1
|
Nyathi S, Rezende IM, Walter KS, Thongsripong P, Mutuku F, Ndenga B, Mbakaya JO, Aswani P, Musunzaji PS, Chebii PK, Maina PW, Mutuku PS, Ng'ang'a CM, Malumbo SL, Jembe Z, Vu DM, Mordecai EA, Bennett S, Andrews JR, LaBeaud AD. Molecular epidemiology and evolutionary characteristics of dengue virus 2 in East Africa. Nat Commun 2024; 15:7832. [PMID: 39244569 PMCID: PMC11380673 DOI: 10.1038/s41467-024-51018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the increasing burden of dengue, the regional emergence of the virus in Kenya has not been examined. This study investigates the genetic structure and regional spread of dengue virus-2 in Kenya. Viral RNA from acutely ill patients in Kenya was enriched and sequenced. Six new dengue-2 genomes were combined with 349 publicly available genomes and phylogenies used to infer gene flow between Kenya and other countries. Analyses indicate two dengue-2 Cosmopolitan genotype lineages circulating in Kenya, linked to recent outbreaks in coastal Kenya and Burkina Faso. Lineages circulating in Western, Southern, and Eastern Africa exhibiting similar evolutionary features are also reported. Phylogeography suggests importation of dengue-2 into Kenya from East and Southeast Asia and bidirectional geneflow. Additional lineages circulating in Africa are also imported from East and Southeast Asia. These findings underscore how intermittent importations from East and Southeast Asia drive dengue-2 circulation in Kenya and Africa more broadly.
Collapse
Affiliation(s)
- Sindiso Nyathi
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Izabela M Rezende
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Katharine S Walter
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Panpim Thongsripong
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, 32962, USA
| | - Francis Mutuku
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Bryson Ndenga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Joel O Mbakaya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Peter Aswani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Philip K Chebii
- Vector-borne Disease Unit, Msambweni Hospital, Msambweni, Kenya
| | | | - Paul S Mutuku
- Vector-borne Disease Unit, Msambweni Hospital, Msambweni, Kenya
| | | | - Said L Malumbo
- Vector-borne Disease Unit, Msambweni Hospital, Msambweni, Kenya
| | | | - David M Vu
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Shannon Bennett
- Department of Microbiology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - A Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Kiener M, Shayegh N, Nyathi SV, Ndenga BA, Mutuku FM, LaBeaud AD. Low Rate of Asymptomatic Dengue Infection Detected in Coastal Kenya Using Pooled Polymerase Chain Reaction Testing. Am J Trop Med Hyg 2024; 110:738-740. [PMID: 38471167 PMCID: PMC10993852 DOI: 10.4269/ajtmh.23-0650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/24/2023] [Indexed: 03/14/2024] Open
Abstract
Asymptomatic dengue virus (DENV) infections have important public health implications but are challenging to identify. We performed a cross-sectional study of reverse transcription quantitative polymerase chain reaction on pooled sera of asymptomatic individuals from the south coast of Kenya at two time periods to identify cases of asymptomatic viremia. Among 2,460 samples tested in pools of 9 or 10, we found only one positive case (0.04% incidence). Although pooling of samples has the potential to be a cost-effective and time-efficient method for asymptomatic DENV detection, mass cross-sectional pooled testing may not provide accurate data on rates of asymptomatic infection, likely owing to a decrease in the sensitivity with pooling of samples, a short period of viremia, or testing in the absence of an outbreak.
Collapse
Affiliation(s)
- Melanie Kiener
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California
| | - Nader Shayegh
- Howard University College of Medicine, Washington, District of Columbia
| | - Sindiso Victor Nyathi
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California
| | | | | | - Angelle Desiree LaBeaud
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
3
|
Mancini MV, Murdochy SM, Bilgo E, Ant TH, Gingell D, Gnambani EJ, Failloux AB, Diabate A, Sinkins SP. Wolbachia strain wAlbB shows favourable characteristics for dengue control use in Aedes aegypti from Burkina Faso. Environ Microbiol 2024; 26:e16588. [PMID: 38450576 DOI: 10.1111/1462-2920.16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024]
Abstract
Dengue represents an increasing public health burden worldwide. In Africa, underreporting and misdiagnosis often mask its true epidemiology, and dengue is likely to be both more widespread than reported data suggest and increasing in incidence and distribution. Wolbachia-based dengue control is underway in Asia and the Americas but has not to date been deployed in Africa. Due to the genetic heterogeneity of African Aedes aegypti populations and the complexity of the host-symbiont interactions, characterization of key parameters of Wolbachia-carrying mosquitoes is paramount for determining the potential of the system as a control tool for dengue in Africa. The wAlbB Wolbachia strain was stably introduced into an African Ae. aegypti population by introgression, and showed high intracellular density in whole bodies and different mosquito tissues; high intracellular density was also maintained following larval rearing at high temperatures. No effect on the adult lifespan induced by Wolbachia presence was detected. Moreover, the ability of this strain to strongly inhibit DENV-2 dissemination and transmission in the host was also demonstrated in the African background. Our findings suggest the potential of harnessing Wolbachia for dengue control for African populations of Ae. aegypti.
Collapse
Affiliation(s)
- Maria Vittoria Mancini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Etienne Bilgo
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Dioulasso, Burkina Faso
- Institut National de Santé Publique/Centre Muraz, Dioulasso, Burkina Faso
| | - Thomas H Ant
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Daniel Gingell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Edounou Jacques Gnambani
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Dioulasso, Burkina Faso
- Institut National de Santé Publique/Centre Muraz, Dioulasso, Burkina Faso
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Dioulasso, Burkina Faso
- Institut National de Santé Publique/Centre Muraz, Dioulasso, Burkina Faso
| | - Steven P Sinkins
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
4
|
Agbodzi B, Sado Yousseu FB, Nemg Simo FB, Kumordjie S, Yeboah C, Mosore MT, Bentil RE, Coatsworth HG, Attram N, Nimo-Paintsil S, Fox AT, Bonney JHK, Ampofo W, Dinglasan RR, Sanders T, Wiley MR, Demanou M, Letizia AG. Whole genome sequencing of outbreak strains from 2017 to 2018 reveals an endemic clade of dengue 1 virus in Cameroon. Emerg Microbes Infect 2023; 12:2281352. [PMID: 37933502 PMCID: PMC10732222 DOI: 10.1080/22221751.2023.2281352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/04/2023] [Indexed: 11/08/2023]
Abstract
Dengue fever is expanding as a global public health threat including countries within Africa. For the past few decades, Cameroon has experienced sporadic cases of arboviral infections including dengue fever. Here, we conducted genomic analyses to investigate the origin and phylogenetic profile of Cameroon DENV-1 outbreak strains and predict the impact of emerging therapeutics on these strains. Bayesian and maximum-likelihood phylogenetic inference approaches were employed in virus evolutionary analyses. An in silico analysis was performed to assess the divergence in immunotherapeutic and vaccine targets in the new genomes. Six complete DENV-1 genomes were generated from 50 samples that met a clinical definition for DENV infection. Phylogenetic analyses revealed that the strains from the current study belong to a sub-lineage of DENV-1 genotype V and form a monophyletic taxon with a 2012 strain from Gabon. The most recent common ancestor (TMRCA) of the Cameroon and Gabon strains was estimated to have existed around 2008. Comparing our sequences to the vaccine strains, 19 and 15 amino acid (aa) substitutions were observed in the immuno-protective prM-E protein segments of the Dengvaxia® and TetraVax-DV-TV003 vaccines, respectively. Epitope mapping revealed mismatches in aa residues at positions E155 and E161 located in the epitope of the human anti-DENV-1 monoclonal antibody HMAb 1F4. The new DENV strains constitute a conserved genomic pool of viruses endemic to the Central African region that needs prospective monitoring to track local viral evolution. Further work is needed to ascertain the performance of emerging therapeutics in DENV strains from the African region.
