1
|
Ali M, Rasool M, Ali A, Muqaddas H, Naeem M, Farooq M, Bibi S, Shahzadi W, Sajjad M, Khan AU, Khan A, Iqbal F. Molecular prevalence, epidemiology, and phylogenetic analysis of Babesia microti in dogs with a note on its impact on host hematological profile. Vet Parasitol Reg Stud Reports 2024; 55:101114. [PMID: 39326966 DOI: 10.1016/j.vprsr.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Babesia (B.) microti is an intra-erythrocytic protozoan parasite that infects humans as well as domestic and wild animals. Prevalence of B. microti was investigated in 654 apparently healthy dogs belonging to 55 different breeds from three districts in Punjab province (Muzaffargarh, Bahawalpur and Jhang) and two districts in Khyber Pakhtunkhwa province (Dir Upper and Charsadda) in Pakistan. The hematological profile of dogs, risk factors associated with the infection and phylogenetic diversity of the detected isolates were also evaluated. In total, 29 blood samples (4 %) scored PCR positive. Sanger sequencing of partial 18S rRNA gene confirmed the presence of B. microti. The phylogenetic analysis of the sequences based on the 18S rRNA gene displayed global phylogenetic similarity with the isolates that were previously documented from Russia, France, Poland, Spain, China, Japan and USA. The infection rate was consistent across different sampling sites and dog breeds. Sex or presence of ectoparasites on dog was also not associated with B. microti prevalence. Babesia microti infected dogs had elevated red cell distribution width-coefficient of variation (%) than uninfected animals. This study presents updated data about the prevalence of B. microti among local Pakistani dogs and will be helpful in designing control strategies against this tick-borne pathogen as the tick infesting a B. microti infected dog may transmit this parasites to human as well.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Zoology, The Islamia University Bahawalpur, 60800, Pakistan
| | - Madiha Rasool
- Institute of Zoology, Bahauddin Zakariya University, Multan 60800, Pakistan; Department of Zoology, The Women University Multan, 60800, Pakistan
| | - Ahmad Ali
- Department of Zoology, The Islamia University Bahawalpur, 60800, Pakistan.
| | - Hira Muqaddas
- Department of Zoology, The Women University Multan, 60800, Pakistan.
| | - Muhammad Naeem
- Institute of Zoology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Farooq
- Department of Zoology, Ghazi University Dera Ghazi Khan, 32200, Pakistan.
| | - Shazia Bibi
- Department of Zoology, Ghazi University Dera Ghazi Khan, 32200, Pakistan
| | - Wajiha Shahzadi
- Institute of Zoology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Sajjad
- Department of Zoology, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Asmat Ullah Khan
- Department of Zoology, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan.
| | - Adil Khan
- Department of Zoology, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan.
| | - Furhan Iqbal
- Department of Zoology, The Islamia University Bahawalpur, 60800, Pakistan.
| |
Collapse
|
2
|
Liang Q, Zhang S, Liu Z, Wang J, Yin H, Guan G, You C. Comparative genome-wide identification and characterization of SET domain-containing and JmjC domain-containing proteins in piroplasms. BMC Genomics 2024; 25:804. [PMID: 39187768 PMCID: PMC11346185 DOI: 10.1186/s12864-024-10731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND SET domain-containing histone lysine methyltransferases (HKMTs) and JmjC domain-containing histone demethylases (JHDMs) are essential for maintaining dynamic changes in histone methylation across parasite development and infection. However, information on the HKMTs and JHDMs in human pathogenic piroplasms, such as Babesia duncani and Babesia microti, and in veterinary important pathogens, including Babesia bigemina, Babesia bovis, Theileria annulata and Theileria parva, is limited. RESULTS A total of 38 putative KMTs and eight JHDMs were identified using a comparative genomics approach. Phylogenetic analysis revealed that the putative KMTs can be divided into eight subgroups, while the JHDMs belong to the JARID subfamily, except for BdJmjC1 (BdWA1_000016) and TpJmjC1 (Tp Muguga_02g00471) which cluster with JmjC domain only subfamily members. The motifs of SET and JmjC domains are highly conserved among piroplasm species. Interspecies collinearity analysis provided insight into the evolutionary duplication events of some SET domain and JmjC domain gene families. Moreover, relative gene expression analysis by RT‒qPCR demonstrated that the putative KMT and JHDM gene families were differentially expressed in different intraerythrocytic developmental stages of B. duncani, suggesting their role in Apicomplexa parasite development. CONCLUSIONS Our study provides a theoretical foundation and guidance for understanding the basic characteristics of several important piroplasm KMT and JHDM families and their biological roles in parasite differentiation.
