1
|
Miescher I, Rieber J, Schweizer TA, Orlietti M, Tarnutzer A, Andreoni F, Meier Buergisser G, Giovanoli P, Calcagni M, Snedeker JG, Zinkernagel AS, Buschmann J. In Vitro Assessment of Bacterial Adhesion and Biofilm Formation on Novel Bioactive, Biodegradable Electrospun Fiber Meshes Intended to Support Tendon Rupture Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6348-6355. [PMID: 38288645 DOI: 10.1021/acsami.3c15710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The surgical repair of a ruptured tendon faces two major problems: specifically increased fibrous adhesion to the surrounding tissue and inferior mechanical properties of the scar tissue compared to the native tissue. Bacterial attachment to implant materials is an additional problem as it might lead to severe infections and impaired recovery. To counteract adhesion formation, two novel implant materials were fabricated by electrospinning, namely, a random fiber mesh containing hyaluronic acid (HA) and poly(ethylene oxide) (PEO) in a ratio of 1:1 (HA/PEO 1:1) and 1:4 (HA/PEO 1:4), respectively. Electrospun DegraPol (DP) treated with silver nanoparticles (DP-Ag) was developed to counteract the bacterial attachment. The three novel materials were compared to the previously described DP and DP with incorporated insulin-like growth factor-1 (DP-IGF-1), two implant materials that were also designed to improve tendon repair. To test whether the materials are prone to bacterial adhesion and biofilm formation, we assessed 10 strains of Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Enterococcus faecalis, known for causing nosocomial infections. Fiber diameter, pore size, and water contact angle, reflecting different degrees of hydrophobicity, were used to characterize all materials. Generally, we observed higher biofilm formation on the more hydrophobic DP as compared to the more hydrophilic DP-IGF-1 and a trend toward reduced biofilm formation for DP treated with silver nanoparticles. For the two HA/PEO implants, a similar biofilm formation was observed. All tested materials were highly prone to bacterial adherence and biofilm formation, pointing toward the need of further material development, including the optimized incorporation of antibacterial agents such as silver nanoparticles or antibiotics.
Collapse
Affiliation(s)
- Iris Miescher
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Julia Rieber
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Tiziano A Schweizer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Mariano Orlietti
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Andrea Tarnutzer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Federica Andreoni
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Gabriella Meier Buergisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Pietro Giovanoli
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Jess G Snedeker
- Laboratory for Orthopedic Biomechanics, Department of Orthopedics, University of Zurich, Lengghalde 5, 8008 Zurich, Switzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| |
Collapse
|
2
|
Zhuravleva IY, Shadanov AA, Surovtseva MA, Vaver AA, Samoylova LM, Vladimirov SV, Timchenko TP, Kim II, Poveshchenko OV. Which Gelatin and Antibiotic Should Be Chosen to Seal a Woven Vascular Graft? Int J Mol Sci 2024; 25:965. [PMID: 38256039 PMCID: PMC10816219 DOI: 10.3390/ijms25020965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Among the vascular prostheses used for aortic replacement, 95% are woven or knitted grafts from polyester fibers. Such grafts require sealing, for which gelatin (Gel) is most often used. Sometimes antibiotics are added to the sealant. We used gelatin type A (GelA) or type B (GelB), containing one of the three antibiotics (Rifampicin, Ceftriaxone, or Vancomycin) in the sealant films. Our goal was to study the effect of these combinations on the mechanical and antibacterial properties and the cytocompatibility of the grafts. The mechanical characteristics were evaluated using water permeability and kinking radius. Antibacterial properties were studied using the disk diffusion method. Cytocompatibility with EA.hy926 endothelial cells was assessed via indirect cytotoxicity, cell adhesion, and viability upon direct contact with the samples (3, 7, and 14 days). Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to visualize the cells in the deep layers of the graft wall. "GelA + Vancomycin" and "GelB + vancomycin" grafts showed similar good mechanical characteristics (permeability~10 mL/min/cm2, kinking radius 21 mm) and antibacterial properties (inhibition zones for Staphilococcus aureus~15 mm, for Enterococcus faecalis~12 mm). The other samples did not exhibit any antibacterial properties. The cytocompatibility was good in all the tested groups, but endothelial cells exhibited the ability to self-organize capillary-like structures only when interacting with the "GelB + antibiotics" coatings. Based on the results obtained, we consider "GelB + vancomycin" sealant to be the most promising.
