1
|
Liu Y, Chen Y, Gao M, Luo J, Wang Y, Wang Y, Gao Y, Yang L, Wang J, Wang N. Association between glioma and neurodegenerative diseases risk: a two-sample bi-directional Mendelian randomization analysis. Front Neurol 2024; 15:1413015. [PMID: 39015316 PMCID: PMC11250058 DOI: 10.3389/fneur.2024.1413015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
Background Earlier observational studies have demonstrated a correlation between glioma and the risk of neurodegenerative diseases (NDs), but the causality and direction of their associations remain unclear. The objective of this study was to ascertain the causal link between glioma and NDs using Mendelian randomization (MR) methodology. Methods Genome-wide association study (GWAS) data were used in a two-sample bi-directional MR analysis. From the largest meta-analysis GWAS, encompassing 18,169 controls and 12,488 cases, summary statistics data on gliomas was extracted. Summarized statistics for NDs, including Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) were obtained from the GWAS of European ancestry. Inverse variance weighted (IVW) method was elected as the core MR approach with weighted median (WM) method and MR-Egger method as complementary methods. In addition, sensitivity analyses were performed. A Bonferroni correction was used to correct the results. Results Genetically predicted glioma had been related to decreased risk of AD. Specifically, for all glioma (IVW: OR = 0.93, 95% CI = 0.90-0.96, p = 4.88 × 10-6) and glioblastoma (GBM) (IVW: OR = 0.93, 95% CI = 0.91-0.95, p = 5.11 × 10-9). We also found that genetically predicted all glioma has a suggestive causative association with MS (IVW: OR = 0.90, 95% CI = 0.81-1.00, p = 0.045). There was no evidence of causal association between glioma and ALS or PD. According to the results of reverse MR analysis, no discernible causal connection of NDs was found on glioma. Sensitivity analyses validated the robustness of the above associations. Conclusion We report evidence in support of potential causal associations of different glioma subtypes with AD and MS. More studies are required to uncover the underlying mechanisms of these findings.
Collapse
Affiliation(s)
- Yang Liu
- Department of Endocrinology, Affiliated Hospital of Jilin Medical University, Jilin, China
| | - Youqi Chen
- Bethune First Hospital of Jilin University, Changchun, China
| | - Ming Gao
- Bethune First Hospital of Jilin University, Changchun, China
| | - Jia Luo
- Bethune First Hospital of Jilin University, Changchun, China
| | - Yanan Wang
- Bethune First Hospital of Jilin University, Changchun, China
| | - Yihan Wang
- Bethune Third Hospital of Jilin University, Changchun, China
| | - Yu Gao
- Clinical College, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Laiyu Yang
- Bethune Third Hospital of Jilin University, Changchun, China
| | - Jingning Wang
- Bethune First Hospital of Jilin University, Changchun, China
| | - Ningxin Wang
- Bethune First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Ray R, Chowdhury SG, Karmakar P. A vivid outline demonstrating the benefits of exosome-mediated drug delivery in CNS-associated disease environments. Arch Biochem Biophys 2024; 753:109906. [PMID: 38272158 DOI: 10.1016/j.abb.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The efficacy of drug delivery mechanisms has been improvised with time for different therapeutic purposes. In most cases, nano-sized delivery systems have been modeled over decades for the on-target applicability of the drugs. The use of synthetic drug delivery materials has been a common practice, although research has now focussed more on using natural vehicles, to avoid the side effects of synthetic delivery systems and easy acceptance by the body. Exosome is such a natural nano-sized vehicle that exceeds the efficiency of many natural vehicles, for being immune-friendly, due to its origin. Unlike, other natural drug delivery systems, exosomes are originated within the body's cells, and from there, they happen to travel through the extracellular matrices into neighboring cells. This capacity of exosomes has made them an efficient drug delivery system over recent years and now a large number of researches have been carried out to develop exosomes as natural drug delivery vehicles. Several experimental strategies have been practiced in this regard which have shown that exosomes are exclusively capable of carrying drugs and they can also be used in targeted delivery, for which they efficiently can reach and release the drug at their target cells for consecutive effects. One of the most interesting features of exosomes is they can cross the blood-brain barrier (BBB) in the body and hence, for the disease where other delivery vehicles are incapable of reaching the destination of the drug, exosomes can overcome the hurdle. This review particularly, focuses on the different aspects of using exosomes as a potential nano-sized drug delivery system for some of the severe diseases associated with the central nervous system of the human body.