Collapse
Affiliation(s)
- Bright Agbodzi
- U.S. Naval Medical Research Unit EURAFCENT, Accra, Ghana
| | | | | | | | - Clara Yeboah
- U.S. Naval Medical Research Unit EURAFCENT, Accra, Ghana
| | | | | | - Heather G. Coatsworth
- Department of Infectious Diseases & Immunology and Emerging Pathogens Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Naiki Attram
- U.S. Naval Medical Research Unit EURAFCENT, Accra, Ghana
| | | | - Anne T. Fox
- U.S. Naval Medical Research Unit EURAFCENT, Accra, Ghana
| | - Joseph H. K. Bonney
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - William Ampofo
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Rhoel R. Dinglasan
- Department of Infectious Diseases & Immunology and Emerging Pathogens Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Terrel Sanders
- U.S. Naval Medical Research Unit EURAFCENT, Accra, Ghana
| | - Michael R. Wiley
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
5
|
Kayange N, Hau DK, Pain K, Mshana SE, Peck R, Gehring S, Groendahl B, Koliopoulos P, Revocatus B, Msaki EB, Malande O. Seroprevalence of Dengue and Chikungunya Virus Infections in Children Living in Sub-Saharan Africa: Systematic Review and Meta-Analysis. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1662. [PMID: 37892325 PMCID: PMC10605353 DOI: 10.3390/children10101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Dengue and chikungunya viruses are frequent causes of malarial-like febrile illness in children. The rapid increase in virus transmission by mosquitoes is a global health concern. This is the first systematic review and meta-analysis of the childhood prevalence of dengue and chikungunya in Sub-Saharan Africa (SSA). A comprehensive search of the MEDLINE (Ovid), Embase (Ovid), and Cochrane Library (Wiley) databases was conducted on 28 June 2019, and updated on 12 February 2022. The search strategy was designed to retrieve all articles pertaining to arboviruses in SSA children using both controlled vocabulary and keywords. The pooled (weighted) proportion of dengue and chikungunya was estimated using a random effect model. The overall pooled prevalence of dengue and chikungunya in SSA children was estimated to be 16% and 7%, respectively. Prevalence was slightly lower during the period 2010-2020 compared to 2000-2009. The study design varied depending on the healthcare facility reporting the disease outbreak. Importantly, laboratory methods used to detect arbovirus infections differed. The present review documents the prevalence of dengue and chikungunya in pediatric patients throughout SSA. The results provide unprecedented insight into the transmission of dengue and chikungunya viruses among these children and highlight the need for enhanced surveillance and controlled methodology.
Collapse
Affiliation(s)
- Neema Kayange
- Department of Pediatrics, Bugando Medical Centre, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania;
| | - Duncan K Hau
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Kevin Pain
- Samuel J. Wood Library and C.V. Starr Biomedical Information Center, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA;
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania;
| | - Robert Peck
- Department of Pediatrics, Bugando Medical Centre, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania;
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10065, USA;
- Center for Global Health, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Stephan Gehring
- Department of Pediatrics, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.G.); (B.G.); (P.K.)
| | - Britta Groendahl
- Department of Pediatrics, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.G.); (B.G.); (P.K.)
| | - Philip Koliopoulos
- Department of Pediatrics, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.G.); (B.G.); (P.K.)
| | - Baraka Revocatus
- Department of Data and Statistics, Bugando Medical Centre, Mwanza P.O. Box 1370, Tanzania;
| | - Evarist B Msaki
- Department of Epidemiology and Biostatistics, Bugando Medical Centre, Mwanza P.O. Box 1370, Tanzania;
| | - Ombeva Malande
- East Africa Centre for Vaccines and Immunization (ECAVI), Kampala P.O. Box 3040, Uganda;
- Department of Public Health Phamarmacy, Sefako Makgatho Health Sciences University, Pretoria P.O. Box 60, South Africa
- Department of Paediatrics & Child Health, Makerere University, Kampala P.O. Box 7072, Uganda
- Department of Public Health, UNICAF University, Lusaka P.O. Box 20842, Zambia
| |
Collapse
|
6
|
Gebremariam TT, Schallig HDFH, Kurmane ZM, Danquah JB. Increasing prevalence of malaria and acute dengue virus coinfection in Africa: a meta-analysis and meta-regression of cross-sectional studies. Malar J 2023; 22:300. [PMID: 37803381 PMCID: PMC10557169 DOI: 10.1186/s12936-023-04723-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Malaria and dengue fever are the leading causes of acute, undifferentiated febrile illness. In Africa, misdiagnosis of dengue fever as malaria is a common scenario. Through a systematic review of the published literature, this study seeks to estimate the prevalence of dengue and malaria coinfection among acute undifferentiated febrile diseases in Africa. METHODS Relevant publications were systematically searched in the PubMed, Cochrane Library, and Google Scholar until May 19, 2023. A random-effects meta-analysis and meta-regression were used to summarize and examine the prevalence estimates. RESULTS Twenty-two studies with 22,803 acute undifferentiated febrile patients from 10 countries in Africa were included. The meta-analysis findings revealed a pooled prevalence of malaria and dengue coinfection of 4.2%, with Central Africa having the highest rate (4.7%), followed by East Africa (2.7%) and West Africa (1.6%). Continent-wide, Plasmodium falciparum and acute dengue virus coinfection prevalence increased significantly from 0.9% during 2008-2013 to 3.8% during 2014-2017 and to 5.5% during 2018-2021 (p = 0.0414). CONCLUSION There was a high and increasing prevalence of malaria and acute dengue virus coinfection in Africa. Healthcare workers should bear in mind the possibility of dengue infection as a differential diagnosis for acute febrile illness, as well as the possibility of coexisting malaria and dengue in endemic areas. In addition, high-quality multicentre studies are required to verify the above conclusions. Protocol registration number: CRD42022311301.