Collapse
Affiliation(s)
- Qindong Liang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, P. R. China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China
| | - Shangdi Zhang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, P. R. China
| | - Zeen Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, P. R. China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, P. R. China.
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China.
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, P. R. China.
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, P. R. China.
| |
Collapse
|
3
|
Kwak ML, Hitch AT, Low DHW, Borthwick SA, Markowsky G, McInnes D, Smith GJD, Nakao R, Mendenhall IH. Nation-wide surveillance of ticks (Acari: Argasidae) on bats (Chiroptera) in Singapore. Acta Trop 2024; 256:107248. [PMID: 38734359 DOI: 10.1016/j.actatropica.2024.107248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Bats and ticks are important sources of zoonotic pathogens. Therefore, understanding the diversity, distribution, and ecology of both groups is crucial for public health preparedness. Soft ticks (Argasidae) are a major group of ectoparasites commonly associated with bats. The multi-host life cycle of many argasids make them important vectors of pathogens. Over nine years (2011-2020), surveillance was undertaken to identify the ticks associated with common bats in Singapore. During this period, the bat tick Ornithodoros batuensis was detected within populations of two cave roosting bat species: Eonycteris spelaea and Penthetor lucasi. We examined the relationship between bat species, roosting behaviour, and probability of O. batuensis infestation. We also estimated the relationship between bat life history variables (body condition index, sex, and age) on the probability of infestation and tick count. This represents the first detection of O. batuensis and the genus Ornithodoros within Singapore. We also provide evidence of the continued persistence of Argas pusillus in Singapore with the second local record.
Collapse
Affiliation(s)
- Mackenzie L Kwak
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, 9 Chome Kita 18 Jonishi, Kita Ward, Sapporo, Hokkaido 060-0818, Japan.
| | - Alan T Hitch
- Museum of Wildlife and Fish Biology, Department of Wildlife, Fish and Conservation Biology, University of California at Davis, Davis CA 95616, USA
| | - Dolyce H W Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Sophie A Borthwick
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Greg Markowsky
- School of Mathematics, Monash University, 9 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Daniel McInnes
- School of Mathematics, Monash University, 9 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Gavin J D Smith
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore; Singhealth Duke-NUS Global Health Institute, Singhealth Duke-NUS Academia Medical Centre, Singapore; Duke Global Health Institute, Duke University, Durham, NC 27710, USA
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, 9 Chome Kita 18 Jonishi, Kita Ward, Sapporo, Hokkaido 060-0818, Japan
| | - Ian H Mendenhall
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| |
Collapse
|
4
|
Asman M, Bartosik K, Jakubas-Zawalska J, Świętek A, Witecka J. A New Endemic Locality of Dermacentor reticulatus in Central-Southern Poland and Its Potential Epidemiological Implications. INSECTS 2024; 15:580. [PMID: 39194785 DOI: 10.3390/insects15080580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Dermacentor reticulatus (Acari: Ixodidae) is an important arthropod vector in medical and veterinary contexts. Its geographic range is divided into western and eastern populations separated by a "Dermacentor-free zone" in central Poland. Recent faunistic studies showed a new endemic locality of the species in Upper Silesia to the west of the Vistula River (central-southern Poland) and its co-occurrence with I. ricinus. The prevalence of five tick-borne pathogens (TBPs), e.g., B. burgdorferi s.l., Bartonella spp., Rickettsia spp., and Babesia spp., in the ticks was assessed with polymerase chain reaction (PCR) methods. The molecular studies revealed the presence of Rickettsia spp. in 23.8% of the D. reticulatus specimens. In turn, 94.1% of the I. ricinus adults were infected with B. burgdorferi s.l., 11.7 % with Babesia spp., and 5.8% with Rickettsia spp. Coinfections with two TBPs were noted in 17.6% of the I. ricinus. These findings highlight not only the risk of infestation by both tick species in an area previously considered Dermacentor-free, but also the high prevalence of TBPs in the study area. Increased focus on medical and veterinary services appears necessary to diagnose and prevent tick-borne diseases in this region.