Collapse
Affiliation(s)
- Rachayeeta Ray
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India
| | | | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
3
|
Zhang W, He Y, Wang C, Chen F, Jiang B, Li W. Adherence to Healthy Dietary Patterns and Glioma: A Matched Case-Control Study. Nutrients 2023; 15:4886. [PMID: 38068744 PMCID: PMC10708472 DOI: 10.3390/nu15234886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Recent studies have revealed a putative relationship between diet and glioma development and prognosis, but few studies have examined the association between overall diet and glioma risk. This study, conducted in China, employed a hospital-based case-control approach. The researchers utilized an a priori method based on dietary data to evaluate compliance scores for five healthy dietary patterns (the Mediterranean diet, the Dietary Approaches to Stop Hypertension (DASH) diet, the Mediterranean-DASH diet Intervention for Neurodegenerative Delay (MIND) diet, the Paleolithic diet, and the Planetary Health Diet) in 1012 participants. At the same time, data-driven methods were used to explore the association between dietary patterns and glioma via principal component analysis (PCA). In the multivariate model, adhering to the Mediterranean diet (odds ratio (OR) = 0.29; 95% confidence interval (95% CI): 0.17-0.52), the DASH diet (OR = 0.09; 95% CI: 0.04-0.18), the MIND diet (OR = 0.25; 95% CI: 0.14-0.44), and the Paleolithic diet (OR = 0.13; 95% CI: 0.06-0.25) was associated with a reduced glioma risk. The results of PCA suggested that increasing the intake of plant-based foods and fish and limiting foods rich in carbohydrates, fats, and salts were associated with a reduced glioma risk. There was a substantial nonlinear dose-response association between glioma and the Mediterranean diet score. However, the DASH diet score, the MIND diet score, and the Paleolithic diet score exhibited linear dose-response relationships. Therefore, this study finds that dietary patterns may be an influencing factor for glioma risk.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (W.Z.); (Y.H.); (C.W.); (F.C.); (B.J.)
| |
Collapse
|
4
|
Suhail M, Tarique M, Tabrez S, Zughaibi TA, Rehan M. Synergistic inhibition of glioblastoma multiforme through an in-silico analysis of luteolin and ferulic acid derived from Angelica sinensis and Cannabis sativa: Advancements in computational therapeutics. PLoS One 2023; 18:e0293666. [PMID: 37943817 PMCID: PMC10635529 DOI: 10.1371/journal.pone.0293666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/14/2023] [Indexed: 11/12/2023] Open
Abstract
The primary objective of this study is to uncover novel therapeutic agents for the treatment of Glioblastoma Multiforme (GBM), a highly aggressive form of brain cancer, and Alzheimer's Disease (AD). Given the complexity and resistance associated with both conditions, the study underscores the imperative need for therapeutic alternatives that can traverse the biological intricacies inherent in both neuro-oncological and neurodegenerative disorders. To achieve this, a meticulous, target-based virtual screening was employed on an ensemble of 50 flavonoids and polyphenol derivatives primarily derived from plant sources. The screening focused predominantly on molecular targets pertinent to GBM but also evaluated the potential overlap with neural pathways involved in AD. The study utilized molecular docking and Molecular Dynamic (MD) simulation techniques to analyze the interaction of these compounds with a key biological target, protein tyrosine phosphatase receptor-type Z (PTPRZ). Out of the 50 compounds examined, 10 met our stringent criteria for binding affinity and specificity. Subsequently, the highest value of binding energy was observed for the synergistic binding of luteolin and ferulic acid with the value of -10.5 kcal/mol. Both compounds exhibited inherent neuroprotective properties and demonstrated significant potential as pathway inhibitors in GBM as well as molecular modulators in AD. Drawing upon advanced in-silico cytotoxicity predictions and sophisticated molecular modeling techniques, this study casts a spotlight on the therapeutic capabilities of polyphenols against GBM. Furthermore, our findings suggest that leveraging these compounds could catalyze a much-needed paradigm shift towards more integrative therapeutic approaches that span the breadth of both neuro-oncology and neurodegenerative diseases. The identification of cross-therapeutic potential in flavonoids and polyphenols could drastically broaden the scope of treatment modalities against both fatal diseases.