Collapse
Affiliation(s)
- Tewelde T Gebremariam
- School of Graduate Studies and Research, Frantz Fanon University, Hargeisa, Somaliland.
| | - Henk D F H Schallig
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Zeleke M Kurmane
- School of Medical Laboratory, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Jonas B Danquah
- Animal Research Institute, Animal Health Division, Accra, Ghana
| |
Collapse
|
7
|
Vu DM, Krystosik AR, Ndenga BA, Mutuku FM, Ripp K, Liu E, Bosire CM, Heath C, Chebii P, Maina PW, Jembe Z, Malumbo SL, Amugongo JS, Ronga C, Okuta V, Mutai N, Makenzi NG, Litunda KA, Mukoko D, King CH, LaBeaud AD. Detection of acute dengue virus infection, with and without concurrent malaria infection, in a cohort of febrile children in Kenya, 2014-2019, by clinicians or machine learning algorithms. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001950. [PMID: 37494331 PMCID: PMC10370704 DOI: 10.1371/journal.pgph.0001950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
Poor access to diagnostic testing in resource limited settings restricts surveillance for emerging infections, such as dengue virus (DENV), to clinician suspicion, based on history and exam observations alone. We investigated the ability of machine learning to detect DENV based solely on data available at the clinic visit. We extracted symptom and physical exam data from 6,208 pediatric febrile illness visits to Kenyan public health clinics from 2014-2019 and created a dataset with 113 clinical features. Malaria testing was available at the clinic site. DENV testing was performed afterwards. We randomly sampled 70% of the dataset to develop DENV and malaria prediction models using boosted logistic regression, decision trees and random forests, support vector machines, naïve Bayes, and neural networks with 10-fold cross validation, tuned to maximize accuracy. 30% of the dataset was reserved to validate the models. 485 subjects (7.8%) had DENV, and 3,145 subjects (50.7%) had malaria. 220 (3.5%) subjects had co-infection with both DENV and malaria. In the validation dataset, clinician accuracy for diagnosis of malaria was high (82% accuracy, 85% sensitivity, 80% specificity). Accuracy of the models for predicting malaria diagnosis ranged from 53-69% (35-94% sensitivity, 11-80% specificity). In contrast, clinicians detected only 21 of 145 cases of DENV (80% accuracy, 14% sensitivity, 85% specificity). Of the six models, only logistic regression identified any DENV case (8 cases, 91% accuracy, 5.5% sensitivity, 98% specificity). Without diagnostic testing, interpretation of clinical findings by humans or machines cannot detect DENV at 8% prevalence. Access to point-of-care diagnostic tests must be prioritized to address global inequities in emerging infections surveillance.
Collapse
Affiliation(s)
- David M Vu
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| | - Amy R Krystosik
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| | - Bryson A Ndenga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Francis M Mutuku
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Kelsey Ripp
- University of Global Health Equity, Butaro, Rwanda
| | - Elizabeth Liu
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| | - Carren M Bosire
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Claire Heath
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| | - Philip Chebii
- Vector-Borne Diseases Unit, Msambweni County Referral Hospital, Msambweni, Kwale, Kenya
| | | | - Zainab Jembe
- Vector-Borne Diseases Unit, Diani Health Center, Ukunda, Kwale, Kenya
| | - Said Lipi Malumbo
- Vector-Borne Diseases Unit, Msambweni County Referral Hospital, Msambweni, Kwale, Kenya
| | - Jael Sagina Amugongo
- Vector-Borne Diseases Unit, Msambweni County Referral Hospital, Msambweni, Kwale, Kenya
| | - Charles Ronga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Victoria Okuta
- Paediatric Department, Obama Children's Hospital, Jaramogi Oginga Odinga Referral Hospital, Kisumu, Kenya
| | - Noah Mutai
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Nzaro G Makenzi
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Kennedy A Litunda
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Dunstan Mukoko
- Vector-Borne Diseases Unit, Ministry of Health, Nairobi, Kenya
| | - Charles H King
- Department of Pathology, Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - A Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
8
|
Peña-García VH, Mutuku FM, Ndenga BA, Mbakaya JO, Ndire SO, Agola GA, Mutuku PS, Malumbo SL, Ng’ang’a CM, Andrews JR, Mordecai EA, LaBeaud AD. The Importance of Including Non-Household Environments in Dengue Vector Control Activities. Viruses 2023; 15:1550. [PMID: 37515236 PMCID: PMC10384488 DOI: 10.3390/v15071550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Most vector control activities in urban areas are focused on household environments; however, information relating to infection risks in spaces other than households is poor, and the relative risk that these spaces represent has not yet been fully understood. We used data-driven simulations to investigate the importance of household and non-household environments for dengue entomological risk in two Kenyan cities where dengue circulation has been reported. Fieldwork was performed using four strategies that targeted different stages of mosquitoes: ovitraps, larval collections, Prokopack aspiration, and BG-sentinel traps. Data were analyzed separately between household and non-household environments to assess mosquito presence, the number of vectors collected, and the risk factors for vector presence. With these data, we simulated vector and human populations to estimate the parameter m and mosquito-to-human density in both household and non-household environments. Among the analyzed variables, the main difference was found in mosquito abundance, which was consistently higher in non-household environments in Kisumu but was similar in Ukunda. Risk factor analysis suggests that small, clean water-related containers serve as mosquito breeding places in households as opposed to the trash- and rainfall-related containers found in non-household structures. We found that the density of vectors (m) was higher in non-household than household environments in Kisumu and was also similar or slightly lower between both environments in Ukunda. These results suggest that because vectors are abundant, there is a potential risk of transmission in non-household environments; hence, vector control activities should take these spaces into account.
Collapse
Affiliation(s)
- Víctor Hugo Peña-García
- Department of Biology, Stanford University, Stanford, CA 94305, USA;
- School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.R.A.); (A.D.L.)
| | - Francis M. Mutuku
- Department of Environmental and Health Sciences, Technical University of Mombasa, Mombasa 80110, Kenya;
| | - Bryson A. Ndenga
- Kenya Medical Research Institute, Kisumu 40100, Kenya; (B.A.N.); (J.O.M.); (S.O.N.); (G.A.A.)
| | - Joel Omari Mbakaya
- Kenya Medical Research Institute, Kisumu 40100, Kenya; (B.A.N.); (J.O.M.); (S.O.N.); (G.A.A.)
| | - Samwuel Otieno Ndire
- Kenya Medical Research Institute, Kisumu 40100, Kenya; (B.A.N.); (J.O.M.); (S.O.N.); (G.A.A.)
| | - Gladys Adhiambo Agola
- Kenya Medical Research Institute, Kisumu 40100, Kenya; (B.A.N.); (J.O.M.); (S.O.N.); (G.A.A.)
| | - Paul S. Mutuku
- Vector Borne Disease Control Unit, Msambweni County Referral Hospital, Msambweni, Kwale County 80404, Kenya; (P.S.M.); (S.L.M.); (C.M.N.)
| | - Said L. Malumbo
- Vector Borne Disease Control Unit, Msambweni County Referral Hospital, Msambweni, Kwale County 80404, Kenya; (P.S.M.); (S.L.M.); (C.M.N.)
| | - Charles M. Ng’ang’a
- Vector Borne Disease Control Unit, Msambweni County Referral Hospital, Msambweni, Kwale County 80404, Kenya; (P.S.M.); (S.L.M.); (C.M.N.)
| | - Jason R. Andrews
- School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.R.A.); (A.D.L.)