Collapse
Affiliation(s)
- Marek Asman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19 St., 41-808 Zabrze, Poland
| | - Katarzyna Bartosik
- Department of Biology and Parasitology, Chair of Pharmacology and Biology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland
| | | | - Agata Świętek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19 St., 41-808 Zabrze, Poland
- Silesia LabMed Research and Implementation Centre, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Joanna Witecka
- Department of Parasitology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8 St., 41-218 Sosnowiec, Poland
| |
Collapse
|
5
|
Maggi RG, Calchi AC, Moore CO, Kingston E, Breitschwerdt EB. Human Babesia odocoilei and Bartonella spp. co-infections in the Americas. Parasit Vectors 2024; 17:302. [PMID: 38992682 PMCID: PMC11241936 DOI: 10.1186/s13071-024-06385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND In recent years, Babesia and Bartonella species co-infections in patients with chronic, nonspecific illnesses have continued to challenge and change the collective medical understanding of "individual pathogen" vector-borne infectious disease dynamics, pathogenesis and epidemiology. The objective of this case series is to provide additional molecular documentation of Babesia odocoilei infection in humans in the Americas and to emphasize the potential for co-infection with a Bartonella species. METHODS The development of improved and more sensitive molecular diagnostic techniques, as confirmatory methods to assess active infection, has provided increasing clarity to the healthcare community. RESULTS Using a combination of different molecular diagnostic approaches, infection with Babesia odocoilei was confirmed in seven people suffering chronic non-specific symptoms, of whom six were co-infected with one or more Bartonella species. CONCLUSIONS We conclude that infection with Babesia odocoilei is more frequent than previously documented and can occur in association with co-infection with Bartonella spp.
Collapse
Affiliation(s)
- Ricardo G Maggi
- College of Veterinary Medicine, North Carolina State University, Intracellular Pathogens Research Laboratory Comparative Medicine Institute, Raleigh, NC, USA
| | - Ana Cláudia Calchi
- Department of Pathology, Reproduction and One Health, Vector-Borne Bioagents Laboratory (VBBL), School of Agricultural and Veterinarian Sciences (FCAV) - São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Charlotte O Moore
- College of Veterinary Medicine, North Carolina State University, Intracellular Pathogens Research Laboratory Comparative Medicine Institute, Raleigh, NC, USA
| | - Emily Kingston
- College of Veterinary Medicine, North Carolina State University, Intracellular Pathogens Research Laboratory Comparative Medicine Institute, Raleigh, NC, USA
| | - Edward B Breitschwerdt
- College of Veterinary Medicine, North Carolina State University, Intracellular Pathogens Research Laboratory Comparative Medicine Institute, Raleigh, NC, USA.
| |
Collapse
|
6
|
Hussain S, Hussain A, Aziz MU, Song B, Zeb J, George D, Li J, Sparagano O. A Review of Zoonotic Babesiosis as an Emerging Public Health Threat in Asia. Pathogens 2021; 11:pathogens11010023. [PMID: 35055971 PMCID: PMC8779675 DOI: 10.3390/pathogens11010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
Zoonotic babesiosis poses a serious health risk in many parts of the world. Its emergence in Asia is thus a cause for significant concern, demanding that appropriate control measures are implemented to suppress its spread in this region. This study focuses on zoonotic Babesia species reported in Asia, offering an extensive review of those species reported in animals and humans. We reported 11 studies finding zoonotic Babesia species in animals and 16 in humans. In China, the most prevalent species was found to be Babesia microti, reported in both humans (n = 10) and wild and domesticated animals (n = 4). In Korea, only two studies reported human babesiosis, with a further two studies reporting Babesia microti in wild animals. Babesia microti was also reported in wild animal populations in Thailand and Japan, with evidence of human case reports also found in Singapore, Mongolia and India. This is the first review to report zoonotic babesiosis in humans and animals in Asia, highlighting concerns for future public health in this region. Further investigations of zoonotic species of Babesia in animal populations are required to confirm the actual zoonotic threat of babesiosis in Asia, as well as its possible transmission routes.