Collapse
Affiliation(s)
- Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Tarique
- Department of Child Health, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Singh S, Joshi V, Upadhyay A. Amyloids and brain cancer: molecular linkages and crossovers. Biosci Rep 2023; 43:BSR20230489. [PMID: 37335084 PMCID: PMC10548166 DOI: 10.1042/bsr20230489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
Amyloids are high-order proteinaceous formations deposited in both intra- and extracellular spaces. These aggregates have tendencies to deregulate cellular physiology in multiple ways; for example, altered metabolism, mitochondrial dysfunctions, immune modulation, etc. When amyloids are formed in brain tissues, the endpoint often is death of neurons. However, interesting but least understood is a close connection of amyloids with another set of conditions in which brain cells proliferate at an extraordinary rate and form tumor inside brain. Glioblastoma is one such condition. Increasing number of evidence indicate a possible link between amyloid formation and depositions in brain tumors. Several proteins associated with cell cycle regulation and apoptotic pathways themselves have shown to possess high tendencies to form amyloids. Tumor suppressor protein p53 is one prominent example that mutate, oligomerize and form amyloids leading to loss- or gain-of-functions and cause increased cell proliferation and malignancies. In this review article, we present available examples, genetic links and common pathways that indicate that possibly the two distantly placed pathways: amyloid formation and developing cancers in the brain have similarities and are mechanistically intertwined together.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, U.S.A
| | - Vibhuti Joshi
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh 201310, India
| | - Arun Upadhyay
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, U.S.A
| |
Collapse
|
6
|
Dong Z, Xu M, Sun X, Wang X. Mendelian randomization and transcriptomic analysis reveal an inverse causal relationship between Alzheimer's disease and cancer. J Transl Med 2023; 21:527. [PMID: 37542274 PMCID: PMC10403895 DOI: 10.1186/s12967-023-04357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and cancer are common age-related diseases, and epidemiological evidence suggests an inverse relationship between them. However, investigating the potential mechanism underlying their relationship remains insufficient. METHODS Based on genome-wide association summary statistics for 42,034 AD patients and 609,951 cancer patients from the GWAS Catalog using the two-sample Mendelian randomization (MR) method. Moreover, we utilized two-step MR to identify metabolites mediating between AD and cancer. Furthermore, we employed colocalization analysis to identify genes whose upregulation is a risk factor for AD and demonstrated the genes' upregulation to be a favorable prognostic factor for cancer by analyzing transcriptomic data for 33 TCGA cancer types. RESULTS Two-sample MR analysis revealed a significant causal influence for increased AD risk on reduced cancer risk. Two-step MR analysis identified very low-density lipoprotein (VLDL) as a key mediator of the negative cause-effect relationship between AD and cancer. Colocalization analysis uncovered PVRIG upregulation to be a risk factor for AD. Transcriptomic analysis showed that PVRIG expression had significant negative correlations with stemness scores, and positive correlations with antitumor immune responses and overall survival in pan-cancer and multiple cancer types. CONCLUSION AD may result in lower cancer risk. VLDL is a significant intermediate variable linking AD with cancer. PVRIG abundance is a risk factor for AD but a protective factor for cancer. This study demonstrates a causal influence for AD on cancer and provides potential molecular connections between both diseases.
Collapse
Affiliation(s)
- Zehua Dong
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Mengli Xu
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Xu Sun
- Department of Pharmacy, Nanjing Luhe People's Hospital, Nanjing, 211500, China.
- Department of Pharmacy, Luhe Hospital Affiliated with Yangzhou University Medical College, Nanjing, 211500, China.
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
7
|
Mokbul MI, Siddik AB. Relationship between glioblastoma multiforme (GBM) and Alzheimer's disease (AD): is there any reporting bias? Med Oncol 2023; 40:101. [PMID: 36809382 DOI: 10.1007/s12032-023-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/15/2023] [Indexed: 02/23/2023]
Affiliation(s)
| | - Abu Bakar Siddik
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Xia S, Chen H, Tang T. Risk of Death from Alzheimer's Disease Associated with Brain Tumor, Glioma, and Glioblastoma. J Alzheimers Dis 2023; 96:623-631. [PMID: 37840492 DOI: 10.3233/jad-230554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
BACKGROUND No study has compared the risk of Alzheimer's disease (AD) in patients with brain tumors, gliomas, or glioblastomas with the risk in patients with other tumors. OBJECTIVE To determine whether, compared with other tumors, brain tumors, gliomas, and glioblastomas increase the risk of AD. METHODS This study identified a case group of 24,441 patients from the Surveillance, Epidemiology, and End Results (SEER) database who were diagnosed with only one primary tumor at age > 20 years in 1975-2019 and died from AD at age > 65 years as case group. The control group comprised 122,205 subjects from the SEER database who died from causes other than AD but otherwise had the same conditions as those in the case group. RESULTS There was a significantly lower prevalence of glioma (0.074% versus 0.14%, p = 0.007) and glioblastoma (0.0082% versus 0.074%, p = 0.001) in patients who died from AD than in those who died from other causes, while brain tumors were not significantly associated with AD death (p = 0.227). When adjusted for factors including age at death, sex, race, tumor behavior, radiation therapy and tumor-directed surgery, glioblastoma was related to a significantly lower AD risk than other tumors (odds ratio: 0.19, 95% CI: 0.05-0.77). Additionally, patients who were older, female, American Indian/Alaska Native, had a benign tumor, radiation therapy and tumor-directed surgery had a significantly higher risk of dying from AD. CONCLUSION Gliomas and glioblastomas were associated with a significantly lower risk of death from AD than other tumors.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Huaijun Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Walker JM, Dehkordi SK, Schaffert J, Goette W, White CL, Richardson TE, Zare H. The Spectrum of Alzheimer-Type Pathology in Cognitively Normal Individuals. J Alzheimers Dis 2023; 91:683-695. [PMID: 36502330 PMCID: PMC11184733 DOI: 10.3233/jad-220898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The strongest risk factor for the development of Alzheimer's disease (AD) is age. The progression of Braak stage and Thal phase with age has been demonstrated. However, prior studies did not include cognitive status. OBJECTIVE We set out to define normative values for Alzheimer-type pathologic changes in individuals without cognitive decline, and then define levels that would qualify them to be resistant to or resilient against these changes. METHODS Utilizing neuropathology data obtained from the National Alzheimer's Coordinating Center (NACC), we demonstrate the age-related progression of Alzheimer-type pathologic changes in cognitively normal individuals (CDR = 0, n = 542). With plots generated from these data, we establish standard lines that may be utilized to measure the extent to which an individual's Alzheimer-type pathology varies from the estimated normal range of pathology. RESULTS Although Braak stage and Thal phase progressively increase with age in cognitively normal individuals, the Consortium to Establish a Registry for Alzheimer's Disease neuritic plaque score and Alzheimer's disease neuropathologic change remain at low levels. CONCLUSION These findings suggest that an increasing burden of neuritic plaques is a strong predictor of cognitive decline, whereas, neurofibrillary degeneration and amyloid-β (diffuse) plaque deposition, both to some degree, are normal pathologic changes of aging that occur in almost all individuals regardless of cognitive status. Furthermore, we have defined the amount of neuropathologic change in cognitively normal individuals that would qualify them to be "resilient" against the pathology (significantly above the normative values for age, but still cognitively normal) or "resistant" to the development of pathology (significantly below the normative values for age).