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, CA 94305, USA;
| | - A. Desiree LaBeaud
- School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.R.A.); (A.D.L.)
| |
Collapse
|
9
|
Khan A, Bisanzio D, Mutuku F, Ndenga B, Grossi-Soyster EN, Jembe Z, Maina PW, Chebii PK, Ronga CO, Okuta V, LaBeaud AD. Spatiotemporal overlapping of dengue, chikungunya, and malaria infections in children in Kenya. BMC Infect Dis 2023; 23:183. [PMID: 36991340 PMCID: PMC10053720 DOI: 10.1186/s12879-023-08157-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Malaria, chikungunya virus (CHIKV), and dengue virus (DENV) are endemic causes of fever among children in Kenya. The risks of infection are multifactorial and may be influenced by built and social environments. The high resolution overlapping of these diseases and factors affecting their spatial heterogeneity has not been investigated in Kenya. From 2014-2018, we prospectively followed a cohort of children from four communities in both coastal and western Kenya. Overall, 9.8% were CHIKV seropositive, 5.5% were DENV seropositive, and 39.1% were malaria positive (3521 children tested). The spatial analysis identified hot-spots for all three diseases in each site and in multiple years. The results of the model showed that the risk of exposure was linked to demographics with common factors for the three diseases including the presence of litter, crowded households, and higher wealth in these communities. These insights are of high importance to improve surveillance and targeted control of mosquito-borne diseases in Kenya.
Collapse
Affiliation(s)
- Aslam Khan
- Stanford University School of Medicine, Stanford, CA, USA.
- Center for Academic Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA.
| | | | | | | | | | - Zainab Jembe
- Msambweni County Referral hospital, Msambweni, Kenya
| | | | | | | | | | | |
Collapse
|
10
|
Kamau WW, Sang R, Rotich G, Agha SB, Menza N, Torto B, Tchouassi DP. Patterns of Aedes aegypti abundance, survival, human-blood feeding and relationship with dengue risk, Kenya. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Dengue virus (DENV) transmission risk is influenced by the bionomic traits of the key vector, Aedes aegypti. We investigated patterns of abundance, survival, and human blood-feeding of Ae. aegypti populations in two environments in Kenya: peri-urban Rabai (coastal Region, dengue-endemic) and rural Kerio Valley (Rift Valley Region, no reported dengue outbreak). In both environments, Ae. aegypti survival (estimated by parity), was inversely correlated with vector abundance, and this was influenced by weather conditions, notably temperature and relative humidity. In Rabai, Ae. aegypti mostly fed on humans (human blood index=51%), a pattern that corroborates with dengue cases in the coastal region. Aedes aegypti additionally, exhibited opportunistic feeding (livestock, rodents, reptiles, birds), suggesting the risk of human exposure to zoonotic pathogens via spillover transmission events aided by the vector. Abundance and human blood-feeding rates were consistently lower in Kerio Valley likely related to the degree of urbanization. Remarkably, the periods of high human feeding in Rabai coincided with high vector survival rates, a trend that could potentially drive intense DENV transmission at certain times of the year. We found a genetic influence of Ae. aegypti on the degree of anthropophagy but this could be influenced by potential seasonal shifts in human feeding. The findings of this study have implications both for DENV transmission risk and vector control strategies, but also in modeling which should integrate vector bionomic factors beyond vector abundance.
Collapse
|
11
|
Vector Competence of a Coastal Population of Aedes aegypti for Dengue 2 and 3 Virus Serotypes in Kenya. BIOMED RESEARCH INTERNATIONAL 2023. [DOI: 10.1155/2023/8402682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aedes aegypti is the primary vector of dengue, an arboviral disease caused by dengue virus (DENV) that exists as four distinct serotypes (DENV 1-4). While all four DENV serotypes circulate in Kenya, differential distribution of the serotypes in specific regions suggests virus transmission may differ among local vector populations. In this study, we tested the hypothesis that a coastal Ae. aegypti population (Rabai, Kilifi County) varies in its ability to transmit DENV-2 (predominant) and DENV-3 (less dominant) and that transmission is related to Ae. aegypti subspecies—domestic Ae. aegypti aegypti (Aaa) and sylvtic Ae. aegypti formosus (Aaf). We orally exposed F1 females (3-10 days old) to blood meals containing DENV-2 (10 5.30 pfu/ml) or DENV-3 (10 5.13 pfu/ml), tested them individually for infection (body), dissemination (legs), and transmission (saliva) at 7, 14, and 21 days postinfection (DPI), respectively, and compared the rates between the serotypes. We analyzed cytochrome c oxidase I gene (cox-I) sequences among DENV-susceptible and nonsusceptible cohorts. Of 489 mosquitoes tested (DENV-2: 240; DENV-3: 249), we found consistently higher but nonsignificant rates of infection (16% vs. 10%), dissemination (47% (18/38) vs. 35% (9/26)), and transmission (39% (7/18) vs. 11% (1/9)) for DENV-2 than DENV-3. However, DENV-2 exhibited a shorter extrinsic incubation period (EIP) for disseminated infection (7-DPI vs. 14-DPI) and transmission (14-DPI vs. 21-DPI) compared to DENV-3. Two cox-I lineages were recovered in phylogeny, one predominantly clustered with referenced Aaa and a minor lineage grouped with Aaf. Infected mosquitoes and those with disseminated infection were represented in both lineages; those that transmitted the viruses grouped with the Aaa-associated lineage only. We conclude that the coastal Ae. aegypti population is a competent vector for DENV-2 and DENV-3 likely driven by the domestic Aaa that is predominant. The shorter EIP to attain dissemination and transmission for DENV-2 could favour its transmission over DENV-3.
Collapse
|
12
|
Muacevic A, Adler JR, Pai MO, Kaistha N, Ratho R, Sokeechand N. Dengue Burden and Circulation of Dengue-2 Serotype Among Children Along With Clinical Profiling in Uttarakhand, India: A Cross-Sectional Study From 2018 to 2020. Cureus 2023; 15:e33913. [PMID: 36819345 PMCID: PMC9936569 DOI: 10.7759/cureus.33913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The multiple serotypes of the dengue virus (DENV) are always a major public concern for dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). OBJECTIVE This study aimed to analyse the demographic characteristics and circulating serotypes of dengue among the paediatric age group. METHODOLOGY One hundred forty-one clinically suspected children were enrolled in the study from 2018 to 2020 in a tertiary care hospital in Uttarakhand, India. Central tendency, frequency, and One-Way ANOVA were measured for continuous and categorical data. The Shapiro-Wilks test was used to calculate the normality assumption. Dengue NS1 Ag, IgM, and IgG antibodies ELISA were performed, and NS1-positive samples were further tested for molecular studies. RESULT From one hundred forty-one suspected cases, 100 (70.92%) came positive for dengue NS1 antigen, 18 (12.76%), and three (2.12%) came positive for IgM and IgG antibodies respectively. Rest 20 (14.18%) samples came negative for dengue. Fever with chills (97.5%), headache (89%), and arthralgia (82%) were the most common clinical features. Molecular studies showed the dengue serotype-2 (DEN-2) was found in most cases, followed by the dengue-3 serotype (DEN-3). CONCLUSION This is the preliminary study as the authors' best knowledge which demonstrate the burden of dengue in children with prevalent serotypes for consecutive three years in Uttarakhand. This study identifies that the serotype-2 (DEN-2) of the dengue virus was the primary cause of infection in children at the tertiary care hospital in northern India. These results will help further to understand the nature of the disease so that improved patient care management will imply. Further molecular studies on large sample sizes during the endemic would be helpful to gain knowledge of the actual load of the disease and the genetic characteristics of the virus.