Collapse
Affiliation(s)
- Sabir Hussain
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
- Correspondence: (S.H.); (O.S.)
| | - Abrar Hussain
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan;
| | - Muhammad Umair Aziz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
| | - Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
| | - David George
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
- Correspondence: (S.H.); (O.S.)
| |
Collapse
|
7
|
Karshima SN, Karshima MN, Ahmed MI. Global meta-analysis on Babesia infections in human population: prevalence, distribution and species diversity. Pathog Glob Health 2021; 116:220-235. [PMID: 34788196 DOI: 10.1080/20477724.2021.1989185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Human babesiosis is an emerging tick-borne protozoan zoonosis caused by parasites of the genus Babesia and transmitted by ixodid ticks. It was thought to be a public health problem mainly for the immunocompromised, however the increasing numbers of documented cases among immunocompetent individuals is a call for concern. In this systematic review and meta-analysis, we reported from 22 countries and 69 studies, an overall pooled estimate (PE) of 2.23% (95% CI: 1.46-3.39) for Babesia infections in humans. PEs for all sub-groups varied significantly (p < 0.05) with a continental range of 1.54% (95% CI: 0.89-2.65) in North America to 4.17% (95% CI: 2.11-8.06) in Europe. PEs for country income levels, methods of diagnosis, study period, sample sizes, Babesia species and targeted population ranged between 0.43% (95% CI: 0.41-0.44) and 7.41% (95% CI: 0.53-54.48). Babesia microti recorded the widest geographic distribution and was the predominant specie reported in North America while B. divergens was predominantly reported in Europe. Eight Babesia species; B. bigemina, B. bovis, B. crassa-like, B. divergens, B. duncani, B. microti, B. odocoilei and B. venatorum were reported in humans from different parts of the world with the highest prevalence in Europe, lower middle income countries and among individuals with history of tick bite and other tick-borne diseases. To control the increasing trend of this emerging public health threat, tick control in human settlements, the use of protective clothing by occupationally exposed people and the screening of transfusion blood in endemic countries are recommended.Abbreviations AJOL: African Journals OnLine, CI: Confidence interval, CIL: Country income level, df: Degree of freedom, HIC: Higher-income countries, HQ: High quality, I2: Inverse variance index, IFAT: Indirect fluorescent antibody test, ITBTBD: Individuals with tick-bite and tick-borne diseases, JBI: Joanna Briggs Institute, LIC: Lower-income countries, LMIC: Lower middle-income countries, MQ: Medium quality, NA: Not applicable, N/America: North America, OEI: Occupational exposed individuals, OR: Odds ratio, PE: Pooled estimates, PCR: Polymerase chain reaction, Prev: Prevalence, PRISMA: Preferred Reporting System for Systematic Reviews and Meta-Analyses, Q: Cochran's heterogeneity statistic, QA: Quality assessment, Q-p: Cochran's p-value, qPCR: Quantitative polymerase chain reaction, S/America: South America, Seq: Sequencing, UMIC: Upper middle-income countries, USA: United States of America.
