and an indication that any lineage could potentially be introduced in this way.
Collapse
Affiliation(s)
- Tarka Raj Bhatta
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Anthony Chamings
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Jessy Vibin
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Marcel Klaassen
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
- Centre for Integrative Ecology, Deakin University, Victoria 3220, Australia
| | - Soren Alexandersen
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
- Barwon Health, University Hospital Geelong, Geelong, Victoria 3220, Australia
| |
Collapse
|