1
|
Prajapati M, Vishwanath K, Huang L, Colville M, Reesink H, Paszek M, Bonassar LJ. Specific Degradation of the Mucin Domain of Lubricin in Synovial Fluid Impairs Cartilage Lubrication. ACS Biomater Sci Eng 2024. [PMID: 39425698 DOI: 10.1021/acsbiomaterials.4c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Progressive cartilage degradation, synovial inflammation, and joint lubrication dysfunction are key markers of osteoarthritis. The composition of synovial fluid (SF) is altered in OA, with changes to both hyaluronic acid and lubricin, the primary lubricating molecules in SF. Lubricin's distinct bottlebrush mucin domain has been speculated to contribute to its lubricating ability, but the relationship between its structure and mechanical function in SF is not well understood. Here, we demonstrate the application of a novel mucinase (StcE) to selectively degrade lubricin's mucin domain in SF to measure its impact on joint lubrication and friction. Notably, StcE effectively degraded the lubricating ability of SF in a dose-dependent manner starting at nanogram concentrations (1-3.2 ng/mL). Further, the highest StcE doses effectively degraded lubrication to levels on par with trypsin, suggesting that cleavage at the mucin domain of lubricin is sufficient to completely inhibit the lubrication mechanism of the collective protein component in SF. These findings demonstrate the value of mucin-specific experimental approaches to characterize the lubricating properties of SF and reveal key trends in joint lubrication that help us better understand cartilage function in lubrication-deficient joints.
Collapse
Affiliation(s)
- Megh Prajapati
- Meinig School of Biomedical Engineering, Cornell University, 273 Tower Road, Ithaca, New York 14850, United States
| | - Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, 210 Bard Hall, Ithaca, New York 14853, United States
| | - Lingting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
| | - Marshall Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
- Dept. of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Toward Road, Ithaca, New York 14853, United States
| | - Heidi Reesink
- Dept. of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Toward Road, Ithaca, New York 14853, United States
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, 273 Tower Road, Ithaca, New York 14850, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, New York 14850, United States
| |
Collapse
|
2
|
Leopold J, Schiller J. (Chemical) Roles of HOCl in Rheumatic Diseases. Antioxidants (Basel) 2024; 13:921. [PMID: 39199167 PMCID: PMC11351306 DOI: 10.3390/antiox13080921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Chronic rheumatic diseases such as rheumatoid arthritis (RA) are characterized by a dysregulated immune response and persistent inflammation. The large number of neutrophilic granulocytes in the synovial fluid (SF) from RA patients leads to elevated enzyme activities, for example, from myeloperoxidase (MPO) and elastase. Hypochlorous acid (HOCl), as the most important MPO-derived product, is a strong reactive oxygen species (ROS) and known to be involved in the processes of cartilage destruction (particularly regarding the glycosaminoglycans). This review will discuss open questions about the contribution of HOCl in RA in order to improve the understanding of oxidative tissue damaging. First, the (chemical) composition of articular cartilage and SF and the mechanisms of cartilage degradation will be discussed. Afterwards, the products released by neutrophils during inflammation will be summarized and their effects towards the individual, most abundant cartilage compounds (collagen, proteoglycans) and selected cellular components (lipids, DNA) discussed. New developments about neutrophil extracellular traps (NETs) and the use of antioxidants as drugs will be outlined, too. Finally, we will try to estimate the effects induced by these different agents and their contributions in RA.
Collapse
Affiliation(s)
- Jenny Leopold
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04103 Leipzig, Germany;
| | | |
Collapse
|
3
|
Martin-Alarcon L, Govedarica A, Ewoldt RH, Bryant SL, Jay GD, Schmidt TA, Trifkovic M. Scale-Dependent Rheology of Synovial Fluid Lubricating Macromolecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306207. [PMID: 38161247 DOI: 10.1002/smll.202306207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/20/2023] [Indexed: 01/03/2024]
Abstract
Synovial fluid (SF) is the complex biofluid that facilitates the exceptional lubrication of articular cartilage in joints. Its primary lubricating macromolecules, the linear polysaccharide hyaluronic acid (HA) and the mucin-like glycoprotein proteoglycan 4 (PRG4 or lubricin), interact synergistically to reduce boundary friction. However, the precise manner in which these molecules influence the rheological properties of SF remains unclear. This study aimed to elucidate this by employing confocal microscopy and multiscale rheometry to examine the microstructure and rheology of solutions containing recombinant human PRG4 (rhPRG4) and HA. Contrary to previous assumptions of an extensive HA-rhPRG4 network, it is discovered that rhPRG4 primarily forms stiff, gel-like aggregates. The properties of these aggregates, including their size and stiffness, are found to be influenced by the viscoelastic characteristics of the surrounding HA matrix. Consequently, the rheology of this system is not governed by a single length scale, but instead responds as a disordered, hierarchical network with solid-like rhPRG4 aggregates distributed throughout the continuous HA phase. These findings provide new insights into the biomechanical function of PRG4 in cartilage lubrication and may have implications in the development of HA-based therapies for joint diseases like osteoarthritis.
Collapse
Affiliation(s)
- Leonardo Martin-Alarcon
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Aleksandra Govedarica
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Randy H Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Steven L Bryant
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Gregory D Jay
- Department of Emergency Medicine - Warren Alpert Medical School & School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
4
|
de Roy L, Eichhorn K, Faschingbauer M, Schlickenrieder K, Ignatius A, Seitz AM. Impact of hyaluronic acid injection on the knee joint friction. Knee Surg Sports Traumatol Arthrosc 2023; 31:5554-5564. [PMID: 37843587 PMCID: PMC10719131 DOI: 10.1007/s00167-023-07602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE The purpose of this in vitro study was to investigate whether or not hyaluronic acid supplementation improves knee joint friction during osteoarthritis progression under gait-like loading conditions. METHODS Twelve human cadaveric knee joints were equally divided into mild and moderate osteoarthritic groups. After initial conservative preparation, a passive pendulum setup was used to test the whole joints under gait-like conditions before and after hyaluronic acid supplementation. The friction-related damping properties given by the coefficient of friction µ and the damping coefficient c (in kg m2/s) were calculated from the decaying flexion-extension motion of the knee. Subsequently, tibial and femoral cartilage and meniscus samples were extracted from the joints and tested in an established dynamic pin-on-plate tribometer using synthetic synovial fluid followed by synthetic synovial fluid supplemented with hyaluronic acid as lubricant. Friction was quantified by calculating the coefficient of friction. RESULTS In the pendulum tests, the moderate OA group indicated significantly lower c0 values (p < 0.05) under stance phase conditions and significantly lower µ0 (p = 0.01) values under swing phase conditions. No degeneration-related statistical differences were found for µend or cend. Friction was not significantly different (p > 0.05) with regard to mild and moderate osteoarthritis in the pin-on-plate tests. Additionally, hyaluronic acid did not affect friction in both, the pendulum (p > 0.05) and pin-on-plate friction tests (p > 0.05). CONCLUSION The results of this in vitro study suggested that the friction of cadaveric knee joint tissues does not increase with progressing degeneration. Moreover, hyaluronic acid viscosupplementation does not lead to an initial decrease in knee joint friction.