Collapse
Affiliation(s)
- Irina Yu. Zhuravleva
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
| | - Aldar A. Shadanov
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
| | - Maria A. Surovtseva
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Center «Institute of Cytology and Genetics SB RAS», 2 Timakova St., Novosibirsk 630060, Russia
| | - Andrey A. Vaver
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
| | - Larisa M. Samoylova
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
| | - Sergey V. Vladimirov
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
| | - Tatiana P. Timchenko
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
| | - Irina I. Kim
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Center «Institute of Cytology and Genetics SB RAS», 2 Timakova St., Novosibirsk 630060, Russia
| | - Olga V. Poveshchenko
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Center «Institute of Cytology and Genetics SB RAS», 2 Timakova St., Novosibirsk 630060, Russia
| |
Collapse
|
3
|
Mestres C, Van Hemelrijck M, Quintana E, Smit FE. Significance and current approaches to vascular graft infection. Indian J Thorac Cardiovasc Surg 2023; 39:333-340. [PMID: 38093914 PMCID: PMC10713901 DOI: 10.1007/s12055-023-01638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/17/2023] Open
Abstract
Vascular graft/endograft infection (VGEI) is a constant in cardiovascular surgery with published rates between 1 and 5%. Every graft type and anatomical location is a potential target for infectious complications. These patients are sick patients with high frailty burden. Management of VGEI entails a multidisciplinary and multimodality approach. Here we review some aspects of the problem of VGEI including prevention, diagnosis, and surgical therapy with focus on recent developments in the field.
Collapse
Affiliation(s)
- Carlos–Alberto Mestres
- Department of Cardiothoracic Surgery, Faculty of Health Sciences and The Robert WM Frater Cardiovascular Research Centre, The University of the Free State, PO Box 339 (Internal Box G32), Bloemfontein, 9300 South Africa
| | | | - Eduard Quintana
- Department of Cardiovascular Surgery, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Francis Edwin Smit
- Department of Cardiothoracic Surgery, Faculty of Health Sciences and The Robert WM Frater Cardiovascular Research Centre, The University of the Free State, PO Box 339 (Internal Box G32), Bloemfontein, 9300 South Africa
| |
Collapse
|
4
|
Sunnerhagen T, Schwartz F, Christophersen L, Bjarnsholt T, Qvortrup K, Eldrup N, Vogt K, Moser C. Biofilm formation on endovascular aneurysm repair (EVAR) grafts-a proof of concept in vitro model. Clin Microbiol Infect 2023; 29:1600.e1-1600.e6. [PMID: 37734593 DOI: 10.1016/j.cmi.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVES An endovascular aneurysm repair (EVAR) graft is a catheter-implanted vascular prosthesis and is the preferred treatment for patients with aortic aneurysm. If an EVAR graft becomes the focus of infection, the treatment possibilities are limited because it is technically difficult to remove the graft to obtain source control. This study examines whether Pseudomonas aeruginosa and Staphylococcus aureus form biofilm on EVAR prostheses. METHODS EVAR graft sections were exposed to bacteria at 102 or 108 colony forming units (CFU)/mL in lysogeny broth and Krebs-Ringer at 37°C, bacterial biofilm formation was evaluated by scanning electron microscopy and counting CFU on the graft sections after antibiotic exposure at × 10 minimal inhibitory concentration. Bacteria were tested for tolerance to benzylpenicillin, tobramycin, and ciprofloxacin. RESULTS Bacterial exposure for 15 minutes established biofilms on all prosthesis fragments (6/6 replicates). After 4 hours, bacteria were firmly attached to the EVAR prostheses and resisted washing. After 18-24 hours, the median CFU/g of EVAR graft reached 5.2 × 108 (1.15 × 108-1.1 × 109) for S. aureus and 9.1 × 107 (3.5 × 107-6.25 × 108) for P. aeruginosa. Scanning electron microscopy showed bacterial attachment to the graft pieces. There was a time-dependent development of tolerance with approximately 20 (tobramycin), 560 (benzylpenicillin), and 600 (ciprofloxacin) times more S. aureus surviving antibiotic exposure in 24- compared with 0-hour-old biofilm. Five (tobramycin) and 170 times (ciprofloxacin) more P. aeruginosa survived antibiotic exposure in 24- compared with 0-hour-old biofilms. DISCUSSION Our results show that bacteria can rapidly adhere to and subsequently form antibiotic-tolerant biofilms on EVAR graft material in concentrations equivalent to levels seen in transient bacteraemia in vivo. Potentially, the system can be used for identifying optimal treatment combinations for infected EVAR prosthesis.