Collapse
|
13
|
Agha SB, Tchouassi DP. Urbanization of Aedes mosquito populations and evolution of arboviral disease risk in Africa. CURRENT OPINION IN INSECT SCIENCE 2022; 54:100988. [PMID: 36332839 DOI: 10.1016/j.cois.2022.100988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The arboviral diseases dengue, chikungunya, and yellow fever are re-merging and gaining a foothold in Africa, with a significant threat of large outbreaks in urban areas. Although their emergence is intimately linked to the primary vector Aedes aegypti, which thrives in urban environments, the risk of these diseases remains substantially heterogeneous in different geographic areas. Range expansion of invasive mosquito species Aedes albopictus, and colonization of urban habitats by sylvatic and peridomestic Aedes vectors, are likely to alter the diseases' epidemiology. We discuss how a network of different vector species and perhaps vector subpopulations could interact with associated serotypes/genotypes/lineages of the causative viruses of these diseases potentially impacting transmission risk in urban landscapes with implications for disease surveillance and control.
Collapse
Affiliation(s)
- Sheila B Agha
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
14
|
Sang R, Lutomiah J, Chepkorir E, Tchouassi DP. Evolving dynamics of Aedes-borne diseases in Africa: a cause for concern. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100958. [PMID: 35878761 DOI: 10.1016/j.cois.2022.100958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Aedes-borne viruses, yellow fever (YF), dengue, Chikungunya and Zika are taking a huge toll on global health as Africa faces re-emergence with potential for massive human catastrophe. Transmission driven by diverse vectors in ecological settings that range from urban to rural and sylvatic habitats with human and nonhuman primate/reservoir activities across such habitats has facilitated virus movement and spillover to susceptible human populations. Approved vaccine exists for YF, although availability for routine and mass vaccination is often constrained. Integrating vector surveillance, understanding disease ecology with rationalised vaccination in high-risk areas (YF) remains important in disease prevention and control. We review trends in disease occurrence in Africa, hinting on gaps in disease detection and management and the prospects for prevention and/or control.
Collapse
Affiliation(s)
- Rosemary Sang
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
| | - Joel Lutomiah
- Center for Virus Research, Kenya Medical Research Institute, Kenya
| | - Edith Chepkorir
- Center for Virus Research, Kenya Medical Research Institute, Kenya
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
15
|
Muthanje EM, Kimita G, Nyataya J, Njue W, Mulili C, Mugweru J, Mutai B, Kituyi SN, Waitumbi J. March 2019 dengue fever outbreak at the Kenyan south coast involving dengue virus serotype 3, genotypes III and V. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000122. [PMID: 36962260 PMCID: PMC10021577 DOI: 10.1371/journal.pgph.0000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/09/2022] [Indexed: 11/18/2022]
Abstract
The first description of a disease resembling dengue fever (DF) was in the 15th century slave trade era by Spanish sailors visiting the Tanzania coast. The disease, then associated with evil spirits is now known to be caused by four serotypes of dengue virus (DENV1-4) that are transmitted by Aedes mosquitoes. Kenya has experienced multiple outbreaks, mostly associated with DENV-2. In this study, plasma samples obtained from 37 febrile patients during a DF outbreak at Kenya's south coast in March 2019 were screened for DENV. Total RNA was extracted and screened for the alpha- and flavi-viruses by real-time polymerase chain reaction (qPCR). DENV-3 was the only virus detected. Shotgun metagenomics and targeted sequencing were used to obtain DENV whole genomes and the complete envelope genes (E gene) respectively. Sequences were used to infer phylogenies and time-scaled genealogies. Following Maximum likelihood and Bayesian phylogenetic analysis, two DENV-3 genotypes (III, n = 15 and V, n = 2) were found. We determined that the two genotypes had been in circulation since 2015, and that both had been introduced independently. Genotype III's origin was estimated to have been from Pakistan. Although the origin of genotype V could not be ascertained due to rarity of these sequences globally, it was most related to a 2006 Brazilian isolate. Unlike genotype III that has been described in East and West Africa multiple times, this was the second description of genotype V in Kenya. Of note, there was marked amino acid variances in the E gene between study samples and the Thailand DENV-3 strain used in the approved Dengvaxia vaccine. It remains to be seen whether these variances negatively impact the efficacy of the Dengvaxia or future vaccines.
Collapse
Affiliation(s)
- Eric M. Muthanje
- Department of Biological Sciences, University of Embu, Embu, Kenya
- United States Army Medical Research Directorate-Africa, Basic Science Laboratory, Kisumu, Kenya
| | - Gathii Kimita
- United States Army Medical Research Directorate-Africa, Basic Science Laboratory, Kisumu, Kenya
| | - Josphat Nyataya
- United States Army Medical Research Directorate-Africa, Basic Science Laboratory, Kisumu, Kenya
| | - Winrose Njue
- United States Army Medical Research Directorate-Africa, Basic Science Laboratory, Kisumu, Kenya
| | - Cyrus Mulili
- United States Army Medical Research Directorate-Africa, Basic Science Laboratory, Kisumu, Kenya
| | - Julius Mugweru
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Beth Mutai
- United States Army Medical Research Directorate-Africa, Basic Science Laboratory, Kisumu, Kenya
| | - Sarah N. Kituyi
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - John Waitumbi
- United States Army Medical Research Directorate-Africa, Basic Science Laboratory, Kisumu, Kenya
| |
Collapse
|
16
|
Uncovering the Burden of Dengue in Africa: Considerations on Magnitude, Misdiagnosis, and Ancestry. Viruses 2022; 14:v14020233. [PMID: 35215827 PMCID: PMC8877195 DOI: 10.3390/v14020233] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
Dengue is a re-emerging neglected disease of major public health importance. This review highlights important considerations for dengue disease in Africa, including epidemiology and underestimation of disease burden in African countries, issues with malaria misdiagnosis and co-infections, and potential evidence of genetic protection from severe dengue disease in populations of African descent. The findings indicate that dengue virus prevalence in African countries and populations may be more widespread than reported data suggests, and that the Aedes mosquito vectors appear to be increasing in dissemination and number. Changes in climate, population, and plastic pollution are expected to worsen the dengue situation in Africa. Dengue misdiagnosis is also a problem in Africa, especially due to the typical non-specific clinical presentation of dengue leading to misdiagnosis as malaria. Finally, research suggests that a protective genetic component against severe dengue exists in African descent populations, but further studies should be conducted to strengthen this association in various populations, taking into consideration socioeconomic factors that may contribute to these findings. The main takeaway is that Africa should not be overlooked when it comes to dengue, and more attention and resources should be devoted to this disease in Africa.