Collapse
Affiliation(s)
- Luisa de Roy
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Kerstin Eichhorn
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Martin Faschingbauer
- Department of Orthopedic Surgery, RKU, Ulm University Medical Center, Ulm, Germany
| | - Klaus Schlickenrieder
- Faculty of Production Engineering and Management, Ulm University of Applied Sciences, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Andreas Martin Seitz
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Helmholtzstraße 14, 89081, Ulm, Germany.
| |
Collapse
|
5
|
Hasnain S, Abbas I, Al-Atawi NO, Saqib M, Afzaal MF, Mashat DS. Knee synovial fluid flow and heat transfer, a power law model. Sci Rep 2023; 13:18184. [PMID: 37875531 PMCID: PMC10598223 DOI: 10.1038/s41598-023-44482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
For the purpose of understanding, the governing system of partial differential equations for synovial fluid flow velocity and temperature distribution in the knee joint has been successfully solved for the first time. Therefore, such an article is shedding light on the convective diffusion of the viscous flow along the articular surfaces of the joints through the introduction of power-law fluids with different features of permeability, and stagnation point flow along a magnetic field. Henceforth, the frictional energy causes the knee joint's temperature to increase. By way of filtration, heated synovial fluid reaches the articular cartilage and provides heat to the bone and cartilage. The lubricant in the joint cavity is properly mixed with this cooled fluid. A rectangular region flow and diffusion model is used to define the issue, thermal diffusion and flow inside the intra-articular gap, as well as flow and thermal diffusion within the porous matrix covering the approaching bones at the joint. Using the similarity solution approach, the linked mixed boundary value problem is addressed. The fluid has been shown to resist moving into or out of the cartilage in certain sick and/or aging synovial joints, causing the temperature to increase. By changing the values of the parameters from their usual levels, it is observed that the temperature did increase in aged and sick joints which impact cartilage and/or synovial fluid degradation.
Collapse
Affiliation(s)
- Shahid Hasnain
- Department of Mathematics, University of Chakwal, Chakwal, Pakistan.
| | - Imran Abbas
- Department of Mathematics, Air University, Islamabad, Pakistan
| | - Nawal Odah Al-Atawi
- Department of Mathematics, King Abdulaziz University, Jeddah, Postal Code 21589, Saudi Arabia
- Department of Mathematics, Tabuk University, Tabuk, Postal Code 71491, Saudi Arabia
| | - Muhammad Saqib
- Department of Mathematics, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Muhammad F Afzaal
- King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Daoud S Mashat
- Department of Mathematics, King Abdulaziz University, Jeddah, Postal Code 21589, Saudi Arabia
| |
Collapse
|
6
|
Rodriguez-Merchan EC. The role of intraarticular injections of hyaluronic acid in joint pain relief in hemophilic arthropathy. Expert Rev Hematol 2023; 16:811-817. [PMID: 37837349 DOI: 10.1080/17474086.2023.2271660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
INTRODUCTION Chronic pain in hemophilic patients is due to joint degeneration associated with hemophilic arthropathy. In addition to appropriate hematological treatment (primary prophylaxis), pharmacologic management and Physical Medicine and Rehabilitation should be indicated. When such measures are not sufficient, intraarticular injections (IAIs) of hyaluronic acid (HyA) may be considered. AREAS COVERED In order to determine whether IAIs of HyA are effective in terms of pain relief in individuals with painful moderate hemophilic arthropathy, a PubMed and Cochrane Library search using 'hemophilia hyaluronic acid' as keywords was performed on 18 July 2023. EXPERT OPINION In a study of individuals with hemophilic arthropathy (elbows, knees and ankles), 91% of them improved pain after a mean follow-up of 6 years. In another study of individuals with knee arthropathy, after a 7-year follow-up 82% reported an improvement in pain. As for hemophilic ankle arthropathy, in a study 67% of patients showed relief of joint pain at 6-month follow-up. Although the literature on the subject is very heterogeneous and difficult to interpret, it appears that IAIs of HyA can relieve the joint pain of painful moderate hemophilic arthropathy for months. Moreover, the IAIs can be repeated every 6-12 months.
Collapse
|
7
|
Synovial Fluid Derived from Human Knee Osteoarthritis Increases the Viability of Human Adipose-Derived Stem Cells through Upregulation of FOSL1. Cells 2023; 12:cells12020330. [PMID: 36672268 PMCID: PMC9856741 DOI: 10.3390/cells12020330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Knee osteoarthritis (Knee OA) is an irreversible condition that causes bone deformity and degeneration of the articular cartilage that comprises the joints, resulting in chronic pain and movement disorders. The administration of cultured adipose-derived stem cells (ADSCs) into the knee joint cavity improves the clinical symptoms of Knee OA; however, the effect of synovial fluid (SF) filling the joint cavity on the injected ADSCs remains unclear. In this study, we investigated the effect of adding SF from Knee OA patients to cultured ADSCs prepared for therapeutic use in an environment that mimics the joint cavity. An increase in the viability of ADSCs was observed following the addition of SF. Gene expression profiling of SF-treated ADSCs using DNA microarrays revealed changes in several genes involved in cell survival. Of these genes, we focused on FOSL1, which is involved in the therapeutic effect of ADSCs and the survival and proliferation of cancer stem cells. We confirmed the upregulation of FOSL1 mRNA and protein expression using RT-PCR and western blot analysis, respectively. Next, we knocked down FOSL1 in ADSCs using siRNA and observed a decrease in cell viability, indicating the involvement of FOSL1 in the survival of ADSCs. Interestingly, in the knockdown cells, ADSC viability was also decreased by SF exposure. These results suggest that SF enhances cell viability by upregulating FOSL1 expression in ADSCs. For therapy using cultured ADSCs, the therapeutic effect of ADSCs may be further enhanced if an environment more conducive to the upregulation of FOSL1 expression in ADSCs can be established.
Collapse
|
8
|
Amirsaadat S, Amirazad H, Hashemihesar R, Zarghami N. An update on the effect of intra-articular intervention strategies using nanomaterials in osteoarthritis: Possible clinical application. Front Bioeng Biotechnol 2023; 11:1128856. [PMID: 36873347 PMCID: PMC9978162 DOI: 10.3389/fbioe.2023.1128856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Osteoarthritis (OA) is the most common progressive condition affecting joints. It mainly affects the knees and hips as predominant weight-bearing joints. Knee osteoarthritis (KOA) accounts for a large proportion of osteoarthritis and presents numerous symptoms that impair quality of life, such as stiffness, pain, dysfunction, and even deformity. For more than two decades, intra-articular (IA) treatment options for managing knee osteoarthritis have included analgesics, hyaluronic acid (HA), corticosteroids, and some unproven alternative therapies. Before effective disease-modifying treatments for knee osteoarthritis, treatments are primarily symptomatic, mainly including intra-articular corticosteroids and hyaluronic acid, so these agents represent the most frequently used class of drugs for managing knee osteoarthritis. But research suggests other factors, such as the placebo effect, have an essential role in the effectiveness of these drugs. Several novel intra-articular therapies are currently in the clinical trial processes, such as biological therapies, gene and cell therapies. Besides, it has been shown that the development of novel drug nanocarriers and delivery systems could improve the effectiveness of therapeutic agents in osteoarthritis. This review discusses the various treatment methods and delivery systems for knee osteoarthritis and the new agents that have been introduced or are in development.