Collapse
Affiliation(s)
- Jamie M. Walker
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shiva Kazempour Dehkordi
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jeff Schaffert
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William Goette
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charles L. White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Timothy E. Richardson
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
10
|
Owens MR, Nguyen S, Karsy M. Utility of Administrative Databases and Big Data on Understanding Glioma Treatment—A Systematic Review. INDIAN JOURNAL OF NEUROSURGERY 2022. [DOI: 10.1055/s-0042-1742333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Abstract
Background Gliomas are a heterogeneous group of tumors where large multicenter clinical and genetic studies have become increasingly popular in their understanding. We reviewed and analyzed the findings from large databases in gliomas, seeking to understand clinically relevant information.
Methods A systematic review was performed for gliomas studied using large administrative databases up to January 2020 (e.g., National Inpatient Sample [NIS], National Surgical Quality Improvement Program [NSQIP], and Surveillance, Epidemiology, and End Results Program [SEER], National Cancer Database [NCDB], and others).
Results Out of 390 screened studies, 122 were analyzed. Studies included a wide range of gliomas including low- and high-grade gliomas. The SEER database (n = 83) was the most used database followed by NCDB (n = 28). The most common pathologies included glioblastoma multiforme (GBM) (n = 67), with the next category including mixes of grades II to IV glioma (n = 31). Common study themes involved evaluation of descriptive epidemiological trends, prognostic factors, comparison of different pathologies, and evaluation of outcome trends over time. Persistent health care disparities in patient outcomes were frequently seen depending on race, marital status, insurance status, hospital volume, and location, which did not change over time. Most studies showed improvement in survival because of advances in surgical and adjuvant treatments.
Conclusions This study helps summarize the use of clinical administrative databases in gliomas research, informing on socioeconomic issues, surgical outcomes, and adjuvant treatments over time on a national level. Large databases allow for some study questions that would not be possible with single institution data; however, limitations remain in data curation, analysis, and reporting methods.
Collapse
Affiliation(s)
- Monica-Rae Owens
- Department of Neurosurgery, University of Utah, Utah, United States
| | - Sarah Nguyen
- Department of Neurosurgery, University of Utah, Utah, United States
| | - Michael Karsy
- University of Utah Health Care, University of Utah Health Hospitals and Clinics, Utah, United States
| |
Collapse
|
11
|
MicroRNA-Target Interaction Regulatory Network in Alzheimer's Disease. J Pers Med 2021; 11:jpm11121275. [PMID: 34945753 PMCID: PMC8708198 DOI: 10.3390/jpm11121275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia; however, early diagnosis of the disease is challenging. Research suggests that biomarkers found in blood, such as microRNAs (miRNA), may be promising for AD diagnostics. Experimental data on miRNA–target interactions (MTI) associated with AD are scattered across databases and publications, thus making the identification of promising miRNA biomarkers for AD difficult. In response to this, a list of experimentally validated AD-associated MTIs was obtained from miRTarBase. Cytoscape was used to create a visual MTI network. STRING software was used for protein–protein interaction analysis and mirPath was used for pathway enrichment analysis. Several targets regulated by multiple miRNAs were identified, including: BACE1, APP, NCSTN, SP1, SIRT1, and PTEN. The miRNA with the highest numbers of interactions in the network were: miR-9, miR-16, miR-34a, miR-106a, miR-107, miR-125b, miR-146, and miR-181c. The analysis revealed seven subnetworks, representing disease modules which have a potential for further biomarker development. The obtained MTI network is not yet complete, and additional studies are needed for the comprehensive understanding of the AD-associated miRNA targetome.