Collapse
Affiliation(s)
- Solomon Ngutor Karshima
- Department of Veterinary Public Health and Preventive Medicine, University of Jos, Jos, Nigeria
| | | | - Musa Isiyaku Ahmed
- Department of Veterinary Parasitology and Entomology, Federal University of Agriculture, Zuru, Nigeria
| |
Collapse
|
8
|
Stanley J, Stramer SL, Erickson Y, Cruz J, Gorlin J, Janzen M, Rossmann SN, Straus T, Albrecht P, Pate LL, Galel SA. Detection of Babesia RNA and DNA in whole blood samples from US blood donations. Transfusion 2021; 61:2969-2980. [PMID: 34368968 PMCID: PMC9290686 DOI: 10.1111/trf.16617] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 01/03/2023]
Abstract
Background Human babesiosis is a zoonotic infection caused by an intraerythrocytic parasite. The highest incidence of babesiosis is in the United States, although cases have been reported in other parts of the world. Due to concerns of transfusion‐transmitted babesiosis, the US Food and Drug Administration (FDA) recommended year‐round regional testing for Babesia by nucleic acid testing or use of an FDA‐approved device for pathogen reduction. A new molecular test, cobas Babesia (Roche Molecular Systems, Inc.), was evaluated for the detection of the four species that cause human disease, Babesia microti, Babesia duncani, Babesia divergens, and Babesia venatorum. Study design and methods Analytical performance was evaluated followed by clinical studies on whole blood samples from US blood donations collected in a special tube containing a chaotropic reagent that lyses the red cells and preserves nucleic acid. Sensitivity and specificity of the test in individual samples (individual donation testing [IDT]) and in pools of six donations were determined. Results Based on analytical studies, the claimed limit of detection of cobas Babesia for B. microti is 6.1 infected red blood cells (iRBC)/mL (95% confidence interval [CI]: 5.0, 7.9); B. duncani was 50.2 iRBC/mL (95% CI: 44.2, 58.8); B. divergens was 26.1 (95% CI: 22.3, 31.8); and B. venatorum was 40.0 iRBC/mL (95% CI: 34.1, 48.7). The clinical specificity for IDT was 99.999% (95% CI: 99.996, 100) and 100% (95% CI: 99.987, 100) for pools of six donations. Conclusion cobas Babesia enables donor screening for Babesia species with high sensitivity and specificity.
Collapse
Affiliation(s)
- Jean Stanley
- Clinical Development and Medical Affairs, Roche Molecular Systems, Inc., Pleasanton, California, USA
| | - Susan L Stramer
- Scientific Services, American Red Cross, Gaithersburg, Maryland, USA
| | | | - Julie Cruz
- Medical Science Institute, Versiti Blood Center, Indianapolis, Indiana, USA
| | - Jed Gorlin
- Physician Services, Innovative Blood Resources, St. Paul, Minnesota, USA
| | - Mark Janzen
- Laboratory Services, Innovative Blood Resources, St. Paul, Minnesota, USA
| | - Susan N Rossmann
- Medical Services, Gulf Coast Regional Blood Center, Houston, Texas, USA
| | - Todd Straus
- Medical Services, The Community Blood Center, Appleton, Wisconsin, USA
| | - Patrick Albrecht
- Assay Development, Roche Diagnostics International Ltd, Rotkreuz, Switzerland
| | - Lisa Lee Pate
- Clinical Development and Medical Affairs, Roche Molecular Systems, Inc., Pleasanton, California, USA
| | - Susan A Galel
- Clinical Development and Medical Affairs, Roche Molecular Systems, Inc., Pleasanton, California, USA
| | | |
Collapse
|
9
|
Tan LP, Hamdan RH, Hassan BNH, Reduan MFH, Okene IAA, Loong SK, Khoo JJ, Samsuddin AS, Lee SH. Rhipicephalus Tick: A Contextual Review for Southeast Asia. Pathogens 2021; 10:821. [PMID: 34208961 PMCID: PMC8308476 DOI: 10.3390/pathogens10070821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Rhipicephalus species are distributed globally with a notifiable presence in Southeast Asia (SEA) within animal and human populations. The Rhipicephalus species are highly adaptive and have established successful coexistence within human dwellings and are known to be active all year round, predominantly in tropical and subtropical climates existing in SEA. In this review, the morphological characteristics, epidemiology, and epizootiology of Rhipicephalus tick species found in SEA are reviewed. There are six commonly reported Rhipicephalus ticks in the SEA region. Their interactions with their host species that range from cattle, sheep, and goats, through cats and dogs, to rodents and man are discussed in this article. Rhipicephalus-borne pathogens, including Anaplasma species, Ehrlichia species, Babesia species, and Theileria species, have been highlighted as are relevant to the region in review. Pathogens transmitted from Rhipicepahalus ticks to host animals are usually presented clinically with signs of anemia, jaundice, and other signs of hemolytic changes. Rhipicephalus ticks infestation also account for ectoparasitic nuisance in man and animals. These issues are discussed with specific interest to the SEA countries highlighting peculiarities of the region in the epidemiology of Rhipicephalus species and attendant pathogens therein. This paper also discusses the current general control strategies for ticks in SEA proffering measures required for increased documentation. The potential risks associated with rampant and improper acaricide use are highlighted. Furthermore, such practices lead to acaricide resistance among Rhipicephalus species are highlighted.