Collapse
Affiliation(s)
- Soumayeh Amirsaadat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Amirazad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hashemihesar
- Department of Histology and Embryology, Faculty of Medicine, Altinbas University, Istanbul, Türkiye
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Chawla D, Eriten M, Henak CR. Effect of osmolarity and displacement rate on cartilage microfracture clusters failure into two regimes. J Mech Behav Biomed Mater 2022; 136:105467. [PMID: 36198233 DOI: 10.1016/j.jmbbm.2022.105467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
Articular cartilage is a poroviscoelastic (PVE) material with remarkable resistance to fracture and fatigue failure. Cartilage failure mechanisms and material properties that govern failure are incompletely understood. Because cartilage is partially comprised of negatively charged glycosaminoglycans, altering solvent osmolarity can influence PVE relaxations. Therefore, this study aims to use osmolarity as a tool to provide additional data to interpret the role of PVE relaxations and identify cartilage failure regimes. Cartilage fracture was induced using a 100 μm radius spheroconical indenter at controlled displacement rates under three different osmolarity solvents. Secondarily, contact pressure (CP) and strain energy density (SED) were estimated to cluster data into two failure regimes with an expectation maximization algorithm. Critical displacement, critical load, critical time, and critical work to fracture increased with increasing osmolarity at a slow displacement rate whereas no significant effect was observed at a fast displacement rate. Clustering provided two distinct failure regimes, with regime (I) at lower normalized thickness (contact radius divided by sample thickness), and regime (II) at higher normalized thickness. Varied CP and SED in regime (I) suggest that failure in the regime is strain-governed. Constant CP and SED in regime (II) suggests that failure in the regime is dominantly governed by stress. These regimes can be interpreted as ductile versus brittle, or using a pressurized fragmentation interpretation. These findings demonstrated fundamental failure properties and postulate failure regimes for articular cartilage.
Collapse
Affiliation(s)
- Dipul Chawla
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA
| | - Melih Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 University Ave., Madison, WI, 53706, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
10
|
Petta D, D'Amora U, D'Arrigo D, Tomasini M, Candrian C, Ambrosio L, Moretti M. Musculoskeletal tissues-on-a-chip: role of natural polymers in reproducing tissue-specific microenvironments. Biofabrication 2022; 14. [PMID: 35931043 DOI: 10.1088/1758-5090/ac8767] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
Over the past years, 3D in vitro models have been widely employed in the regenerative medicine field. Among them, organ-on-a-chip technology has the potential to elucidate cellular mechanism exploiting multichannel microfluidic devices to establish 3D co-culture systems that offer control over the cellular, physico-chemical and biochemical microenvironments. To deliver the most relevant cues to cells, it is of paramount importance to select the most appropriate matrix for mimicking the extracellular matrix of the native tissue. Natural polymers-based hydrogels are the elected candidates for reproducing tissue-specific microenvironments in musculoskeletal tissue-on-a-chip models owning to their interesting and peculiar physico-chemical, mechanical and biological properties. Despite these advantages, there is still a gap between the biomaterials complexity in conventional tissue engineering and the application of these biomaterials in 3D in vitro microfluidic models. In this review, the aim is to suggest the adoption of more suitable biomaterials, alternative crosslinking strategies and tissue engineered-inspired approaches in organ-on-a-chip to better mimic the complexity of physiological musculoskeletal tissues. Accordingly, after giving an overview of the musculoskeletal tissue compositions, the properties of the main natural polymers employed in microfluidic systems are investigated, together with the main musculoskeletal tissues-on-a-chip devices.
Collapse
Affiliation(s)
- Dalila Petta
- Regenerative Medicine Technologis Lab, Repubblica e Cantone Ticino Ente Ospedaliero Cantonale, Via Francesco Chiesa 5, Bellinzona, Ticino, 6500, SWITZERLAND
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, V.le J.F. Kennedy 54 Mostra d'Oltremare Pad 20, Naples, 80125, ITALY
| | - Daniele D'Arrigo
- Repubblica e Cantone Ticino Ente Ospedaliero Cantonale, Via Francesco Chiesa 5, Bellinzona, Ticino, 6500, SWITZERLAND
| | - Marta Tomasini
- Repubblica e Cantone Ticino Ente Ospedaliero Cantonale, Via Francesco chies 5, Bellinzona, Ticino, 6500, SWITZERLAND
| | - Christian Candrian
- Unità di Traumatologia e Ortopedia, Ente Ospedaliero Cantonale, via Tesserete 46, Lugano, 6900, SWITZERLAND
| | - Luigi Ambrosio
- Institute of Polymers Composites and Biomaterials National Research Council, Viale Kennedy, Pozzuoli, Campania, 80078, ITALY
| | - Matteo Moretti
- Regenerative Medicine Technologies Laboratory, Repubblica e Cantone Ticino Ente Ospedaliero Cantonale, Via Francesco Chiesa 5, Bellinzona, Ticino, 6500, SWITZERLAND
| |
Collapse
|
11
|
Synovial mesenchymal progenitor derived aggrecan regulates cartilage homeostasis and endogenous repair capacity. Cell Death Dis 2022; 13:470. [PMID: 35585042 PMCID: PMC9117284 DOI: 10.1038/s41419-022-04919-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
Aggrecan is a critical component of the extracellular matrix of all cartilages. One of the early hallmarks of osteoarthritis (OA) is the loss of aggrecan from articular cartilage followed by degeneration of the tissue. Mesenchymal progenitor cell (MPC) populations in joints, including those in the synovium, have been hypothesized to play a role in the maintenance and/or repair of cartilage, however, the mechanism by which this may occur is unknown. In the current study, we have uncovered that aggrecan is secreted by synovial MPCs from healthy joints yet accumulates inside synovial MPCs within OA joints. Using human synovial biopsies and a rat model of OA, we established that this observation in aggrecan metabolism also occurs in vivo. Moreover, the loss of the "anti-proteinase" molecule alpha-2 macroglobulin (A2M) inhibits aggrecan secretion in OA synovial MPCs, whereas overexpressing A2M rescues the normal secretion of aggrecan. Using mice models of OA and cartilage repair, we have demonstrated that intra-articular injection of aggrecan into OA joints inhibits cartilage degeneration and stimulates cartilage repair respectively. Furthermore, when synovial MPCs overexpressing aggrecan were transplanted into injured joints, increased cartilage regeneration was observed vs. wild-type MPCs or MPCs with diminished aggrecan expression. Overall, these results suggest that aggrecan secreted from joint-associated MPCs may play a role in tissue homeostasis and repair of synovial joints.
Collapse
|
12
|
Ferreira NDR, Sanz CK, Raybolt A, Pereira CM, DosSantos MF. Action of Hyaluronic Acid as a Damage-Associated Molecular Pattern Molecule and Its Function on the Treatment of Temporomandibular Disorders. FRONTIERS IN PAIN RESEARCH 2022; 3:852249. [PMID: 35369538 PMCID: PMC8971669 DOI: 10.3389/fpain.2022.852249] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The temporomandibular joint is responsible for fundamental functions. However, mechanical overload or microtraumas can cause temporomandibular disorders (TMD). In addition to external factors, it is known that these conditions are involved in complex biological mechanisms, such as activation of the immune system, activation of the inflammatory process, and degradation of extracellular matrix (ECM) components. The ECM is a non-cellular three-dimensional macromolecular network; its most studied components is hyaluronic acid (HA). HA is naturally found in many tissues, and most of it has a high molecular weight. HA has attributed an essential role in the viscoelastic properties of the synovial fluid and other tissues. Additionally, it has been shown that HA molecules can contribute to other mechanisms in the processes of injury and healing. It has been speculated that the degradation product of high molecular weight HA in healthy tissues during injury, a low molecular weight HA, may act as damage-associated molecular patterns (DAMPs). DAMPs are multifunctional and structurally diverse molecules that play critical intracellular roles in the absence of injury or infection. However, after cellular damage or stress, these molecules promote the activation of the immune response. Fragments from the degradation of HA can also act as immune response activators. Low molecular weight HA would have the ability to act as a pro-inflammatory marker, promoting the activation and maturation of dendritic cells, the release of pro-inflammatory cytokines such as interleukin 1 beta (IL-1β), and tumor necrosis factor α (TNF-α). It also increases the expression of chemokines and cell proliferation. Many of the pro-inflammatory effects of low molecular weight HA are attributed to its interactions with the activation of toll-like receptors (TLRs 2 and 4). In contrast, the high molecular weight HA found in healthy tissues would act as an anti-inflammatory, inhibiting cell growth and differentiation, decreasing the production of inflammatory cytokines, and reducing phagocytosis by macrophages. These anti-inflammatory effects are mainly attributed to the interaction of high-weight HA with the CD44 receptor. In this study, we review the action of the HA as a DAMP and its functions on pain control, more specifically in orofacial origin (e.g., TMD).