Collapse
|
17
|
Ilboudo DP, Zohoncon TM, Hien YE, Ouattara AK, Traore L, Ouermi D, Djigma WF, Nadembega CM, Belemgnegre M, Ouedraogo P, Karou DS, Traore Y, Simpore J. Dengue Immunological Markers Evolution at Saint Camille Hospital in Ouagadougou (HOSCO) Burkina Faso. Pak J Biol Sci 2022; 25:254-262. [PMID: 35234016 DOI: 10.3923/pjbs.2022.254.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
<b>Background and Objective:</b> Dengue is a remerging vector-borne viral disease in Burkina Faso since the outbreak of 2013 and requires special attention from health authorities. This study reports the prevalence of dengue fever serological markers (NS1Ag, IgM and IgG) and infection dynamic from January, 2018 to December, 2020 among patients tested for dengue infection at Saint Camille Hospital of Ouagadougou (HOSCO). <b>Materials and Methods:</b> The study population consisted of 6414 patients aged 0-97 years. Dengue virus infection was detected in serum or plasma using the SD bioline dengue duo rapid detection kit. <b>Results:</b> The prevalence of dengue NS1Ag was 2.25% (45/2003), 18.43% (501/2719) and 2.42% (38/1569) in the study population in 2018, 2019 and 2020, respectively. The age groups over 50 years and 15-20 years were significantly more infected compared to the group 21-30 years respectively in 2019 (p = 0.030) and 2020 (p = 0.035). Patients tested positive for at least one of these markers (NSlAg, IgG and IgM) represented 26.01% (521/2003) and 38.98% (1060/2719). The peak of infection during 2018 and 2019 was observed between October and November. The present study reports a high seroprevalence of acute dengue virus infection. The presence of NS1Ag, IgM and IgG in patients suggests an active circulation of the dengue virus in Ouagadougou. <b>Conclusion:</b> Data shows recurrent outbreaks of dengue infection in our country need strong surveillance and a suitable and affordable diagnostic system to clarify the burden, pinpoint the risk factors and for better case management.
Collapse
|
18
|
Khan A, Ndenga B, Mutuku F, Bosire CM, Okuta V, Ronga CO, Mutai NK, Musaki SK, Chebii PK, Maina PW, Jembe Z, Amugongo JS, Malumbo SL, Ng'ang'a CM, LaBeaud D. Majority of pediatric dengue virus infections in Kenya do not meet 2009 WHO criteria for dengue diagnosis. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000175. [PMID: 36962138 PMCID: PMC10021889 DOI: 10.1371/journal.pgph.0000175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/09/2022] [Indexed: 11/19/2022]
Abstract
From 1975-2009, the WHO guidelines classified symptomatic dengue virus infections as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. In 2009 the case definition was changed to a clinical classification after concern the original criteria was challenging to apply in resource-limited settings and not inclusive of a substantial proportion of severe dengue cases. Our goal was to examine how well the current WHO definition identified new dengue cases at our febrile surveillance sites in Kenya. Between 2014 and 2019 as part of a child cohort study of febrile illness in our four clinical study sites (Ukunda, Kisumu, Msambweni, Chulaimbo) we identified 369 dengue PCR positive symptomatic cases and characterized whether they met the 2009 revised WHO diagnostic criteria for dengue with and without warning signs and severe dengue. We found 62% of our PCR-confirmed dengue cases did not meet criteria per the guidelines. Our findings also correlate with our experience that dengue disease in children in Kenya is less severe as reported in other parts of the world. Although the 2009 clinical classification has recently been criticized for being overly inclusive and non-specific, our findings suggest the 2009 WHO dengue case definition may miss more than 50% of symptomatic infections in Kenya and may require further modification to include the African experience.
Collapse
Affiliation(s)
- Aslam Khan
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| | - Bryson Ndenga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Francis Mutuku
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Carren M Bosire
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Victoria Okuta
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Charles O Ronga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Noah K Mutai
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Sandra K Musaki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Philip K Chebii
- Vector-Borne Diseases Unit, Msambweni County Referral Hospital, Msambweni, Kwale, Kenya
| | - Priscilla W Maina
- Vector-Borne Diseases Unit, Msambweni County Referral Hospital, Msambweni, Kwale, Kenya
| | - Zainab Jembe
- Vector-Borne Diseases Unit, Msambweni County Referral Hospital, Msambweni, Kwale, Kenya
| | - Jael S Amugongo
- Vector-Borne Diseases Unit, Msambweni County Referral Hospital, Msambweni, Kwale, Kenya
| | - Said L Malumbo
- Vector-Borne Diseases Unit, Msambweni County Referral Hospital, Msambweni, Kwale, Kenya
| | - Charles M Ng'ang'a
- Vector-Borne Diseases Unit, Msambweni County Referral Hospital, Msambweni, Kwale, Kenya
| | - Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
19
|
Gerken KN, LaBeaud AD, Mandi H, L’Azou Jackson M, Breugelmans JG, King CH. Paving the way for human vaccination against Rift Valley fever virus: A systematic literature review of RVFV epidemiology from 1999 to 2021. PLoS Negl Trop Dis 2022; 16:e0009852. [PMID: 35073355 PMCID: PMC8812886 DOI: 10.1371/journal.pntd.0009852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/03/2022] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rift Valley fever virus (RVFV) is a lethal threat to humans and livestock in many parts of Africa, the Arabian Peninsula, and the Indian Ocean. This systematic review's objective was to consolidate understanding of RVFV epidemiology during 1999-2021 and highlight knowledge gaps relevant to plans for human vaccine trials. METHODOLOGY/PRINCIPAL FINDINGS The review is registered with PROSPERO (CRD42020221622). Reports of RVFV infection or exposure among humans, animals, and/or vectors in Africa, the Arabian Peninsula, and the Indian Ocean during the period January 1999 to June 2021 were eligible for inclusion. Online databases were searched for publications, and supplemental materials were recovered from official reports and research colleagues. Exposures were classified into five groups: 1) acute human RVF cases, 2) acute animal cases, 3) human RVFV sero-surveys, 4) animal sero-surveys, and 5) arthropod infections. Human risk factors, circulating RVFV lineages, and surveillance methods were also tabulated. In meta-analysis of risks, summary odds ratios were computed using random-effects modeling. 1104 unique human or animal RVFV transmission events were reported in 39 countries during 1999-2021. Outbreaks among humans or animals occurred at rates of 5.8/year and 12.4/year, respectively, with Mauritania, Madagascar, Kenya, South Africa, and Sudan having the most human outbreak years. Men had greater odds of RVFV infection than women, and animal contact, butchering, milking, and handling aborted material were significantly associated with greater odds of exposure. Animal infection risk was linked to location, proximity to water, and exposure to other herds or wildlife. RVFV was detected in a variety of mosquito vectors during interepidemic periods, confirming ongoing transmission. CONCLUSIONS/SIGNIFICANCE With broad variability in surveillance, case finding, survey design, and RVFV case confirmation, combined with uncertainty about populations-at-risk, there were inconsistent results from location to location. However, it was evident that RVFV transmission is expanding its range and frequency. Gaps assessment indicated the need to harmonize human and animal surveillance and improve diagnostics and genotyping. Given the frequency of RVFV outbreaks, human vaccination has strong potential to mitigate the impact of this now widely endemic disease.