Collapse
Affiliation(s)
- Torgny Sunnerhagen
- Department of Clinical Microbiology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark; Division for Infection Medicine, Department for Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden; Clinical Microbiology and Infection Control, Office for Medical Services, Region Skåne, Lund, Sweden.
| | - Franziska Schwartz
- Department of Clinical Microbiology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars Christophersen
- Department of Clinical Microbiology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark; Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Qvortrup
- Department of Biomedical Sciences, Core Facility for Integrated Microscopy, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Eldrup
- Department of Vascular Surgery, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Katja Vogt
- Department of Vascular Surgery, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark; Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Puges M, Bérard X, Vilain S, Pereyre S, Svahn I, Caradu C, Mzali F, Cazanave C. Staphylococcus aureus Adhesion and Biofilm Formation on Vascular Polyester Grafts are Inhibited In Vitro by Triclosan. Eur J Vasc Endovasc Surg 2023; 66:577-586. [PMID: 37482281 DOI: 10.1016/j.ejvs.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE This study evaluated Staphylococcus aureus adhesion and biofilm formation on vascular grafts, which has seldom been investigated. METHODS Adhesion and biofilm formation capabilities of three methicillin susceptible S. aureus strains (one biofilm forming reference strain and two clinical isolates) on five different vascular biomaterials were evaluated in vitro, including polyester (P), P + gelatin (PG), P + collagen (PC), PC + silver (PCS), and PCS + triclosan (PCST). Staphylococcus aureus adhesion on grafts was evaluated after one hour of culture and biofilm formation after 24 hours of culture by four different methods: spectrophotometry after crystal violet staining; sonicate fluid culture; metabolic assay; and scanning electron microscopy (SEM). Optical density was compared using Mann-Whitney pairwise test, and bacterial counts using Wilcoxon pairwise test. RESULTS PCST grafts were most efficient in preventing S. aureus adhesion and biofilm formation, regardless of the method used. Bacterial counts and metabolic activity were significantly lower on PCST grafts after 24 hours (5.65 vs. 9.24 [PCS], 8.99 [PC], 8.82 [PG], and 10.44 log10 CFU/mL [P]; p < .015), and only PCST grafts were bactericidal. Biofilm formation was significantly diminished on PCST grafts compared with all other grafts (p < .001). Bacterial viability and metabolic activity after 24 hours were more impaired on PG compared with PC graft, and were surprisingly higher on PCS compared with PC grafts. Biofilm biomass formed after exposure to P, PG, PC, and PCS grafts was also reduced after 24 hours of incubation with PCST grafts (p < .001). After 24 hours, few bacteria were visible by SEM on PCST grafts, whereas bacterial biofilm colonies were clearly identified on other graft surfaces. CONCLUSION Triclosan impregnated PCST grafts appeared to interfere with S. aureus adhesion from early stages of biofilm formation in vitro. Silver impregnation was not efficient in preventing biofilm formation, and collagen coating promoted S. aureus biofilm formation more than gelatin coating.