Collapse
Affiliation(s)
- Natália dos Reis Ferreira
- Faculty of Medicine, Institute of Occlusion and Orofacial Pain, University of Coimbra, Coimbra, Portugal
| | - Carolina Kaminski Sanz
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Engenharia Metalúrgica e de Materiais, COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Aline Raybolt
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cláudia Maria Pereira
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcos Fabio DosSantos
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Odontologia (PPGO), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Marcos Fabio DosSantos ;
| |
Collapse
|
13
|
Armington S, Shah Y, Dobson J, Allen K. A Novel Device for the Quantification of Synovial Fluid Viscosity via Magnetic Deflection. J Biomech Eng 2022; 144:1135614. [PMID: 35147159 PMCID: PMC8990741 DOI: 10.1115/1.4053794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 11/08/2022]
Abstract
Changes in synovial fluid viscosity may be used to detect joint disease; however, methods to evaluate these changes at the point of care are rudimentary. Previously, we demonstrated magnetic particle translation through synovial fluid could serve as a surrogate marker of synovial fluid mechanics. In this work, the relationship of magnetic deflection of a stream of particles is examined in relation to synovial fluid mechanics. A flow device was designed to assess the deflection of a magnetic particle stream as it flows past a fixed permanent magnet. Deflection is recorded via a camera, measuring the deflection distance of the particle stream at a given distance. Theoretically, as fluid viscosity decreases, the deflection of the particle stream should increase. To validate this approach, particle deflection was first measured in Newtonian glycerol solutions of varying viscosity under different flow conditions. Next, the device was used to test synovial fluid viscosity in bovine synovial fluid that was progressively degraded using ultrasonication. A strong correlation was observed between the deflection of the magnetic particles and the viscosity of the glycerol solutions (R2=0.987) and the degradation of synovial fluid (R2=0.7045). Moreover, this approach does not require particles to be separated from the fluid for quantification and serves as a proof-of-principle for future lab-on-a-chip assessments of synovial fluid biomechanics.
Collapse
Affiliation(s)
- Samuel Armington
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Yash Shah
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
| | - Jon Dobson
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States; Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
| | - Kyle Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Chen M, Yu P, Xing J, Wang Y, Ren K, Zhou G, Luo J, Xie J, Li J. Gellan gum modified hyaluronic acid hydrogel as viscosupplement with lubrication maintenance and enzymatic resistance. J Mater Chem B 2022; 10:4479-4490. [PMID: 35613532 DOI: 10.1039/d2tb00421f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteoarthritis (OA) is a common disease caused by damage to articular cartilage and underlying bone tissues. Early OA can be treated by intra-articular injection of viscosupplements to restore the lost...
Collapse
Affiliation(s)
- Meilin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jiaqi Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yutong Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Kai Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Guangwu Zhou
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
15
|
Webner D, Huang Y, Hummer CD. Intraarticular Hyaluronic Acid Preparations for Knee Osteoarthritis: Are Some Better Than Others? Cartilage 2021; 13:1619S-1636S. [PMID: 34044600 PMCID: PMC8808930 DOI: 10.1177/19476035211017320] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE This literature review summarizes evidence on the safety and efficacy of intraarticular hyaluronic acid (IAHA) preparations approved in the United States for the treatment of osteoarthritis of the knee. DESIGN A systematic literature search was performed in PubMed, Ovid MEDLINE, and SCOPUS databases. Only studies in which clinical outcomes of individual IAHA preparations alone could be assessed when compared to placebo, no treatment, other standard knee osteoarthritis treatments, and IAHA head-to-head studies were selected. RESULTS One hundred nine articles meeting our inclusion criteria were identified, including 59 randomized and 50 observational studies. Hylan G-F 20 has been the most extensively studied preparation, with consistent results confirming efficacy in placebo-controlled studies. Efficacy is also consistently reported for Supartz, Monovisc, and Euflexxa, but not for Hyalgan, Orthovisc, and Durolane. In the head-to-head trials, high-molecular-weight (MW) Hylan G-F 20 was consistently superior to low MW sodium hyaluronate preparations (Hyalgan, Supartz) up to 20 weeks, whereas one study reported that Durolane was noninferior to Supartz. Head-to-head trials comparing high versus medium MW preparations all used Hylan G-F 20 as the high MW preparation. Of the IAHA preparations with strong evidence of efficacy in placebo-controlled studies, Euflexxa was found to be noninferior to Hylan G-F 20. There are no direct comparisons to Monovisc. One additional IAHA preparation (ie, Synovial), which has not been assessed in placebo-controlled studies, was also noninferior to Hylan G-F 20. CONCLUSION IAHA efficacy varies widely across preparations. High-quality studies are required to assess and compare the safety and efficacy of IAHA preparations.
Collapse
Affiliation(s)
- David Webner
- Crozer-Keystone Health System,
Springfield, PA, USA,David Webner, Crozer-Keystone Health
System, 196 W. Sproul Road, Suite 110, Springfield, PA 19064, USA.
| | - Yili Huang
- Northwell Health, Zucker School of
Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | | |
Collapse
|
16
|
Hwang JW, Chawla D, Han G, Eriten M, Henak CR. Effects of solvent osmolarity and viscosity on cartilage energy dissipation under high-frequency loading. J Mech Behav Biomed Mater 2021; 126:105014. [PMID: 34871958 DOI: 10.1016/j.jmbbm.2021.105014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 11/27/2021] [Indexed: 01/16/2023]
Abstract
Articular cartilage is a spatially heterogeneous, dissipative biological hydrogel with a high fluid volume fraction. Although energy dissipation is important in the context of delaying cartilage damage, the dynamic behavior of articular cartilage equilibrated in media of varied osmolarity and viscosity is not widely understood. This study investigated the mechanical behaviors of cartilage when equilibrated to media of varying osmolarity and viscosity. Dynamic moduli and phase shift were measured at both low (1 Hz) and high (75-300 Hz) frequency, with cartilage samples compressed to varied offset strain levels. Increasing solution osmolarity and viscosity both independently resulted in larger energy dissipation and decreased dynamic modulus of cartilage at both low and high frequency. Mechanical property alterations induced by varying osmolarity are likely due to the change in permeability and fluid volume fraction within the tissue. The effects of solution viscosity are likely due to frictional interactions at the solid-fluid interface, affecting energy dissipation. These findings highlight the significance of interstitial fluid on the energy dissipation capabilities of the tissue, which can influence the onset of cartilage damage.