Collapse
Affiliation(s)
- Keli N. Gerken
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - A. Desirée LaBeaud
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Henshaw Mandi
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | | | | | - Charles H. King
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
20
|
Alfsnes K, Eldholm V, Gaunt MW, de Lamballerie X, Gould EA, Pettersson JHO. Tracing and tracking the emergence, epidemiology and dispersal of dengue virus to Africa during the 20th century. One Health 2021; 13:100337. [PMID: 34746356 PMCID: PMC8551533 DOI: 10.1016/j.onehlt.2021.100337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022] Open
Abstract
The four mosquito-borne dengue virus serotypes (DENV1–DENV4) cause a high burden of disease throughout the tropical and sub-tropical regions of the world. Nevertheless, their precise epidemiological history in Africa, including when and where they originated and were distributed during the 20th century, remains unclear stressing the need for One Health focused research. Accordingly, we conducted a time-scaled molecular epidemiological reconstruction using publicly available and newly sequenced dengue virus genomes of African origin representing all four serotypes to deduce the most likely temporal and spatial transmission routes of each DENV serotype from their ancestral regions to, within and from Africa. Our analyses suggest that during the 20th century, serotypes DENV1–DENV3 were introduced to Africa from South East Asia on multiple occasions. The earliest evidence recorded indicates introduction of DENV2 during the early-1940s and of DENV1 during the mid-1940s to Western Africa from South East Asia. The analysis also implies an early introduction of DENV4 during the mid-1940s to Western Africa, alongside DENV1, probably originating in South East Asia. Establishment of DENV3 in Africa appears to have occurred later in the 1960s, apparently originating from South East Asia. However, with the re-establishment of DENV in the Americas, following the cessation of the PAHO mosquito control programme during the mid-20th century, evidence of introductions of DENV1 and DENV2 from the Americas to Western Africa was also observed. The data also identify intra-regional circulation of DENV, but also inter-regional dispersal of all four serotypes within Africa, which has led to a high degree of geographical overlap among serotypes. It is also noteworthy that DENV from both Eastern and Western Africa, have been introduced into Central Africa but there is no support for the converse relationship. For serotypes DENV1–DENV3, we observed probable exports from within established African DENV clusters (≥2 sequences) primarily to Eastern and Southern Asia. Collectively, our findings support the view that all DENV serotypes, apart from DENV4, have been introduced on multiple occasions to Africa, primarily originating from South East Asia, and subsequently to neighbouring regions within Africa.
Collapse
Affiliation(s)
- Kristian Alfsnes
- Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Michael W Gaunt
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Xavier de Lamballerie
- UMR "Unité des Virus Emergents", Aix-Marseille Université-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France.,APHM Public Hospitals of Marseille, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Ernest A Gould
- UMR "Unité des Virus Emergents", Aix-Marseille Université-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France
| | - John H-O Pettersson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden.,Public Health Agency of Sweden, Solna, Sweden.,Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
21
|
Simo Tchetgna H, Sado Yousseu F, Kamgang B, Tedjou A, McCall PJ, Wondji CS. Concurrent circulation of dengue serotype 1, 2 and 3 among acute febrile patients in Cameroon. PLoS Negl Trop Dis 2021; 15:e0009860. [PMID: 34695135 PMCID: PMC8568189 DOI: 10.1371/journal.pntd.0009860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/04/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
Acute febrile patients presenting at hospitals in Douala, Cameroon between July and December 2020, were screened for dengue infections using real time RT-PCR on fragments of the 5’ and 3’ UTR genomic regions. In total, 12.8% (41/320) of cases examined were positive for dengue. Dengue virus 3 (DENV-3) was the most common serotype found (68.3%), followed by DENV-2 (19.5%) and DENV-1 (4.9%). Co-infections of DENV-3 and DENV-2 were found in 3 cases. Jaundice and headache were the most frequent clinical signs associated with infection and 56% (23/41) of the cases were co-infections with malaria. Phylogenetic analysis of the envelope gene identified DENV-1 as belonging to genotype V, DENV-2 to genotype II and DENV-3 to genotype III. The simultaneous occurrence of three serotypes in Douala reveals dengue as a serious public health threat for Cameroon and highlights the need for further epidemiological studies in the major cities of this region. Acute febrile patients presenting at hospitals in Douala, Cameroon between July and December 2020, were screened for dengue infections by Polymerase chain reaction. In total, 12.8% (41/320) of cases examined were infected by dengue virus. Dengue virus 3 (DENV-3) was the most common serotype found (68.3%), followed by DENV-2 (19.5%) and DENV-1 (4.9%). Co-infections of DENV-3 and DENV-2 were found in 3 cases. Jaundice and headache were the most frequent clinical signs associated with infection and 56% (23/41) of the cases were co-infections with malaria. The simultaneous occurrence of three serotypes in Douala reveals dengue as a serious public health threat for Cameroon and highlights the need for further epidemiological studies in the major cities of this region.
Collapse
Affiliation(s)
| | - Francine Sado Yousseu
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- University of Buéa, Buéa, Cameroon
| | - Basile Kamgang
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
| | - Armel Tedjou
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- University of Yaoundé I, Yaoundé, Cameroon
| | - Philip J. McCall
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Charles S. Wondji
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
22
|
Sirisena P, Mahilkar S, Sharma C, Jain J, Sunil S. Concurrent dengue infections: Epidemiology & clinical implications. Indian J Med Res 2021; 154:669-679. [PMID: 35532585 PMCID: PMC9210535 DOI: 10.4103/ijmr.ijmr_1219_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 01/09/2023] Open
Abstract
Multiple dengue virus (DENV) serotypes circulating in a geographical area most often lead to simultaneous infection of two or more serotypes in a single individual. The occurrence of such concurrent infections ranges from 2.5 to 30 per cent, reaching as high as 40-50 per cent in certain dengue hyper-endemic areas. Concurrent dengue manifests itself differently than mono-infected patients, and it becomes even more important to understand the effects of co-infecting serotypes in concurrent infections to ascertain the clinical outcomes of the disease progression and transmission. In addition, there have also been reports of concurrent DENV infections in the presence of other arboviral infections. In this review, we provide a comprehensive breakdown of concurrent dengue infections globally. Furthermore, this review also touches upon the clinical presentations during those concurrent infections categorized as mild or severe forms of disease presentation. Another aspect of this review was aimed at providing insight into the concurrent dengue incidences in the presence of other arboviruses.