Collapse
Affiliation(s)
- Mathilde Puges
- Infectious and Tropical Diseases Department, CHU de Bordeaux, Bordeaux, France; Univ. Bordeaux, UMR 5234 CNRS, ARMYNE, Bordeaux, France.
| | - Xavier Bérard
- Vascular Surgery Department, CHU de Bordeaux, Bordeaux, France. https://twitter.com/Drake1128
| | - Sébastien Vilain
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
| | - Sabine Pereyre
- Univ. Bordeaux, UMR 5234 CNRS, ARMYNE, Bordeaux, France; Bacteriology Department, CHU de Bordeaux, Bordeaux, France
| | - Isabelle Svahn
- Univ. Bordeaux, Bordeaux Imaging Centre, UAR 3420 CNRS US4 INSERM, Bordeaux, France
| | - Caroline Caradu
- Vascular Surgery Department, CHU de Bordeaux, Bordeaux, France
| | - Fatima Mzali
- Univ. Bordeaux, UMR 5234 CNRS, Aquitaine microbiologie, Bordeaux, France
| | - Charles Cazanave
- Infectious and Tropical Diseases Department, CHU de Bordeaux, Bordeaux, France; Univ. Bordeaux, UMR 5234 CNRS, ARMYNE, Bordeaux, France. https://twitter.com/Drake1128
| |
Collapse
|
6
|
Kuznetsova YL, Gushchina KS, Lobanova KS, Chasova VO, Egorikhina MN, Grigoreva AO, Malysheva YB, Kuzmina DA, Farafontova EA, Linkova DD, Rubtsova YP, Semenycheva LL. Scaffold Chemical Model Based on Collagen-Methyl Methacrylate Graft Copolymers. Polymers (Basel) 2023; 15:2618. [PMID: 37376264 DOI: 10.3390/polym15122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Polymerization of methyl methacrylate (MMA) in aqueous collagen (Col) dispersion was studied in the presence of tributylborane (TBB) and p-quinone: 2,5-di-tert-butyl-p-benzoquinone (2,5-DTBQ), p-benzoquinone (BQ), duroquinone (DQ), and p-naphthoquinone (NQ). It was found that this system leads to the formation of a grafted cross-linked copolymer. The inhibitory effect of p-quinone determines the amount of unreacted monomer, homopolymer, and percentage of grafted poly(methyl methacrylate) (PMMA). The synthesis combines two approaches to form a grafted copolymer with a cross-linked structure-"grafting to" and "grafting from". The resulting products exhibit biodegradation under the action of enzymes, do not have toxicity, and demonstrate a stimulating effect on cell growth. At the same time, the denaturation of collagen occurring at elevated temperatures does not impair the characteristics of copolymers. These results allow us to present the research as a scaffold chemical model. Comparison of the properties of the obtained copolymers helps to determine the optimal method for the synthesis of scaffold precursors-synthesis of a collagen and poly(methyl methacrylate) copolymer at 60 °C in a 1% acetic acid dispersion of fish collagen with a mass ratio of the components collagen:MMA:TBB:2,5-DTBQ equal to 1:1:0.015:0.25.