Collapse
Affiliation(s)
- Jin Wook Hwang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Dipul Chawla
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Guebum Han
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Melih Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Corinne R Henak
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
17
|
Safety and efficacy of a single intra-articular injection of a novel enhanced protein solution (JTA-004) compared to hylan G-F 20 in symptomatic knee osteoarthritis: a randomized, double-blind, controlled phase II/III study. BMC Musculoskelet Disord 2021; 22:888. [PMID: 34666767 PMCID: PMC8527807 DOI: 10.1186/s12891-021-04750-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/03/2021] [Indexed: 11/14/2022] Open
Abstract
Background New minimally invasive treatments are vital to delay joint replacement surgery in patients with knee osteoarthritis. This study was designed to select the most effective among three formulations of an enhanced protein solution containing clonidine, hyaluronic acid, and human plasma (JTA-004), and compare the safety and efficacy of intra-articular administration of the selected formulation with a reference treatment (hyaluronic acid) in symptomatic knee osteoarthritis patients. Methods In this two-stage, double-blind, phase II/III study conducted in 12 Belgian centers, 50–79-year-old patients with primary knee osteoarthritis were randomized (1:1:1:1) to receive one dose of one of three JTA-004 formulations (differing in clonidine concentration [50 or 100 μg/ml] and volume [2 or 4 ml]) or the reference treatment (hylan G-F 20). Patients were evaluated using Western Ontario McMaster Universities (WOMAC®) Scores and the Short-Form health survey up to 6 months post-injection (Month 6). Drug consumption and safety were evaluated. Results Among 164 treated patients, 147 completed the study. The JTA-004 formulation containing 200 μg clonidine and 20 mg hyaluronic acid in 2 ml (JTA-200/2) was selected based on interim results at Month 6. The difference in adjusted mean change in WOMAC Pain Subscale Score from baseline (JTA-200/2 minus reference group) at Month 6 was − 9.49 mm; statistical superiority of JTA-200/2 over the reference was not demonstrated. No statistically significant differences in adjusted mean changes from baseline between JTA-200/2 and reference groups were observed for Pain, Physical Function and Stiffness Subscales WOMAC Scores, Total WOMAC Score, and Well-being Score at any timepoint, although JTA-200/2 induced larger improvements in WOMAC Scores than the reference. Statistically significantly larger improvements in WOMAC Pain Subscale Scores for JTA-004 versus the reference were observed in post-hoc analyses on pooled data from all JTA-004 formulations at Month 6 (p = 0.030) and Month 3 (p = 0.014). All JTA-004 formulations had clinically acceptable safety profiles. Conclusions This study provided preliminary evidence of the safety of intra-articular injection of JTA-004 in knee osteoarthritis patients. Phase III randomized controlled trials with larger sample sizes are needed to evaluate the efficacy of JTA-004 in knee osteoarthritis. Trial registration Clinicaltrials.gov/identifier NCT02740231; clinicaltrialsregister.eu/identifier 2015–002117-30. Retrospectively registered 13/4/2016. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04750-3.
Collapse
|
18
|
Moll CJ, Giubertoni G, van Buren L, Versluis J, Koenderink GH, Bakker HJ. Molecular Structure and Surface Accumulation Dynamics of Hyaluronan at the Water-Air Interface. Macromolecules 2021; 54:8655-8663. [PMID: 34602653 PMCID: PMC8482758 DOI: 10.1021/acs.macromol.1c00366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 11/30/2022]
Abstract
![]()
Hyaluronan is a biopolymer
that is essential for many biological
processes in the human body, like the regulation of tissue lubrication
and inflammatory responses. Here, we study the behavior of hyaluronan
at aqueous surfaces using heterodyne-detected vibrational sum-frequency
generation spectroscopy (HD-VSFG). Low-molecular-weight hyaluronan
(∼150 kDa) gradually covers the water–air interface
within hours, leading to a negatively charged surface and a reorientation
of interfacial water molecules. The rate of surface accumulation strongly
increases when the bulk concentration of low-molecular-weight hyaluronan
is increased. In contrast, high-molecular-weight hyaluronan (>1
MDa)
cannot be detected at the surface, even hours after the addition of
the polymer to the aqueous solution. The strong dependence on the
polymer molecular weight can be explained by entanglements of the
hyaluronan polymers. We also find that for low-molecular-weight hyaluronan
the migration kinetics of hyaluronan in aqueous media shows an anomalous
dependence on the pH of the solution, which can be explained from
the interplay of hydrogen bonding and electrostatic interactions of
hyaluronan polymers.
Collapse
Affiliation(s)
- Carolyn J Moll
- Amolf, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Giulia Giubertoni
- Amolf, Science Park 104, 1098 XG Amsterdam, The Netherlands.,Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lennard van Buren
- Amolf, Science Park 104, 1098 XG Amsterdam, The Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jan Versluis
- Amolf, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Gijsje H Koenderink
- Amolf, Science Park 104, 1098 XG Amsterdam, The Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Huib J Bakker
- Amolf, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
19
|
Vasantha Ramachandran R, Bhat R, Kumar Saini D, Ghosh A. Theragnostic nanomotors: Successes and upcoming challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1736. [PMID: 34173342 DOI: 10.1002/wnan.1736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
The idea of "fantastic voyagers" carrying out medical tasks within the human body has existed as part of popular culture for many decades. The concept revolved around a miniaturized robot that can travel inside the human body and perform complicated functions such as surgery, navigation of otherwise inaccessible biological environments, and delivery of therapeutics. Since the last decade, significant developments have occurred in this arena that are yet to enter mainstream biomedical practises. Here, we define the challenges to make this fiction into reality. We begin by chalking the journey from pills, nanoparticles, and then to micro-nanomotors. The review describes the principles, physicochemical contexts, and advantages that micro-nanomotors provide. The article then describes micro-nanomotors' obstacles such as maneuverability, in vivo imaging, toxicity, and biodistribution. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Deepak Kumar Saini
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India.,Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India.,Department of Physics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
20
|
Damen AHA, van Donkelaar CC, Cardinaels RM, Brandt JM, Schmidt TA, Ito K. Proteoglycan 4 reduces friction more than other synovial fluid components for both cartilage-cartilage and cartilage-metal articulation. Osteoarthritis Cartilage 2021; 29:894-904. [PMID: 33647390 DOI: 10.1016/j.joca.2021.02.566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The clinical success of focal metallic resurfacing implants depends largely on the friction between implant and opposing cartilage. Therefore, the present study determines the lubricating ability of the synovial fluid components hyaluronic acid (HA), proteoglycan 4 (PRG4) and a surface-active phospholipid (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC), on the articulation between cartilage and a Cobalt Chromium Molybdenum (CoCrMo) implant surface, compared with two cartilage surfaces. METHODS A ring-on-disk geometry was used to perform repeated friction measurements at physiologically relevant velocities (6 and 60 mm/s) using lubricants with an increasing number of components present. Shear measurements were performed in order to evaluate the viscosity. To ensure that it is clinically relevant to explore the effect of these components, the presence of PRG4 in synovial fluid obtained from primary and revision knee and hip implant surgeries was examined. RESULTS PRG4 in the presence of HA was found to significantly reduce the coefficient of friction for both cartilage-cartilage and cartilage-CoCrMo interface. This is relevant, as it was also demonstrated that PRG4 is still present at the time of revision surgeries. The addition of POPC had no effect for either configurations. HA increased the viscosity of the lubricating fluid by one order of magnitude, while PRG4 and POPC had no effect. CONCLUSION The present study demonstrates the importance of selecting the appropriate lubrication solution to evaluate implant materials with biotribology tests. Because PRG4 is a key component for reducing friction between cartilage and an opposing surface, developing coatings which bind PRG4 is recommended for cartilage resurfacing implants.