Collapse
Affiliation(s)
- P.D.N.N. Sirisena
- ImmunifyMe Healthcare Technologies Pvt. Ltd., Altrade Business Centre, Gurugram, Haryana, India
| | - Shakuntala Mahilkar
- Vector Borne Diseases Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Chetan Sharma
- Vector Borne Diseases Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Jaspreet Jain
- Human Retrovirology Laboratory, Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| |
Collapse
|
23
|
Mwanyika GO, Mboera LEG, Rugarabamu S, Ngingo B, Sindato C, Lutwama JJ, Paweska JT, Misinzo G. Dengue Virus Infection and Associated Risk Factors in Africa: A Systematic Review and Meta-Analysis. Viruses 2021; 13:536. [PMID: 33804839 PMCID: PMC8063827 DOI: 10.3390/v13040536] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/09/2023] Open
Abstract
Dengue contributes a significant burden on global public health and economies. In Africa, the burden of dengue virus (DENV) infection is not well described. This review was undertaken to determine the prevalence of dengue and associated risk factors. A literature search was done on PubMed/MEDLINE, Scopus, Embase, and Google Scholar databases to identify articles published between 1960 and 2020. Meta-analysis was performed using a random-effect model at a 95% confidence interval, followed by subgroup meta-analysis to determine the overall prevalence. Between 1960 and 2020, 45 outbreaks were identified, of which 17 and 16 occurred in East and West Africa, respectively. Dengue virus serotype 1 (DENV-1) and DENV-2 were the dominant serotypes contributing to 60% of the epidemics. Of 2211 cases reported between 2009 and 2020; 1954 (88.4%) were reported during outbreaks. Overall, the prevalence of dengue was 29% (95% CI: 20-39%) and 3% (95% CI: 1-5%) during the outbreak and non-outbreak periods, respectively. Old age (6/21 studies), lack of mosquito control (6/21), urban residence (4/21), climate change (3/21), and recent history of travel (3/21) were the leading risk factors. This review reports a high burden of dengue and increased risk of severe disease in Africa. Our findings provide useful information for clinical practice and health policy decisions to implement effective interventions.
Collapse
Affiliation(s)
- Gaspary O. Mwanyika
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, P.O. Box 3297 Morogoro, Tanzania; (G.O.M.); (L.E.G.M.); (S.R.); (B.N.); (C.S.)
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, P.O. Box 3015 Morogoro, Tanzania
- Department of Health Science and Technology, Mbeya University of Science and Technology, P.O. Box 131 Mbeya, Tanzania
| | - Leonard E. G. Mboera
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, P.O. Box 3297 Morogoro, Tanzania; (G.O.M.); (L.E.G.M.); (S.R.); (B.N.); (C.S.)
| | - Sima Rugarabamu
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, P.O. Box 3297 Morogoro, Tanzania; (G.O.M.); (L.E.G.M.); (S.R.); (B.N.); (C.S.)
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, P.O. Box 3015 Morogoro, Tanzania
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65595 Dar es Salaam, Tanzania
| | - Baraka Ngingo
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, P.O. Box 3297 Morogoro, Tanzania; (G.O.M.); (L.E.G.M.); (S.R.); (B.N.); (C.S.)
- Biology Department, St. John’s University of Tanzania, P.O. Box 47 Dodoma, Tanzania
| | - Calvin Sindato
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, P.O. Box 3297 Morogoro, Tanzania; (G.O.M.); (L.E.G.M.); (S.R.); (B.N.); (C.S.)
- Tabora Research Centre, National Institute for Medical Research, P.O. Box 482 Tabora, Tanzania
| | - Julius J. Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, P.O. Box 49 Entebbe, Uganda;
| | - Janusz T. Paweska
- National Health Laboratory Service, National Institute for Communicable Diseases, Sandringham, 2192 Johannesburg, South Africa;
| | - Gerald Misinzo
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, P.O. Box 3297 Morogoro, Tanzania; (G.O.M.); (L.E.G.M.); (S.R.); (B.N.); (C.S.)
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, P.O. Box 3015 Morogoro, Tanzania
| |
Collapse
|
24
|
Nosrat C, Altamirano J, Anyamba A, Caldwell JM, Damoah R, Mutuku F, Ndenga B, LaBeaud AD. Impact of recent climate extremes on mosquito-borne disease transmission in Kenya. PLoS Negl Trop Dis 2021; 15:e0009182. [PMID: 33735293 PMCID: PMC7971569 DOI: 10.1371/journal.pntd.0009182] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/26/2021] [Indexed: 01/12/2023] Open
Abstract
Climate change and variability influence temperature and rainfall, which impact vector abundance and the dynamics of vector-borne disease transmission. Climate change is projected to increase the frequency and intensity of extreme climate events. Mosquito-borne diseases, such as dengue fever, are primarily transmitted by Aedes aegypti mosquitoes. Freshwater availability and temperature affect dengue vector populations via a variety of biological processes and thus influence the ability of mosquitoes to effectively transmit disease. However, the effect of droughts, floods, heat waves, and cold waves is not well understood. Using vector, climate, and dengue disease data collected between 2013 and 2019 in Kenya, this retrospective cohort study aims to elucidate the impact of extreme rainfall and temperature on mosquito abundance and the risk of arboviral infections. To define extreme periods of rainfall and land surface temperature (LST), we calculated monthly anomalies as deviations from long-term means (1983–2019 for rainfall, 2000–2019 for LST) across four study locations in Kenya. We classified extreme climate events as the upper and lower 10% of these calculated LST or rainfall deviations. Monthly Ae. aegypti abundance was recorded in Kenya using four trapping methods. Blood samples were also collected from children with febrile illness presenting to four field sites and tested for dengue virus using an IgG enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). We found that mosquito eggs and adults were significantly more abundant one month following an abnormally wet month. The relationship between mosquito abundance and dengue risk follows a non-linear association. Our findings suggest that early warnings and targeted interventions during periods of abnormal rainfall and temperature, especially flooding, can potentially contribute to reductions in risk of viral transmission. Dengue is a rapidly spreading mosquito-borne disease transmitted primarily by Aedes aegypti mosquitoes. As climate change leads to extremes in rainfall and temperature, the abundance and populations of these vectors will be affected, thus influencing transmission of dengue. Using satellite-derived climate data for Kenya, we classified months that experienced highly abnormal rainfall and temperature as extreme climate events (floods, droughts, heat waves, or cold waves). We compared the average monthly Ae. aegypti abundance and confirmed dengue counts following extreme climate months using lag periods of one month and two months, respectively. This study utilized several statistical models to account for differences among study sites and time. Floods resulted in significantly increased egg and adult abundance. Our results contributed to a better understanding of the effect of climate variability and change on dengue. As suggested by our observed increase in vector counts yet a relatively unchanged dengue infection risk, human behavior can help reduce viral transmission. Targeted interventions should be focused on both reducing vector populations and limiting human-vector contact, especially during these climate anomalies.
Collapse
Affiliation(s)
- Cameron Nosrat
- Program in Human Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Jonathan Altamirano
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Assaf Anyamba
- Universities Space Research Association & NASA Goddard Space Flight Center, Greenbelt, Maryland, United States of America
| | - Jamie M. Caldwell
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Richard Damoah
- Morgan State University & NASA Goddard Space Flight Center, Greenbelt, Maryland, United States of America
| | | | - Bryson Ndenga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - A. Desiree LaBeaud
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|