Collapse
Affiliation(s)
- Li Peng Tan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa 16100, Kelantan, Malaysia; (R.H.H.); (B.N.H.H.); (M.F.H.R.); (I.A.-A.O.)
| | - Ruhil Hayati Hamdan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa 16100, Kelantan, Malaysia; (R.H.H.); (B.N.H.H.); (M.F.H.R.); (I.A.-A.O.)
| | - Basripuzi Nurul Hayyan Hassan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa 16100, Kelantan, Malaysia; (R.H.H.); (B.N.H.H.); (M.F.H.R.); (I.A.-A.O.)
| | - Mohd Farhan Hanif Reduan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa 16100, Kelantan, Malaysia; (R.H.H.); (B.N.H.H.); (M.F.H.R.); (I.A.-A.O.)
| | - Ibrahim Abdul-Azeez Okene
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa 16100, Kelantan, Malaysia; (R.H.H.); (B.N.H.H.); (M.F.H.R.); (I.A.-A.O.)
| | - Shih Keng Loong
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur 50603, Selangor, Malaysia; (S.K.L.); (J.J.K.)
| | - Jing Jing Khoo
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur 50603, Selangor, Malaysia; (S.K.L.); (J.J.K.)
| | - Ahmad Syazwan Samsuddin
- Forest Biotechnology Laboratory, Department of Forest Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Mycology and Pathology Branch, Forest Biodiversity Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia
| | - Seng Hua Lee
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
10
|
Chavatte JM, Octavia S. The complete mitochondrial genome of Dermacentor (Indocentor) auratus (Acari, Ixodidae). ACTA ACUST UNITED AC 2021; 28:6. [PMID: 33464203 PMCID: PMC7814750 DOI: 10.1051/parasite/2021002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/06/2021] [Indexed: 11/14/2022]
Abstract
Dermacentor (Indocentor) auratus Supino, 1897 is a prominent ixodid vector of numerous pathogens of public health and veterinary importance. Using long-range PCR of two overlapping regions sequenced on an Illumina MiSeq machine, the complete mitochondrial genome of D. auratus is reported here. The resulting contigs were able to be assembled into a complete and circularised genome which had the general organisation of the mitochondrial genomes of the Metastriates. It had a total length of 14,766 bp and contained 37 genes, including 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes, as well as 2 non-coding control regions and 3 tick-boxes. The phylogenetic analysis on the whole mitogenome confirmed the position of D. auratus within the Dermacentor clade.
Collapse
Affiliation(s)
- Jean-Marc Chavatte
- National Public Health Laboratory, National Centre for Infectious Diseases, Block G, Level 13, 16 Jalan Tan Tock Seng, Singapore 308442, Singapore
| | - Sophie Octavia
- National Public Health Laboratory, National Centre for Infectious Diseases, Block G, Level 13, 16 Jalan Tan Tock Seng, Singapore 308442, Singapore
| |
Collapse
|
11
|
Kwak ML, Neves ES, Borthwick SA, Smith GJD, Meier R, Mendenhall IH. Habitat impacts the abundance and network structure within tick (Acari: Ixodidae) communities on tropical small mammals. Ticks Tick Borne Dis 2021; 12:101654. [PMID: 33548598 DOI: 10.1016/j.ttbdis.2021.101654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 12/18/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Ticks of small mammals pose a significant risk to public health but these hazards are poorly understood in the tropics due to the paucity of information on the disease ecology of ticks in these regions. Mapping and quantifying the diversity of small mammal/tick networks and the effects of habitat on these medically important systems is key to disease prevention. Singapore represents a microcosm of much of tropical Asia as it has a diverse, though poorly studied, community of ticks and small mammals. Singapore also has a range of terrestrial habitats exhibiting a gradient of degradation. Small mammals and their ticks were sampled across the island in four main habitat types (old secondary forest, young secondary forest, scrubland, urban) across 4.5 years. Four tick species were collected (Amblyomma helvolum, Dermacentor auratus, Haemaphysalis semermis, Ixodes granulatus) from 10 small mammal species. Habitat was found to have a significant effect on both the abundance and structure of tick communities on small mammals. Old secondary forest communities had the highest tick abundance, comparatively high connectance, niche overlap (among ticks), linkage density, and were the preferred habitat of the zoonotic tick I. granulatus. Therefore, future disease spillover is likely to emerge from small mammal-tick communities in old secondary forests.