Collapse
|
12
|
Zabłocka A, Kazana W, Sochocka M, Stańczykiewicz B, Janusz M, Leszek J, Orzechowska B. Inverse Correlation Between Alzheimer's Disease and Cancer: Short Overview. Mol Neurobiol 2021; 58:6335-6349. [PMID: 34523079 PMCID: PMC8639554 DOI: 10.1007/s12035-021-02544-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
The negative association between Alzheimer's disease (AD) and cancer suggests that susceptibility to one disease may protect against the other. When biological mechanisms of AD and cancer and relationship between them are understood, the unsolved problem of both diseases which still touches the growing human population could be overcome. Actual information about biological mechanisms and common risk factors such as chronic inflammation, age-related metabolic deregulation, and family history is presented here. Common signaling pathways, e.g., p53, Wnt, role of Pin1, and microRNA, are discussed as well. Much attention is also paid to the potential impact of chronic viral, bacterial, and fungal infections that are responsible for the inflammatory pathway in AD and also play a key role to cancer development. New data about common mechanisms in etiopathology of cancer and neurological diseases suggests new therapeutic strategies. Among them, the use of nilotinib, tyrosine kinase inhibitor, protein kinase C, and bexarotene is the most promising.
Collapse
Affiliation(s)
- Agnieszka Zabłocka
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland.
| | - Wioletta Kazana
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Marta Sochocka
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, K. Bartla 5, 51-618, Wroclaw, Poland
| | - Maria Janusz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, L. Pasteura 10, 50-367, Wroclaw, Poland
| | - Beata Orzechowska
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
13
|
Advances with Long Non-Coding RNAs in Alzheimer's Disease as Peripheral Biomarker. Genes (Basel) 2021; 12:genes12081124. [PMID: 34440298 PMCID: PMC8391483 DOI: 10.3390/genes12081124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most compelling needs in the study of Alzheimer’s disease (AD) is the characterization of cognitive decline peripheral biomarkers. In this context, the theme of altered RNA processing has emerged as a contributing factor to AD. In particular, the significant role of long non-coding RNAs (lncRNAs) associated to AD is opening new perspectives in AD research. This class of RNAs may offer numerous starting points for new investigations about pathogenic mechanisms and, in particular, about peripheral biomarkers. Indeed, altered lncRNA signatures are emerging as potential diagnostic biomarkers. In this review, we have collected and fully explored all the presented data about lncRNAs and AD in the peripheral system to offer an overview about this class of non-coding RNAs and their possible role in AD.
Collapse
|
14
|
Akushevich I, Yashkin AP, Yashin AI, Kravchenko J. Geographic disparities in mortality from Alzheimer's disease and related dementias. J Am Geriatr Soc 2021; 69:2306-2315. [PMID: 34009643 DOI: 10.1111/jgs.17215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/16/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The regions with highest and lowest Alzheimer's disease (AD) mortality across the United States at state/county levels were identified and their contribution to the differences in total mortality rates between these regions was evaluated. The disease, disease group, sex, race/ethnicity, and place-of-death-related inter-region differences that engender the disparity in mortality were quantitatively described. The hypothesis that inter-regional differences in filling out death certificates are a major contributor to differences in AD mortality was tested. DESIGN Retrospective evaluation of death certificate data. SETTING The United States. PARTICIPANTS Deceased US residents, 1999-2018. METHODS Region-specific age-adjusted mortality rates and group-specific rate decomposition. RESULTS The county clusters with the highest and lowest AD mortality rates were in Washington (WA) and New York (NY), respectively, with other notable high-mortality clusters on the border of Tennessee, Georgia, and Alabama as well as in North Dakota and South Dakota. These patterns were stable over the 1999-2018 period. AD had the highest contribution to total mortality difference between WA and NY (156%, higher in WA), in contrast circulatory diseases had a contribution of comparable magnitude (154%) but were higher in NY. Differences in cause-of-death certificate coding, either through coding of non-AD dementias, or other conditions accompanying a potential AD death could not account for differences in AD mortality between NY and WA. CONCLUSIONS Inter-regional differences in filling out death certificates were not a major contributor to variation in AD mortality between the regions with the highest and lowest rates. The respective mitigation of the effects of neural and circulatory diseases and several other high-impact conditions would not negate the disparity in mortality between NY and WA.
Collapse
Affiliation(s)
- Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, USA
| | - Arseniy P Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, USA
| | - Anatoliy I Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, USA
| | - Julia Kravchenko
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
15
|
Advani D, Gupta R, Tripathi R, Sharma S, Ambasta RK, Kumar P. Protective role of anticancer drugs in neurodegenerative disorders: A drug repurposing approach. Neurochem Int 2020; 140:104841. [PMID: 32853752 DOI: 10.1016/j.neuint.2020.104841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
The disease heterogeneity and little therapeutic progress in neurodegenerative diseases justify the need for novel and effective drug discovery approaches. Drug repurposing is an emerging approach that reinvigorates the classical drug discovery method by divulging new therapeutic uses of existing drugs. The common biological background and inverse tuning between cancer and neurodegeneration give weight to the conceptualization of repurposing of anticancer drugs as novel therapeutics. Many studies are available in the literature, which highlights the success story of anticancer drugs as repurposed therapeutics. Among them, kinase inhibitors, developed for various oncology indications evinced notable neuroprotective effects in neurodegenerative diseases. In this review, we shed light on the salient role of multiple protein kinases in neurodegenerative disorders. We also proposed a feasible explanation of the action of kinase inhibitors in neurodegenerative disorders with more attention towards neurodegenerative disorders. The problem of neurotoxicity associated with some anticancer drugs is also highlighted. Our review encourages further research to better encode the hidden potential of anticancer drugs with the aim of developing prospective repurposed drugs with no toxicity for neurodegenerative disorders.