Collapse
Affiliation(s)
- Yulia L Kuznetsova
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Ksenya S Gushchina
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Karina S Lobanova
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Victoria O Chasova
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Marfa N Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia
| | - Alexandra O Grigoreva
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Yulia B Malysheva
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Daria A Kuzmina
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Ekaterina A Farafontova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia
| | - Daria D Linkova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia
| | - Yulia P Rubtsova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia
| | - Luydmila L Semenycheva
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
7
|
Ruemke S, Rubalskii E, Salmoukas C, Hermes K, Natanov R, Kaufeld T, Gryshkov O, Mutsenko V, Rubalsky M, Burgwitz K, Glasmacher B, Haverich A, Rustum S, Kuehn C. Combination of Bacteriophages and Antibiotics for Prevention of Vascular Graft Infections-An In Vitro Study. Pharmaceuticals (Basel) 2023; 16:ph16050744. [PMID: 37242527 DOI: 10.3390/ph16050744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Implant-associated bacterial infections are usually hard to treat conservatively due to the resistance and tolerance of the pathogens to conventional antimicrobial therapy. Bacterial colonization of vascular grafts may lead to life-threatening conditions such as sepsis. The objective of this study is to evaluate whether conventional antibiotics and bacteriophages can reliably prevent the bacterial colonization of vascular grafts. (2) Methods: Gram-positive and Gram-negative bacterial infections were simulated on samples of woven PET gelatin-impregnated grafts using Staphylococcus aureus and Escherichia coli strains, respectively. The ability to prevent colonization was evaluated for a mixture of broad-spectrum antibiotics, for strictly lytic species-specific bacteriophage strains, and for a combination of both. All the antimicrobial agents were conventionally tested in order to prove the sensitivity of the used bacterial strains. Furthermore, the substances were used in a liquid form or in combination with a fibrin glue. (3) Results: Despite their strictly lytic nature, the application of bacteriophages alone was not enough to protect the graft samples from both bacteria. The singular application of antibiotics, both with and without fibrin glue, showed a protective effect against S. aureus (0 CFU/cm2), but was not sufficient against E. coli without fibrin glue (M = 7.18 × 104 CFU/cm2). In contrast, the application of a combination of antibiotics and phages showed complete eradication of both bacteria after a single inoculation. The fibrin glue hydrogel provided an increased protection against repetitive exposure to S. aureus (p = 0.05). (4) Conclusions: The application of antibacterial combinations of antibiotics and bacteriophages is an effective approach to the prevention of bacteria-induced vascular graft infections in clinical settings.
Collapse
Affiliation(s)
- Stefan Ruemke
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
| | - Evgenii Rubalskii
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
| | - Christina Salmoukas
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
| | - Kristina Hermes
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
| | - Ruslan Natanov
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Tim Kaufeld
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Oleksandr Gryshkov
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
- Institute for Multiphase Processes, Leibniz University Hannover, 30823 Garbsen, Germany
| | - Vitalii Mutsenko
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
- Institute for Multiphase Processes, Leibniz University Hannover, 30823 Garbsen, Germany
| | - Maxim Rubalsky
- Department of Microbiology and Virology, Astrakhan State Medical University, 414000 Astrakhan, Russia
| | - Karin Burgwitz
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
| | - Birgit Glasmacher
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
- Institute for Multiphase Processes, Leibniz University Hannover, 30823 Garbsen, Germany
| | - Axel Haverich
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
| | - Saad Rustum
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Christian Kuehn
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
| |
Collapse
|
8
|
Grafting of Methyl Methacrylate onto Gelatin Initiated by Tri-Butylborane-2,5-Di-Tert-Butyl- p-Benzoquinone System. Polymers (Basel) 2022; 14:polym14163290. [PMID: 36015547 PMCID: PMC9413382 DOI: 10.3390/polym14163290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Graft gelatin and poly(methyl methacrylate) copolymers were synthesized in the presence of the tributylborane—2,5-di-tert-butyl-p-benzoquinone (2,5-DTBQ) system. The molecular weight parameters and morphology of the polymer indicate that it has a cross-linked structure. Obtained data confirm the simultaneous formation of a copolymer in two ways: “grafting from” and “grafting to”. It leads to the cross-linked structure of a copolymer. This structure was not obtained for copolymers synthesized in the presence of other initiating systems: azobisisobutyronitrile; tributylborane; azobisisobutyronitrile and tributylborane; azobisisobutyronitrile, tributylborane, and 2,5-di-tert-butyl-p-benzoquinone. In these cases, the possibility of the formation of the copolymer, simultaneously in two ways, was excluded. Graft gelatin and poly(methyl methacrylate) copolymers synthesized in the presence of the tributylborane—2,5-di-tert-butyl-p-benzoquinone system are promising in terms of their use in scaffold technologies due to the three-dimensional mesh structure, providing a high regenerative potential of materials.