Collapse
Affiliation(s)
- Mackenzie L Kwak
- Department of Biological Science, National University of Singapore, 16 Science Drive 4, 117558, Singapore.
| | - Erica S Neves
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Sophie A Borthwick
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Gavin J D Smith
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Rudolf Meier
- Department of Biological Science, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Ian H Mendenhall
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| |
Collapse
|
12
|
Kwak ML, Chavatte JM, Chew KL, Lee BPYH. Emergence of the zoonotic tick Dermacentor (Indocentor) auratus Supino, 1897 (Acari: Ixodidae) in Singapore. Ticks Tick Borne Dis 2020; 12:101574. [PMID: 33074148 DOI: 10.1016/j.ttbdis.2020.101574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/27/2020] [Accepted: 09/16/2020] [Indexed: 11/15/2022]
Abstract
Though ticks pose a significant public health risk, until recently, little research had focused on the diversity of ticks and tick-borne diseases in Singapore. To date, only fourteen tick species in five genera have been recorded there. For the first time, Dermacentor auratus is recorded from Singapore from a range of hosts, including humans. DNA sequences are provided at 2 loci, for D. auratus, the cytochrome c oxidase I (COI) for DNA barcoding and the 16S large subunit ribosomal RNA (16S lsu rRNA). The health risk posed by D. auratus in Singapore is discussed.
Collapse
Affiliation(s)
- Mackenzie L Kwak
- Department of Biological Science, National University of Singapore, 16 Science Drive 4, 117558, Singapore.
| | - Jean-Marc Chavatte
- National Public Health Laboratory, 16 Jalan Tan Tock Seng, National Centre for Infectious Diseases, Ministry of Health, 308442, Singapore
| | - Ka Lip Chew
- Department of Laboratory Medicine, National University Hospital, 5 Lower Kent Ridge Road, 119074, Singapore
| | - Benjamin P Y-H Lee
- Wildlife Management Division, National Parks Board, 1 Cluny Rd, 259569, Singapore
| |
Collapse
|
13
|
Chen M, Liu Q, Xue J, Chen S, Huang D, Yu Y, Cai Y, Lu Y, Song P, Zhang R, Ai L, Chen J. Spreading of Human Babesiosis in China: Current Epidemiological Status and Future Challenges. China CDC Wkly 2020; 2:634-637. [PMID: 34594726 PMCID: PMC8392958 DOI: 10.46234/ccdcw2020.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/07/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Muxin Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qin Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Jingbo Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Shaohong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Dana Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yingfang Yu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Yuchun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Yan Lu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lin Ai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Jiaxu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| |
Collapse
|
14
|
Transient Transfection of the Zoonotic Parasite Babesia microti. Pathogens 2020; 9:pathogens9020108. [PMID: 32050586 PMCID: PMC7169379 DOI: 10.3390/pathogens9020108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
The development of genetic manipulation techniques has been reported in many protozoan parasites over the past few years. However, these techniques have not been established for Babesia microti. Here, we report the first successful transient transfection of B. microti. The plasmids containing the firefly luciferase reporter gene were transfected into B. microti by an AMAXA 4D Nucleofection system. Twenty-four-hour synchronization, the 5'-actin promoter, program FA100, and 50 μg of plasmid DNA constituted the best conditions for the transient transfection of B. microti. This finding is the first step towards a stable transfection method for B. microti, which may contribute to a better understanding of the biology of the parasite.
Collapse
|