Collapse
Affiliation(s)
- A H A Damen
- Orthopaedic Biomechanics, Department Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| | - C C van Donkelaar
- Orthopaedic Biomechanics, Department Biomedical Engineering, Eindhoven University of Technology, the Netherlands.
| | - R M Cardinaels
- Polymer Technology, Department Mechanical Engineering, Eindhoven University of Technology, the Netherlands
| | - J-M Brandt
- 4LinesFusion Inc., London, Ontario, Canada
| | - T A Schmidt
- Department Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA
| | - K Ito
- Orthopaedic Biomechanics, Department Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| |
Collapse
|
21
|
Rothammer B, Marian M, Rummel F, Schroeder S, Uhler M, Kretzer JP, Tremmel S, Wartzack S. Rheological behavior of an artificial synovial fluid - influence of temperature, shear rate and pressure. J Mech Behav Biomed Mater 2020; 115:104278. [PMID: 33340776 DOI: 10.1016/j.jmbbm.2020.104278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/30/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
Despite the excellent clinical performance of joint replacements, wear-induced aseptic loosening is a main cause of premature implant failure. Tribological testing is usually carried out using bovine serum as an artificial synovial fluid. In order to gain new insights into the suitability to simulate human synovial fluid and provide recommendations for the conditions of tribological testing, accurate rheological measurements on the influence of temperature, shear rate and pressure on density and viscosity were performed. Thus, a temperature dependence of density and viscosity could be verified, whereas both values decreased with higher temperatures. The temperature dependency of viscosity could be approximated by an Arrhenius model. Moreover, shear-thinning characteristics could be demonstrated and fitted to a Cross model, which agreed well with investigations on human synovial fluid reported in literature. Furthermore, an anomaly of pressure dependence of viscosity was found and correlated with the behavior of water as a main constituent. At room temperature, the viscosity initially decreased to a minimum and then increased again as a function of pressure. This was no longer distinct at human body temperatures. Consequently, the present study confirms the suitability of bovine serum as a substitute synovial fluid and emphasizes the importance of realistic testing conditions in order to ensure transferability and comparability.
Collapse
Affiliation(s)
- Benedict Rothammer
- Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Max Marian
- Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | | | - Stefan Schroeder
- Laboratory of Biomechanics and Implant Research, Heidelberg University Hospital, Heidelberg, Germany.
| | - Maximilian Uhler
- Laboratory of Biomechanics and Implant Research, Heidelberg University Hospital, Heidelberg, Germany.
| | - J Philippe Kretzer
- Laboratory of Biomechanics and Implant Research, Heidelberg University Hospital, Heidelberg, Germany.
| | - Stephan Tremmel
- Engineering Design and CAD, University of Bayreuth, Bayreuth, Germany.
| | - Sandro Wartzack
- Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
22
|
The lubricating effect of iPS-reprogrammed fibroblasts on collagen-GAG scaffolds for cartilage repair applications. J Mech Behav Biomed Mater 2020; 114:104174. [PMID: 33191173 DOI: 10.1016/j.jmbbm.2020.104174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/18/2020] [Accepted: 10/23/2020] [Indexed: 11/20/2022]
Abstract
Tissue engineering products, like collagen-glycosaminoglycan scaffolds, have been successfully applied to chondrogenic defects. Inducible Pluripotent Stem cell (iPS) technology allows reprograming of somatic cells into an embryonic-like state, allowing for redifferentiation. We postulated that a fibroblast cell line (BJ cells - 'pre-iPSF') cycled through iPS reprogramming and redifferentiated into fibroblasts (post-iPSF) could lubricate collagen-glycosaminoglycan scaffolds; fibroblasts are known to produce lubricating molecules (e.g., lubricin) in the synovium. Herein, we quantified the coefficient of friction (CoF) of collagen-glycosaminoglycan scaffolds seeded with post-iPSF; tested whether cell-free scaffolds made of post-iPSF derived extracellular matrix had reduced friction vs. pre-iPSF; and assessed lubricin quantity as a possible protein responsible for lubrication. Post-iPSF seeded CG had 6- to 10-fold lower CoF versus pre-iPSF. Scaffolds consisting of a collagen and pre-/post-iPSF extracellular matrix blend outperformed these cell-seeded scaffolds (~5-fold lower CoF), yielding excellent CoF values close to synovial fluid. Staining revealed an increased presence of lubricin within post-iPSF scaffolds (confirmed by western blotting) and on the surface of iPSF-seeded collagen-glycosaminoglycan scaffolds. Interestingly, when primary cells from patient biopsy-derived fibroblasts were used, iPS reprogramming did not further reduce the already low CoF of these cells and no lubricin expression was found. We conclude that iPS reprogramming activates lubricating properties in iPS-derived cells in a source cell-specific manner. Additionally, lubricin appears to play a lubricating role, yet other proteins also contribute to lubrication. This work constitutes an important step for understanding post-iPSF lubrication of scaffolds and its potential for cartilage tissue engineering.
Collapse
|
23
|
Wang Y, Gludish DW, Hayashi K, Todhunter RJ, Krotscheck U, Johnson PJ, Cummings BP, Su J, Reesink HL. Synovial fluid lubricin increases in spontaneous canine cruciate ligament rupture. Sci Rep 2020; 10:16725. [PMID: 33028842 PMCID: PMC7542452 DOI: 10.1038/s41598-020-73270-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Lubricin is an important boundary lubricant and chondroprotective glycoprotein in synovial fluid. Both increased and decreased synovial fluid lubricin concentrations have been reported in experimental post-traumatic osteoarthritis (PTOA) animal models and in naturally occurring joint injuries in humans and animals, with no consensus about how lubricin is altered in different species or injury types. Increased synovial fluid lubricin has been observed following intra-articular fracture in humans and horses and in human late-stage osteoarthritis; however, it is unknown how synovial lubricin is affected by knee-destabilizing injuries in large animals. Spontaneous rupture of cranial cruciate ligament (RCCL), the anterior cruciate ligament equivalent in quadrupeds, is a common injury in dogs often accompanied by OA. Here, clinical records, radiographs, and synovial fluid samples from 30 dogs that sustained RCCL and 9 clinically healthy dogs were analyzed. Synovial fluid lubricin concentrations were nearly 16-fold greater in RCCL joints as compared to control joints, while IL-2, IL-6, IL-8, and TNF-α concentrations did not differ between groups. Synovial fluid lubricin concentrations were correlated with the presence of radiographic OA and were elevated in three animals sustaining RCCL injury prior to the radiographic manifestation of OA, indicating that lubricin may be a potential biomarker for early joint injury.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - David W Gludish
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Kei Hayashi
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Rory J Todhunter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Ursula Krotscheck
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Philippa J Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | | | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
24
|
Addition of High Molecular Weight Hyaluronic Acid to Fibroblast-Like Stromal Cells Modulates Endogenous Hyaluronic Acid Metabolism and Enhances Proteolytic Processing and Secretion of Versican. Cells 2020; 9:cells9071681. [PMID: 32668663 PMCID: PMC7407811 DOI: 10.3390/cells9071681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
We have examined the effect of exogenous linear chain high molecular weight hyaluronic acid (HMW HA) on endogenously synthesized hyaluronic acid (HA) and associated binding proteins in primary cultures of fibroblast-like stromal cells that were obtained by collagenase digestion of the murine peripatellar fat pad. The cultures were expanded in DMEM that was supplemented with fetal bovine serum and basic fibroblast growth factor (bFGF) then exposed to macrophage-colony-stimulating factor (MCSF) to induce macrophage properties, before activation of inflammatory pathways using E. coli lipopolysaccharide (LPS). Under all culture conditions, a significant amount of endogenously synthesized HA localized in LAMP1-positive lysosomal vesicles. However, this intracellular pool was depleted after the addition of exogenous HMW HA and was accompanied by enhanced proteolytic processing and secretion of de novo synthesized versican, much of which was associated with endosomal compartments. No changes were detected in synthesis, secretion, or proteolytic processing of aggrecan or lubricin (PRG4). The addition of HMW HA also modulated a range of LPS-affected genes in the TLR signaling and phagocytosis pathways, as well as endogenous HA metabolism genes, such as Has1, Hyal1, Hyal2, and Tmem2. However, there was no evidence for association of endogenous or exogenous HMW HA with cell surface CD44, TLR2 or TLR4 protein, suggesting that its physiochemical effects on pericelluar pH and/or ionic strength might be the primary modulators of signal transduction and vesicular trafficking by this cell type. We discuss the implications of these findings in terms of a potential in vivo effect of therapeutically applied HMW HA on the modification of osteoarthritis-related joint pathologies, such as pro-inflammatory and degradative responses of multipotent mesenchymal cells residing in the synovial membrane, the underlying adipose tissue, and the articular cartilage surface.