Collapse
|
9
|
Liu X, Wang N, Liu X, Deng R, Kang R, Xie L. Vascular Repair by Grafting Based on Magnetic Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14071433. [PMID: 35890328 PMCID: PMC9320478 DOI: 10.3390/pharmaceutics14071433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Magnetic nanoparticles (MNPs) have attracted much attention in the past few decades because of their unique magnetic responsiveness. Especially in the diagnosis and treatment of diseases, they are mostly involved in non-invasive ways and have achieved good results. The magnetic responsiveness of MNPs is strictly controlled by the size, crystallinity, uniformity, and surface properties of the synthesized particles. In this review, we summarized the classification of MNPs and their application in vascular repair. MNPs mainly use their unique magnetic properties to participate in vascular repair, including magnetic stimulation, magnetic drive, magnetic resonance imaging, magnetic hyperthermia, magnetic assembly scaffolds, and magnetic targeted drug delivery, which can significantly affect scaffold performance, cell behavior, factor secretion, drug release, etc. Although there are still challenges in the large-scale clinical application of MNPs, its good non-invasive way to participate in vascular repair and the establishment of a continuous detection process is still the future development direction.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Xie
- Correspondence: (R.K.); (L.X.)
| |
Collapse
|
10
|
Chasova V, Semenycheva L, Egorikhina M, Charykova I, Linkova D, Rubtsova Y, Fukina D, Koryagin A, Valetova N, Suleimanov E. Cod Gelatin as an Alternative to Cod Collagen in Hybrid Materials for Regenerative Medicine. Macromol Res 2022. [DOI: 10.1007/s13233-022-0017-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Wang W, Zhou Z, Liu N, Zhang X, Zhou H, Wang Y, Fang K, Wu T. Improving Biocompatibility of Polyester Fabrics through Polyurethane/Gelatin Complex Coating for Potential Vascular Application. Polymers (Basel) 2022; 14:polym14050989. [PMID: 35267812 PMCID: PMC8912764 DOI: 10.3390/polym14050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Medical apparatus and instruments, such as vascular grafts, are first exposed to blood when they are implanted. Therefore, blood compatibility is considered to be the critical issue when constructing a vascular graft. In this regard, the coating method is verified to be an effective and simple approach to improve the blood compatibility as well as prevent the grafts from blood leakage. In this study, polyester fabric is chosen as the substrate to provide excellent mechanical properties while a coating layer of polyurethane is introduced to prevent the blood leakage. Furthermore, gelatin is coated on the substrate to mimic the native extracellular matrix together with the improvement of biocompatibility. XPS and FTIR analysis are performed for elemental and group analysis to determine the successful coating of polyurethane and gelatin on the polyester fabrics. In terms of blood compatibility, hemolysis and platelet adhesion are measured to investigate the anticoagulation performance. In vitro cell experiments also indicate that endothelial cells show good proliferation and morphology on the polyester fabric modified with such coating layers. Taken together, such polyester fabric coated with polyurethane and gelatin layers would have a promising potential in constructing vascular grafts with expected blood compatibility and biocompatibility without destroying the basic mechanical requirements for vascular applications.
Collapse
Affiliation(s)
- Wei Wang
- College of Textile & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (W.W.); (H.Z.)
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-Textiles, 308 Ningxia Road, Qingdao 266071, China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Ziyi Zhou
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China; (Z.Z.); (N.L.); (X.Z.)
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Na Liu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China; (Z.Z.); (N.L.); (X.Z.)
| | - Xiaopei Zhang
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China; (Z.Z.); (N.L.); (X.Z.)
| | - Hua Zhou
- College of Textile & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (W.W.); (H.Z.)
