1
|
Alexander N, Dye C, Busch MP, Buss L, Prete CA, Brady OJ, Mee P, Abrahim CMM, Crispim MAE, da Costa AG, Salomon T, Mayaud P, Oikawa MK, Faria NR, Sabino EC. Dynamics of SARS-CoV-2 infection over two epidemic waves in Manaus, Brazil: A serological study of seven thousand blood donors. PLoS One 2025; 20:e0308319. [PMID: 39813299 PMCID: PMC11734911 DOI: 10.1371/journal.pone.0308319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/22/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Most longitudinal studies of COVID-19 incidence have used unlinked samples. The city of Manaus, Brazil, has a blood donation program which allows sample linkage, and was struck by two large COVID-19 epidemic waves between mid-2020 and early 2021. METHODS We estimated the changing force of infection, i.e. incidence in susceptible individuals. Seroconversion was inferred by a mixture model for serial values from the Abbott Architect SARS-CoV-2 nucleocapsid (N) IgG assay. We estimated the number of suspected COVID-19 hospitalizations arising from each infection over calendar time. RESULTS Whole blood donations between April 2020 and March 2021 were included from 6734 people, 2747 with two or more donations. The inferred criterion for seroconversion, and thus an incident infection, was a 6.07 fold increase in N IgG reactivity. The overall force of infection was 1.19 per person year (95% confidence interval 1.14-1.24) during the two main waves. The estimated number of suspected hospitalizations per infection, was approximately 4.1 times higher in the second wave than in the first. CONCLUSIONS Serial values from this assay can be used to infer seroconversion over time, and in Manaus show a higher number of suspected COVID-19 hospitalizations per infection in the second wave relative to the first.
Collapse
Affiliation(s)
- Neal Alexander
- Department of Infectious Disease Epidemiology, MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher Dye
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, CA, United States of America
| | - Lewis Buss
- Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical, São Paulo, Brazil
| | - Carlos A. Prete
- Department of Electronic Systems Engineering, Universidade de São Paulo, São Paulo, Brazil
| | - Oliver J. Brady
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Paul Mee
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Claudia M. M. Abrahim
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HemoAM), Manaus, Brazil
| | - Myuki A. E. Crispim
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HemoAM), Manaus, Brazil
| | - Allyson G. da Costa
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HemoAM), Manaus, Brazil
| | - Tassila Salomon
- Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil
| | - Philippe Mayaud
- Faculty of Infectious and Tropical Diseases, Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Márcio K. Oikawa
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Nuno R. Faria
- Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical, São Paulo, Brazil
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, United Kingdom
| | - Ester C. Sabino
- Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical, São Paulo, Brazil
| |
Collapse
|
2
|
Vicco A, McCormack C, Pedrique B, Ribeiro I, Malavige GN, Dorigatti I. A scoping literature review of global dengue age-stratified seroprevalence data: estimating dengue force of infection in endemic countries. EBioMedicine 2024; 104:105134. [PMID: 38718682 PMCID: PMC11096825 DOI: 10.1016/j.ebiom.2024.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Dengue poses a significant burden worldwide, and a more comprehensive understanding of the heterogeneity in the intensity of dengue transmission within endemic countries is necessary to evaluate the potential impact of public health interventions. METHODS This scoping literature review aimed to update a previous study of dengue transmission intensity by collating global age-stratified dengue seroprevalence data published in the Medline, Embase and Web of Science databases from 2014 to 2023. These data were then utilised to calibrate catalytic models and estimate the force of infection (FOI), which is the yearly per-capita risk of infection for a typical susceptible individual. FINDINGS We found a total of 66 new publications containing 219 age-stratified seroprevalence datasets across 30 endemic countries. Together with the previously available average FOI estimates, there are now more than 250 dengue average FOI estimates obtained from seroprevalence studies from across the world. INTERPRETATION The results show large heterogeneities in average dengue FOI both across and within countries. These new estimates can be used to inform ongoing modelling efforts to improve our understanding of the drivers of the heterogeneity in dengue transmission globally, which in turn can help inform the optimal implementation of public health interventions. FUNDING UK Medical Research Council, Wellcome Trust, Community Jameel, Drugs for Neglected Disease initiative (DNDi) funded by the French Development Agency, Médecins Sans Frontières International; Swiss Agency for Development and Cooperation and UK aid.