Collapse
|
25
|
Qiao Z, Xin M, Wang L, Li H, Wang C, Wang L, Tang T, Zhu B, Huang G, Wang Y, Zheng M, Dai K. Proteoglycan 4 predicts tribological properties of repaired cartilage tissue. Am J Cancer Res 2020; 10:2538-2552. [PMID: 32194818 PMCID: PMC7052906 DOI: 10.7150/thno.39386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/15/2019] [Indexed: 01/04/2023] Open
Abstract
Purpose: One of the essential requirements in maintaining the normal joint motor function is the perfect tribological property of the articular cartilage. Many cartilage regeneration strategies have been developed for treatment in early stages of osteoarthritis, but there is little information on how repaired articular cartilage regains durability. The identification of biomarkers that can predict wear resistant property is critical to advancing the success of cartilage regeneration therapies. Proteoglycan 4 (PRG4) is a macromolecule distributing on the chondrocyte surface that contributes to lubrication. In this study, we investigate if PRG4 expression is associated with tribological properties of regenerated cartilage, and is able to predict its wear resistant status. Methods: Two different strategies including bone marrow enrichment plus microfracture (B/BME-MFX) and microfracture alone (B-MFX) of cartilage repair in sheep were used. PRG4 expression and a series of tribological parameters on regenerated cartilage were rigorously examined and compared. Results: Highly and continuously expression of PRG4 in regenerated cartilage surface was negatively correlated with each tribological parameter (P<0.0001, respectively). Multivariate analysis showed that PRG4 expression was the key predictor that contributed to the promotion of cartilage wear resistance. Conclusion: Higher PRG4 expression in regenerated cartilage is significantly associated with wear resistance improvement. PRG4 may be useful for predicting the wear resistant status of regenerated cartilage and determining the optimal cartilage repair strategy.
Collapse
|
26
|
Johnston GCA, Wood KA, Jackson KV, Perkins NR, Zedler ST. Evaluation of the inflammatory response to two intra-articular hyaluronic acid formulations in normal equine joints. J Vet Pharmacol Ther 2019; 43:38-49. [PMID: 31660636 DOI: 10.1111/jvp.12818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 09/22/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023]
Abstract
Intra-articular (IA) hyaluronic acid (HA) is commonly used to treat equine arthritis. Inflammatory response or "joint flare" is a recognized potential side effect. However, the incidence and severity of inflammation following IA HA injection in horses is not well documented. This study compared the effects of two IA HA formulations of different molecular weight (MW) and a saline control on clinical signs and synovial fluid markers of inflammation in normal equine joints. Eight adult horses each had three healthy fetlock joints randomly assigned to treatment with either 1.4 mega Dalton HA, 0.8 mega Dalton HA or saline control once weekly for three weeks. Clinical evaluation and synovial fluid analysis were performed by blinded assessors. Outcomes of interest were lameness score, joint effusion score and synovial fluid white cell count and differential, total protein, viscosity and serum amyloid A. Joints injected with HA developed significant mild-to-moderate inflammatory responses often associated with lameness and joint effusion compared with saline control joints. The higher MW HA formulation elicited a significantly greater inflammatory response than the lower MW HA after the first injection. In HA injected joints, viscosity remained poor for the entire study. Both IA HA formulations in this study induced an inflammatory response in healthy equine joints. This may have implications for the use of HA in equine joints. The findings in this study are limited to the two HA formulations used. Further investigation of different HA formulations and the use of HA in normal and arthritic equine joints is warranted.
Collapse
Affiliation(s)
| | - Kelly A Wood
- School of Veterinary Science, University of Queensland, Gatton, Qld, Australia
| | - Karen V Jackson
- School of Veterinary Science, University of Queensland, Gatton, Qld, Australia
| | - Nigel R Perkins
- School of Veterinary Science, University of Queensland, Gatton, Qld, Australia
| | - Steven T Zedler
- School of Veterinary Science, University of Queensland, Gatton, Qld, Australia
| |
Collapse
|
27
|
Pradal C, Yakubov GE, Williams MAK, McGuckin MA, Stokes JR. Lubrication by biomacromolecules: mechanisms and biomimetic strategies. BIOINSPIRATION & BIOMIMETICS 2019; 14:051001. [PMID: 31212257 DOI: 10.1088/1748-3190/ab2ac6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biomacromolecules play a key role in protecting human biointerfaces from friction and wear, and thus enable painless motion. Biomacromolecules give rise to remarkable tribological properties that researchers have been eager to emulate. In this review, we examine how molecules such as mucins, lubricin, hyaluronic acid and other components of biotribological interfaces provide a unique set of rheological and surface properties that leads to low friction and wear. We then highlight how researchers have used some of the features of biotribological contacts to create biomimetic systems. While the brush architecture of the glycosylated molecules present at biotribological interfaces has inspired some promising polymer brush systems, it is the recent advance in the understanding of synergistic interaction between biomacromolecules that is showing the most potential in producing surfaces with a high lubricating ability. Research currently suggests that no single biomacromolecule or artificial polymer successfully reproduces the tribological properties of biological contacts. However, by combining molecules, one can enhance their anchoring and lubricating capacity, thus enabling the design of surfaces for use in biomedical applications requiring low friction and wear.