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-Textiles, 308 Ningxia Road, Qingdao 266071, China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Yuanfei Wang
- Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
- Correspondence: (Y.W.); (K.F.); (T.W.)
| | - Kuanjun Fang
- College of Textile & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (W.W.); (H.Z.)
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-Textiles, 308 Ningxia Road, Qingdao 266071, China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
- Correspondence: (Y.W.); (K.F.); (T.W.)
| | - Tong Wu
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China; (Z.Z.); (N.L.); (X.Z.)
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, China
- Correspondence: (Y.W.); (K.F.); (T.W.)
| |
Collapse
|
12
|
Darie-Niță RN, Râpă M, Frąckowiak S. Special Features of Polyester-Based Materials for Medical Applications. Polymers (Basel) 2022; 14:951. [PMID: 35267774 PMCID: PMC8912343 DOI: 10.3390/polym14050951] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
This article presents current possibilities of using polyester-based materials in hard and soft tissue engineering, wound dressings, surgical implants, vascular reconstructive surgery, ophthalmology, and other medical applications. The review summarizes the recent literature on the key features of processing methods and potential suitable combinations of polyester-based materials with improved physicochemical and biological properties that meet the specific requirements for selected medical fields. The polyester materials used in multiresistant infection prevention, including during the COVID-19 pandemic, as well as aspects covering environmental concerns, current risks and limitations, and potential future directions are also addressed. Depending on the different features of polyester types, as well as their specific medical applications, it can be generally estimated that 25-50% polyesters are used in the medical field, while an increase of at least 20% has been achieved since the COVID-19 pandemic started. The remaining percentage is provided by other types of natural or synthetic polymers; i.e., 25% polyolefins in personal protection equipment (PPE).
Collapse
Affiliation(s)
- Raluca Nicoleta Darie-Niță
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Maria Râpă
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Stanisław Frąckowiak
- Faculty of Environmental Engineering, University of Science and Technology, 50-013 Wrocław, Poland;
| |
Collapse
|
13
|
Egorikhina MN, Semenycheva LL, Chasova VO, Bronnikova II, Rubtsova YP, Zakharychev EA, Aleynik DY. Changes in the Molecular Characteristics of Bovine and Marine Collagen in the Presence of Proteolytic Enzymes as a Stage Used in Scaffold Formation. Mar Drugs 2021; 19:502. [PMID: 34564164 PMCID: PMC8470260 DOI: 10.3390/md19090502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Biopolymers, in particular collagen and fibrinogen, are the leading materials for use in tissue engineering. When developing technology for scaffold formation, it is important to understand the properties of the source materials as well as the mechanisms that determine the formation of the scaffold structures. Both factors influence the properties of scaffolds to a great extent. Our present work aimed to identify the features of the molecular characteristics of collagens of different species origin and the changes they undergo during the enzymatic hydrolysis used for the process of scaffold formation. For this study, we used the methods of gel-penetrating chromatography, dynamic light scattering, reading IR spectra, and scanning electron microscopy. It was found that cod collagen (CC) and bovine collagen (BC) have different initial molecular weight parameters, and that, during hydrolysis, the majority of either type of protein is hydrolyzed by the proteolytic enzymes within the first minute. The differently sourced collagen samples were also hydrolyzed with the formation of two low molecular fractions: Mw ~ 10 kDa and ~20 kDa. In the case of CC, the microstructure of the final scaffolds contained denser, closely spaced fibrillar areas, while the BC-sourced scaffolds had narrow, short fibrils composed of unbound fibers of hydrolyzed collagen in their structure.