Collapse
Affiliation(s)
- Anna Vicco
- Department of Molecular Medicine, University of Padua, Padua, Italy; MRC Centre for Global Infectious Disease Analysis, School of Public Health, Jameel Institute, Imperial College London, London, United Kingdom.
| | - Clare McCormack
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Jameel Institute, Imperial College London, London, United Kingdom
| | - Belen Pedrique
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Isabela Ribeiro
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | | | - Ilaria Dorigatti
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Jameel Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Ledien J, Cucunubá ZM, Parra-Henao G, Rodríguez-Monguí E, Dobson AP, Adamo SB, Castellanos LG, Basáñez MG, Nouvellet P. From serological surveys to disease burden: a modelling pipeline for Chagas disease. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220278. [PMID: 37598701 PMCID: PMC10440172 DOI: 10.1098/rstb.2022.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
In 2012, the World Health Organization (WHO) set the elimination of Chagas disease intradomiciliary vectorial transmission as a goal by 2020. After a decade, some progress has been made, but the new 2021-2030 WHO roadmap has set even more ambitious targets. Innovative and robust modelling methods are required to monitor progress towards these goals. We present a modelling pipeline using local seroprevalence data to obtain national disease burden estimates by disease stage. Firstly, local seroprevalence information is used to estimate spatio-temporal trends in the Force-of-Infection (FoI). FoI estimates are then used to predict such trends across larger and fine-scale geographical areas. Finally, predicted FoI values are used to estimate disease burden based on a disease progression model. Using Colombia as a case study, we estimated that the number of infected people would reach 506 000 (95% credible interval (CrI) = 395 000-648 000) in 2020 with a 1.0% (95%CrI = 0.8-1.3%) prevalence in the general population and 2400 (95%CrI = 1900-3400) deaths (approx. 0.5% of those infected). The interplay between a decrease in infection exposure (FoI and relative proportion of acute cases) was overcompensated by a large increase in population size and gradual population ageing, leading to an increase in the absolute number of Chagas disease cases over time. This article is part of the theme issue 'Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.
Collapse
Affiliation(s)
- Julia Ledien
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - Zulma M. Cucunubá
- Departamento de Epidemiología Clínica y Bioestadística, Facultad de Medicina, Universidad Pontificia Javeriana, 110231 Bogotá, Colombia
| | - Gabriel Parra-Henao
- Centro de Investigación en Salud para el Trópico, Universidad Cooperativa de Colombia, 470002, Santa Marta, Colombia
- National Institute of Health, 111321 Bogotá, Colombia
| | - Eliana Rodríguez-Monguí
- Departamento de Epidemiología Clínica y Bioestadística, Facultad de Medicina, Universidad Pontificia Javeriana, 110231 Bogotá, Colombia
- Independent consultant to the Neglected, Tropical and Vector Borne Diseases Program, Pan American Health Organization (PAHO), Colombia
| | - Andrew P. Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Susana B. Adamo
- Center for International Earth Science Information Network (CIESIN), Columbia Climate School, Columbia University, New York, NY 10025, USA
| | - Luis Gerardo Castellanos
- Department of Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization (PAHO), Washington, DC 20037, USA
| | - María-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research (LCNTDR) & MRC Centre for Global Infectious Disease Analysis (GIDA), Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Pierre Nouvellet
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
- London Centre for Neglected Tropical Disease Research (LCNTDR) & MRC Centre for Global Infectious Disease Analysis (GIDA), Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
4
|
Kayange N, Hau DK, Pain K, Mshana SE, Peck R, Gehring S, Groendahl B, Koliopoulos P, Revocatus B, Msaki EB, Malande O. Seroprevalence of Dengue and Chikungunya Virus Infections in Children Living in Sub-Saharan Africa: Systematic Review and Meta-Analysis. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1662. [PMID: 37892325 PMCID: PMC10605353 DOI: 10.3390/children10101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Dengue and chikungunya viruses are frequent causes of malarial-like febrile illness in children. The rapid increase in virus transmission by mosquitoes is a global health concern. This is the first systematic review and meta-analysis of the childhood prevalence of dengue and chikungunya in Sub-Saharan Africa (SSA). A comprehensive search of the MEDLINE (Ovid), Embase (Ovid), and Cochrane Library (Wiley) databases was conducted on 28 June 2019, and updated on 12 February 2022. The search strategy was designed to retrieve all articles pertaining to arboviruses in SSA children using both controlled vocabulary and keywords. The pooled (weighted) proportion of dengue and chikungunya was estimated using a random effect model. The overall pooled prevalence of dengue and chikungunya in SSA children was estimated to be 16% and 7%, respectively. Prevalence was slightly lower during the period 2010-2020 compared to 2000-2009. The study design varied depending on the healthcare facility reporting the disease outbreak. Importantly, laboratory methods used to detect arbovirus infections differed. The present review documents the prevalence of dengue and chikungunya in pediatric patients throughout SSA. The results provide unprecedented insight into the transmission of dengue and chikungunya viruses among these children and highlight the need for enhanced surveillance and controlled methodology.