Collapse
Affiliation(s)
- Clementine Pradal
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | | | | | | | | |
Collapse
|
28
|
Kobler JB, Tynan MA, Zeitels SM, Liss AS, Gianatasio MT, Morin AA, Schmidt TA. Lubricin/proteoglycan 4 detected in vocal folds of humans and five other mammals. Laryngoscope 2019; 129:E229-E237. [PMID: 30613972 DOI: 10.1002/lary.27783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVES/HYPOTHESIS Lubricin/proteoglycan-4 (PRG4) lubricates connective tissues such as joints and tendon sheaths, enabling them to better withstand shearing and frictional forces during motion. We wondered whether PRG4 might play a role in phonation, as normal vocal folds withstand repetitive, high-velocity deformations remarkably well. As a first step, we tested whether PRG4 is expressed in vocal folds. STUDY DESIGN Laboratory study. METHODS Anatomical and molecular methods were applied to 47 larynges from humans, macaque (Macaca fascicularis), canines, pigs, calves, and rats. Immunohistochemistry (IHC), Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) methods were used to test for the presence of PRG4. RESULTS In all species, the true vocal fold lamina propria (TVF-LP) was positive for PRG4 by IHC, whereas immunoreactivity of the false vocal fold was weak or absent, depending on the species. Human TVF-LP was strongly stained across all layers. Immunoreactivity was seen variably on the vocal fold surface and within the vocal fold epithelium, in the conus elasticus and thyroglottic ligament, and at the tip of vocal process. Western blots of four humans and six pigs demonstrated immunoreactivity at appropriate molecular weight. qRT-PCR of pig tissues confirmed PRG4 mRNA expression, which was highest in the TVF-LP. CONCLUSIONS PRG4 was found in phonatory tissues of six mammals. We suggest it might act as a lubricant within the lamina propria and possibly on the vocal fold surface, limiting phonation-related damage to vocal fold extracellular matrix and epithelium, and enhancing vocal efficiency by reducing internal friction (viscosity) within the vocal fold. LEVEL OF EVIDENCE NA Laryngoscope, 129:E229-E237, 2019.
Collapse
Affiliation(s)
- James B Kobler
- Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, U.S.A.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Monica A Tynan
- Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| | - Steven M Zeitels
- Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, U.S.A.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Andrew S Liss
- Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, U.S.A.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Maria T Gianatasio
- Cancer Center Histopathology Core, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| | - Alyssa A Morin
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| |
Collapse
|
29
|
Lázaro B, Alonso P, Rodriguez A, La Nuez M, Marzo F, Prieto JG. Characterization of the visco-elastic properties of hyaluronic acid. Biorheology 2018; 55:41-50. [DOI: 10.3233/bir-180174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Varchanis S, Dimakopoulos Y, Wagner C, Tsamopoulos J. How viscoelastic is human blood plasma? SOFT MATTER 2018; 14:4238-4251. [PMID: 29561062 DOI: 10.1039/c8sm00061a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Blood plasma has been considered a Newtonian fluid for decades. Recent experiments (Brust et al., Phys. Rev. Lett., 2013, 110) revealed that blood plasma has a pronounced viscoelastic behavior. This claim was based on purely elastic effects observed in the collapse of a thin plasma filament and the fast flow of plasma inside a contraction-expansion microchannel. However, due to the fact that plasma is a solution with very low viscosity, conventional rotational rheometers are not able to stretch the proteins effectively and thus, provide information about the viscoelastic properties of plasma. Using computational rheology and a molecular-based constitutive model, we predict accurately the rheological response of human blood plasma in strong extensional and constriction complex flows. The complete rheological characterization of plasma yields the first quantitative estimation of its viscoelastic properties in shear and extensional flows. We find that although plasma is characterized by a spectrum of ultra-short relaxation times (on the order of 10-3-10-5 s), its elastic nature dominates in flows that feature high shear and extensional rates, such as blood flow in microvessels. We show that plasma exhibits intense strain hardening when exposed to extensional deformations due to the stretch of the proteins in its bulk. In addition, using simple theoretical considerations we propose fibrinogen as the main candidate that attributes elasticity to plasma. These findings confirm that human blood plasma features bulk viscoelasticity and indicate that this non-Newtonian response should be seriously taken into consideration when examining whole blood flow.
Collapse
Affiliation(s)
- S Varchanis
- Laboratory of Fluid Mechanics & Rheology, Department of Chemical Engineering, University of Patras, Patras 26500, Greece.
| | - Y Dimakopoulos
- Laboratory of Fluid Mechanics & Rheology, Department of Chemical Engineering, University of Patras, Patras 26500, Greece.
| | - C Wagner
- Experimentalphysik, Universitat des Saarlandes, Saarbrucken 66123, Germany
| | - J Tsamopoulos
- Laboratory of Fluid Mechanics & Rheology, Department of Chemical Engineering, University of Patras, Patras 26500, Greece.
| |
Collapse
|
31
|
Optimising tear replacement rheology in canine keratoconjunctivitis sicca. Eye (Lond) 2018; 32:195-199. [PMID: 29303147 DOI: 10.1038/eye.2017.272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/08/2017] [Indexed: 12/16/2022] Open
Abstract
Dry eye is a substantial problem in a large number of human and canine patients. Numerous laboratory models for tear deficiency exist using genetically predisposed rodent models, animals treated with topical anti-muscarinics, or those kept in environments with increased air flow to produce the ocular surface changes seen in human patients. Canine keratoconjunctivitis sicca, seen in many thousands of dogs kept as companion animals, can provide a valuable spontaneous model for testing tear replacement medications that might better model disease in human patients, existing as it does in an outbred population that live in the same environments as their owners. Here the development of a crosslinked hyaluronic acid topical drop is described together with the results of trials on dogs with spontaneous keratoconjunctivitis sicca. Although hyaluronic acid in its native form in tear replacement drops shows a Newtonian rheology, the crosslinked product described here behaves in a non-Newtonian manner, with the same shear thinning shown by the tear film itself. The crosslinked product thus shows itself as a potentially valuable tear replacement medication for the human dry eye population as well as for dogs with the same condition.
Collapse
|
32
|
Shah YY, Maldonado-Camargo L, Patel NS, Biedrzycki AH, Yarmola EG, Dobson J, Rinaldi C, Allen KD. Magnetic particle translation as a surrogate measure for synovial fluid mechanics. J Biomech 2017; 60:9-14. [PMID: 28583675 DOI: 10.1016/j.jbiomech.2017.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 11/16/2022]
Abstract
The mechanics of synovial fluid vary with disease progression, but are difficult to quantify quickly in a clinical setting due to small sample volumes. In this study, a novel technique to measure synovial fluid mechanics using magnetic nanoparticles is introduced. Briefly, microspheres embedded with superparamagnetic iron oxide nanoparticles, termed magnetic particles, are distributed through a 100μL synovial fluid sample. Then, a permanent magnet inside a protective sheath is inserted into the synovial fluid sample. Magnetic particles translate toward the permanent magnet and the percentage of magnetic particles collected by the magnet in a given time can be related to synovial fluid viscosity. To validate this relationship, magnetic particle translation was demonstrated in three phases. First, magnetic particle translation was assessed in glycerol solutions with known viscosities, demonstrating that as fluid viscosity increased, magnetic particle translation decreased. Next, the relationship between magnetic particle translation and synovial fluid viscosity was assessed using bovine synovial fluid that was progressively degenerated via ultrasonication. Here, particle collection in a given amount of time increased as fluid degenerated, demonstrating that the relationship between particle collection and fluid mechanics holds in non-Newtonian synovial fluid. Finally, magnetic particle translation was used to assess differences between healthy and OA affected joints in equine synovial fluid. Here, particle collection in a given time was higher in OA joints relative to healthy horses (p<0.001). Combined, these data demonstrate potential viability of magnetic particle translation in a clinical setting to evaluate synovial fluid mechanics in limited volumes of synovial fluid sample.
Collapse
Affiliation(s)
- Yash Y Shah
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
| | | | - Neal S Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Adam H Biedrzycki
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
| | - Elena G Yarmola
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Jon Dobson
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States; Department of Chemical Engineering, University of Florida, Gainesville, FL, United States
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.
| |
Collapse
|