Collapse
Affiliation(s)
- Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| | - Ludmila L. Semenycheva
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia; (L.L.S.); (V.O.C.); (E.A.Z.)
| | - Victoria O. Chasova
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia; (L.L.S.); (V.O.C.); (E.A.Z.)
| | - Irina I. Bronnikova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| | - Yulia P. Rubtsova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| | - Evgeniy A. Zakharychev
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia; (L.L.S.); (V.O.C.); (E.A.Z.)
| | - Diana Ya. Aleynik
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| |
Collapse
|
14
|
Enz A, Kamaleddine I, Groß J, Schafmayer C, Alwafai E, Sievers L, Mittelmeier W, Klinder A. Is Single Gloving Still Acceptable? Investigation and Evaluation of Damages on Sterile Latex Gloves in General Surgery. J Clin Med 2021; 10:jcm10173887. [PMID: 34501334 PMCID: PMC8432096 DOI: 10.3390/jcm10173887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 01/24/2023] Open
Abstract
(1) Background: The sterile latex surgical glove is an important part of protecting both the patient and the surgical team from infections. However, mechanical stress can damage the integrity of the glove material and thus may lead to infections. (2) Method: A total of 896 gloves from 448 surgeries were tested and evaluated by the water tightening test according to EN455 and ASTM D5151-19. (3) Results: From 448 surgeries, 18.8% of the interventions showed glove damage. In vascular surgery, gloves were damaged in 20.8%, in thoracic surgery 9.1%, in laparoscopic interventions 21.7%, in the subgroup hernia surgeries (TAPP) 17.6% and in open interventions 17.6%. A total of 101 damages were found on 896 gloves; one glove could have several damages. During vascular surgery, 60% of the damages were on the subordinated hand of the surgeon, and 73.3% of the damages had a size of 1 mm. In laparoscopic procedures, the subordinated hand was also more frequently affected (61.3%) than the dominant hand; 64.5% of the damages were 1 mm in size. In the hernia surgery subgroup (TAPP), no damage was larger than 1 mm; 66.7% were in the subordinated hand area. The duration of surgery had no influence on the lesion rate. (4) Conclusion: The damage rate in low impact procedures is high and represents an underestimated problem in soft tissue surgery. The use of single gloving can therefore lead to the risk of infection. EN455 and ASTM D5151-19 does not take into consideration the risk of intraoperative lesions. Double gloving and glove change algorithms should be established.
Collapse
Affiliation(s)
- Andreas Enz
- Orthopaedic Clinic and Policlinic, University Medical Centre Rostock, 18057 Rostock, Germany; (L.S.); (W.M.); (A.K.)
- Correspondence: ; Tel.: +49-381-494-9301
| | - Imad Kamaleddine
- Department of General, Visceral, Vascular and Transplant Surgery, Surgical Clinic and Polyclinic of University Medical Centre Rostock, 18057 Rostock, Germany; (I.K.); (J.G.); (C.S.); (E.A.)
| | - Justus Groß
- Department of General, Visceral, Vascular and Transplant Surgery, Surgical Clinic and Polyclinic of University Medical Centre Rostock, 18057 Rostock, Germany; (I.K.); (J.G.); (C.S.); (E.A.)
| | - Clemens Schafmayer
- Department of General, Visceral, Vascular and Transplant Surgery, Surgical Clinic and Polyclinic of University Medical Centre Rostock, 18057 Rostock, Germany; (I.K.); (J.G.); (C.S.); (E.A.)
| | - Emad Alwafai
- Department of General, Visceral, Vascular and Transplant Surgery, Surgical Clinic and Polyclinic of University Medical Centre Rostock, 18057 Rostock, Germany; (I.K.); (J.G.); (C.S.); (E.A.)
| | - Larissa Sievers
- Orthopaedic Clinic and Policlinic, University Medical Centre Rostock, 18057 Rostock, Germany; (L.S.); (W.M.); (A.K.)
| | - Wolfram Mittelmeier
- Orthopaedic Clinic and Policlinic, University Medical Centre Rostock, 18057 Rostock, Germany; (L.S.); (W.M.); (A.K.)
| | - Annett Klinder
- Orthopaedic Clinic and Policlinic, University Medical Centre Rostock, 18057 Rostock, Germany; (L.S.); (W.M.); (A.K.)
| |
Collapse
|