Collapse
Affiliation(s)
- Dia Advani
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rohan Gupta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rahul Tripathi
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
16
|
Steffens DC, Garrett ME, Soldano KL, McQuoid DR, Ashley-Koch AE, Potter GG. Genome-wide screen to identify genetic loci associated with cognitive decline in late-life depression. Int Psychogeriatr 2020:1-9. [PMID: 32641180 PMCID: PMC7794099 DOI: 10.1017/s1041610220001143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study sought to conduct a comprehensive search for genetic risk of cognitive decline in the context of geriatric depression. DESIGN A genome-wide association study (GWAS) analysis in the Neurocognitive Outcomes of Depression in the Elderly (NCODE) study. SETTING Longitudinal, naturalistic follow-up study. PARTICIPANTS Older depressed adults, both outpatients and inpatients, receiving care at an academic medical center. MEASUREMENTS The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuropsychological battery was administered to the study participants at baseline and a minimum of twice within a subsequent 3-year period in order to measure cognitive decline. A GWAS analysis was conducted to identify genetic variation that is associated with baseline and change in the CERAD Total Score (CERAD-TS) in NCODE. RESULTS The GWAS of baseline CERAD-TS revealed a significant association with an intergenic single-nucleotide polymorphism (SNP) on chromosome 6, rs17662598, that surpassed adjustment for multiple testing (p = 3.7 × 10-7; false discovery rate q = 0.0371). For each additional G allele, average baseline CERAD-TS decreased by 8.656 points. The most significant SNP that lies within a gene was rs11666579 in SLC27A1 (p = 1.1 × 10-5). Each additional copy of the G allele was associated with an average decrease of baseline CERAD-TS of 4.829 points. SLC27A1 is involved with processing docosahexaenoic acid (DHA), an endogenous neuroprotective compound in the brain. Decreased levels of DHA have been associated with the development of Alzheimer's disease. The most significant SNP associated with CERAD-TS decline over time was rs73240021 in GRXCR1 (p = 1.1 × 10-6), a gene previously linked with deafness. However, none of the associations within genes survived adjustment for multiple testing. CONCLUSIONS Our GWAS of cognitive function and decline among individuals with late-life depression (LLD) has identified promising candidate genes that, upon replication in other cohorts of LLD, may be potential biomarkers for cognitive decline and suggests DHA supplementation as a possible therapy of interest.
Collapse
Affiliation(s)
- D C Steffens
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - M E Garrett
- Department of Medicine, Duke University Medicine Center, Durham, NC, USA
| | - K L Soldano
- Department of Medicine, Duke University Medicine Center, Durham, NC, USA
| | - D R McQuoid
- Department of Psychiatry, Duke University Medicine Center, Durham, NC, USA
| | - A E Ashley-Koch
- Department of Medicine, Duke University Medicine Center, Durham, NC, USA
| | - G G Potter
- Department of Psychiatry, Duke University Medicine Center, Durham, NC, USA
| |
Collapse
|
17
|
Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol Life Sci 2020; 77:2659-2680. [PMID: 31884567 PMCID: PMC7326806 DOI: 10.1007/s00018-019-03428-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jiyeon Seo
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
18
|
Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. Int J Mol Sci 2020; 21:ijms21031115. [PMID: 32046139 PMCID: PMC7036760 DOI: 10.3390/ijms21031115] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
The intricate relationships between innate immunity and brain diseases raise increased interest across the wide spectrum of neurodegenerative and neuropsychiatric disorders. Barriers, such as the blood–brain barrier, and innate immunity cells such as microglia, astrocytes, macrophages, and mast cells are involved in triggering disease events in these groups, through the action of many different cytokines. Chronic inflammation can lead to dysfunctions in large-scale brain networks. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are associated with a substrate of dysregulated immune responses that impair the central nervous system balance. Recent evidence suggests that similar phenomena are involved in psychiatric diseases, such as depression, schizophrenia, autism spectrum disorders, and post-traumatic stress disorder. The present review summarizes and discusses the main evidence linking the innate immunological response in neurodegenerative and psychiatric diseases, thus providing insights into how the responses of innate immunity represent a common denominator between diseases belonging to the neurological and psychiatric sphere. Improved knowledge of such immunological aspects could provide the framework for the future development of new diagnostic and therapeutic approaches.