Collapse
Affiliation(s)
- Neema Kayange
- Department of Pediatrics, Bugando Medical Centre, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania;
| | - Duncan K Hau
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Kevin Pain
- Samuel J. Wood Library and C.V. Starr Biomedical Information Center, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA;
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania;
| | - Robert Peck
- Department of Pediatrics, Bugando Medical Centre, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania;
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10065, USA;
- Center for Global Health, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Stephan Gehring
- Department of Pediatrics, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.G.); (B.G.); (P.K.)
| | - Britta Groendahl
- Department of Pediatrics, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.G.); (B.G.); (P.K.)
| | - Philip Koliopoulos
- Department of Pediatrics, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.G.); (B.G.); (P.K.)
| | - Baraka Revocatus
- Department of Data and Statistics, Bugando Medical Centre, Mwanza P.O. Box 1370, Tanzania;
| | - Evarist B Msaki
- Department of Epidemiology and Biostatistics, Bugando Medical Centre, Mwanza P.O. Box 1370, Tanzania;
| | - Ombeva Malande
- East Africa Centre for Vaccines and Immunization (ECAVI), Kampala P.O. Box 3040, Uganda;
- Department of Public Health Phamarmacy, Sefako Makgatho Health Sciences University, Pretoria P.O. Box 60, South Africa
- Department of Paediatrics & Child Health, Makerere University, Kampala P.O. Box 7072, Uganda
- Department of Public Health, UNICAF University, Lusaka P.O. Box 20842, Zambia
| |
Collapse
|
5
|
Agboli E, Zahouli JBZ, Badolo A, Jöst H. Mosquito-Associated Viruses and Their Related Mosquitoes in West Africa. Viruses 2021; 13:v13050891. [PMID: 34065928 PMCID: PMC8151702 DOI: 10.3390/v13050891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Mosquito-associated viruses (MAVs), including mosquito-specific viruses (MSVs) and mosquito-borne (arbo)viruses (MBVs), are an increasing public, veterinary, and global health concern, and West Africa is projected to be the next front for arboviral diseases. As in-depth knowledge of the ecologies of both western African MAVs and related mosquitoes is still limited, we review available and comprehensive data on their diversity, abundance, and distribution. Data on MAVs’ occurrence and related mosquitoes were extracted from peer-reviewed publications. Data on MSVs, and mosquito and vertebrate host ranges are sparse. However, more data are available on MBVs (i.e., dengue, yellow fever, chikungunya, Zika, and Rift Valley fever viruses), detected in wild and domestic animals, and humans, with infections more concentrated in urban areas and areas affected by strong anthropogenic changes. Aedes aegypti, Culex quinquefasciatus, and Aedes albopictus are incriminated as key arbovirus vectors. These findings outline MAV, related mosquitoes, key knowledge gaps, and future research areas. Additionally, these data highlight the need to increase our understanding of MAVs and their impact on host mosquito ecology, to improve our knowledge of arbovirus transmission, and to develop specific strategies and capacities for arboviral disease surveillance, diagnostic, prevention, control, and outbreak responses in West Africa.
Collapse
Affiliation(s)
- Eric Agboli
- Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho PMB 31, Ghana
| | - Julien B. Z. Zahouli
- Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouake, 27 BP 529 Abidjan 27, Cote D’Ivoire;
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Département de Recherche et Développement, 01 BP 1303 Abidjan 01, Cote D’Ivoire
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | - Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, Universitée Joseph Ki-Zerbo, Ouagadougou 03 BP 7021, Burkina Faso;
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
- Correspondence:
| |
Collapse
|