Collapse
|
19
|
Lee SY, Song MY, Kim D, Park C, Park DK, Kim DG, Yoo JS, Kim YH. A Proteotranscriptomic-Based Computational Drug-Repositioning Method for Alzheimer's Disease. Front Pharmacol 2020; 10:1653. [PMID: 32063857 PMCID: PMC7000455 DOI: 10.3389/fphar.2019.01653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous clinical trials of drug candidates for Alzheimer’s disease (AD) have failed, and computational drug repositioning approaches using omics data have been proposed as effective alternative approaches to the discovery of drug candidates. However, little multi-omics data is available for AD, due to limited availability of brain tissues. Even if omics data exist, systematic drug repurposing study for AD has suffered from lack of big data, insufficient clinical information, and difficulty in data integration on account of sample heterogeneity derived from poor diagnosis or shortage of qualified post-mortem tissue. In this study, we developed a proteotranscriptomic-based computational drug repositioning method named Drug Repositioning Perturbation Score/Class (DRPS/C) based on inverse associations between disease- and drug-induced gene and protein perturbation patterns, incorporating pharmacogenomic knowledge. We constructed a Drug-induced Gene Perturbation Signature Database (DGPSD) comprised of 61,019 gene signatures perturbed by 1,520 drugs from the Connectivity Map (CMap) and the L1000 CMap. Drugs were classified into three DRPCs (High, Intermediate, and Low) according to DRPSs that were calculated using drug- and disease-induced gene perturbation signatures from DGPSD and The Cancer Genome Atlas (TCGA), respectively. The DRPS/C method was evaluated using the area under the ROC curve, with a prescribed drug list from TCGA as the gold standard. Glioblastoma had the highest AUC. To predict anti-AD drugs, DRPS were calculated using DGPSD and AD-induced gene/protein perturbation signatures generated from RNA-seq, microarray and proteomic datasets in the Synapse database, and the drugs were classified into DRPCs. We predicted 31 potential anti-AD drug candidates commonly belonged to high DRPCs of transcriptomic and proteomic signatures. Of these, four drugs classified into the nervous system group of Anatomical Therapeutic Chemical (ATC) system are voltage-gated sodium channel blockers (bupivacaine, topiramate) and monamine oxidase inhibitors (selegiline, iproniazid), and their mechanism of action was inferred from a potential anti-AD drug perspective. Our approach suggests a shortcut to discover new efficacy of drugs for AD.
Collapse
Affiliation(s)
- Soo Youn Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| | - Min-Young Song
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| | - Dain Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| | - Chaewon Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| | - Da Kyeong Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| | - Dong Geun Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Jong Shin Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Young Hye Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| |
Collapse
|
20
|
Gargini R, Segura-Collar B, Sánchez-Gómez P. Novel Functions of the Neurodegenerative-Related Gene Tau in Cancer. Front Aging Neurosci 2019; 11:231. [PMID: 31551755 PMCID: PMC6736573 DOI: 10.3389/fnagi.2019.00231] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
The analysis of global and comparative genomics between different diseases allows us to understand the key biological processes that explain the etiology of these pathologies. We have used this type of approach to evaluate the expression of several neurodegeneration-related genes on the development of tumors, particularly brain tumors of glial origin (gliomas), which are an aggressive and incurable type of cancer. We have observed that genes involved in Amyotrophic lateral sclerosis (ALS), as well as in Alzheimer’s and Parkinson’s diseases, correlate with better prognosis of gliomas. Within these genes, high Tau/MAPT expression shows the strongest correlation with several indicators of prolonged survival on glioma patients. Tau protein regulates microtubule stability and dynamics in neurons, although there have been reports of its expression in glial cells and also in gliomas. However, little is known about the regulation of Tau/MAPT transcription in tumors. Moreover, our in silico analysis indicates that this gene is also expressed in a variety of tumors, showing a general correlation with survival, although its function in cancer has not yet been addressed. Another remarkable aspect of Tau is its involvement in resistance to taxanes in various tumors types such as breast, ovarian and gastric carcinomas. This is due to the fact that taxanes have the same tubulin-binding site as Tau. In the present work we review the main knowledge about Tau function and expression in tumors, with a special focus on brain cancer. We will also speculate with the therapeutic implications of these findings.
Collapse
|
21
|
Candido S, Lupo G, Pennisi M, Basile MS, Anfuso CD, Petralia MC, Gattuso G, Vivarelli S, Spandidos DA, Libra M, Falzone L. The analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and Alzheimer's disease. Oncol Rep 2019; 42:911-922. [PMID: 31322245 PMCID: PMC6682788 DOI: 10.3892/or.2019.7215] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
There is recent evidence to indicate the existence of an inverse association between the incidence of neurological disorders and cancer development. Concurrently, the transcriptional pathways responsible for the onset of glioblastoma multiforme (GBM) and Alzheimer's disease (AD) have been found to be mutually exclusive between the two pathologies. Despite advancements being made concerning the knowledge of the molecular mechanisms responsible for the development of GBM and AD, little is known about the identity of the microRNA (miRNAs or miRs) involved in the development and progression of these two pathologies and their possible inverse expression patterns. On these bases, the aim of the present study was to identify a set of miRNAs significantly de-regulated in both GBM and AD, and hence to determine whether the identified miRNAs exhibit an inverse association within the two pathologies. For this purpose, miRNA expression profiling datasets derived from the Gene Expression Omnibus (GEO) DataSets and relative to GBM and AD were used. Once the miRNAs significantly de-regulated in both pathologies were identified, DIANA-mirPath pathway prediction and STRING Gene Ontology enrichment analyses were performed to establish their functional roles in each of the pathologies. The results allowed the identification of a set of miRNAs found de-regulated in both GBM and AD, whose expression levels were inversely associated in the two pathologies. In particular, a strong negative association was observed between the expression levels of miRNAs in GBM compared to AD, suggesting that although the molecular pathways behind the development of these two pathologies are the same, they appear to be inversely regulated by miRNAs. Despite the identification of this set of miRNAs which may be used for diagnostic, prognostic and therapeutic purposes, further functional in vitro and in vivo evaluations are warranted in order to validate the diagnostic and therapeutic potential of the identified miRNAs, as well as their involvement in the development of GBM and AD.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Maria S Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Carmelina D Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Maria C Petralia
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
22
|
Kucheryavykh LY, Ortiz-Rivera J, Kucheryavykh YV, Zayas-Santiago A, Diaz-Garcia A, Inyushin MY. Accumulation of Innate Amyloid Beta Peptide in Glioblastoma Tumors. Int J Mol Sci 2019; 20:ijms20102482. [PMID: 31137462 PMCID: PMC6567111 DOI: 10.3390/ijms20102482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/23/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
Immunostaining with specific antibodies has shown that innate amyloid beta (Aβ) is accumulated naturally in glioma tumors and nearby blood vessels in a mouse model of glioma. In immunofluorescence images, Aβ peptide coincides with glioma cells, and enzyme-linked immunosorbent assay (ELISA) have shown that Aβ peptide is enriched in the membrane protein fraction of tumor cells. ELISAs have also confirmed that the Aβ(1–40) peptide is enriched in glioma tumor areas relative to healthy brain areas. Thioflavin staining revealed that at least some amyloid is present in glioma tumors in aggregated forms. We may suggest that the presence of aggregated amyloid in glioma tumors together with the presence of Aβ immunofluorescence coinciding with glioma cells and the nearby vasculature imply that the source of Aβ peptides in glioma can be systemic Aβ from blood vessels, but this question remains unresolved and needs additional studies.
Collapse
Affiliation(s)
- Lilia Y Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, PO Box 60327, Bayamon, PR 00960-6032, USA.
| | - Jescelica Ortiz-Rivera
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, PO Box 60327, Bayamon, PR 00960-6032, USA.
| | - Yuriy V Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, PO Box 60327, Bayamon, PR 00960-6032, USA.
| | - Astrid Zayas-Santiago
- Department of Physiology, School of Medicine, Universidad Central del Caribe, PO Box 60327, Bayamon, PR 00960-6032, USA.
| | - Amanda Diaz-Garcia
- Department of Physiology, School of Medicine, Universidad Central del Caribe, PO Box 60327, Bayamon, PR 00960-6032, USA.
| | - Mikhail Y Inyushin
- Department of Physiology, School of Medicine, Universidad Central del Caribe, PO Box 60327, Bayamon, PR 00960-6032, USA.
| |
Collapse
|
23
|
Lehrer S, Rheinstein PH. Alzheimer's Disease Susceptibility Genes in Malignant Breast Tumors. CANCER TRANSLATIONAL MEDICINE 2019; 5:42-46. [PMID: 31453369 PMCID: PMC6709700 DOI: 10.4103/2395-3977.261826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: Cognitive problems have been reported in breast cancer patients after chemotherapy. A small group of older breast cancer survivors carrying the APOE4 gene, receiving chemotherapy, was at increased risk of long-term impairment of brain function. We have analyzed the expression of APOE and the next 23-ranked Alzheimer’s disease (AD) susceptibility genes in malignant breast tumors. We wished to determine if these 24 genes might be related to breast cancer. Methods: To identify the most important AD susceptibility genes, we consulted the ALZGENE database (www.alzgene.org/) which displays this information and regularly updates it. To analyze the effect of AD susceptibility genes on breast cancer, we used The Cancer Genome Atlas (TCGA). We analyzed TCGA data with cBioPortal for Cancer Genomics. cBioPortal provides visualization, analysis, and download of large-scale cancer genomic data sets. cBioPortal can analyze APOE in breast tumors but cannot distinguish its three alleles: E2, E3, and E4. Results: About 1.6% of the tumors had APOE amplification (copy number alteration). Two percent of the tumors had CD33 alterations. None of the tumors had APOE mutations. Two tumors had CD33 missense mutations of unknown significance. Expression heatmap shows that over- or underexpression of APOE and CD33 was correlated in most of the tumors. APOE alteration significantly co-occurred with CD33 and CD2AP. Conclusion: Alterations of certain cancer genes tend to co-occur, indicating that they may work in tandem to drive tumor formation and development. This may be the case with the co-occurring alterations of APOE, CD33, and CD2AP. It would be important to know which APOE allele(s) were co-occurrent with CD33 and CD2AP and whether co-occurrence in the tumor predicted increased risk of AD. This information could help in identification of specific risk factors for breast cancer-related cognitive decline in older women, which has important implications for oncology care.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology, Icahn School of Medicine At Mount Sinai, New York, USA
| | - Peter H Rheinstein
- Department of Radiation Oncology, Severn Health Solutions, Severna Park, Maryland, USA
| |
Collapse
|