1
|
Mairpady A, Mourad AHI, Mozumder MS. Accelerated Discovery of the Polymer Blends for Cartilage Repair through Data-Mining Tools and Machine-Learning Algorithm. Polymers (Basel) 2022; 14:polym14091802. [PMID: 35566970 PMCID: PMC9104973 DOI: 10.3390/polym14091802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
In designing successful cartilage substitutes, the selection of scaffold materials plays a central role, among several other important factors. In an empirical approach, the selection of the most appropriate polymer(s) for cartilage repair is an expensive and time-consuming affair, as traditionally it requires numerous trials. Moreover, it is humanly impossible to go through the huge library of literature available on the potential polymer(s) and to correlate the physical, mechanical, and biological properties that might be suitable for cartilage tissue engineering. Hence, the objective of this study is to implement an inverse design approach to predict the best polymer(s)/blend(s) for cartilage repair by using a machine-learning algorithm (i.e., multinomial logistic regression (MNLR)). Initially, a systematic bibliometric analysis on cartilage repair has been performed by using the bibliometrix package in the R program. Then, the database was created by extracting the mechanical properties of the most frequently used polymers/blends from the PoLyInfo library by using data-mining tools. Then, an MNLR algorithm was run by using the mechanical properties of the polymers, which are similar to the cartilages, as the input and the polymer(s)/blends as the predicted output. The MNLR algorithm used in this study predicts polyethylene/polyethylene-graftpoly(maleic anhydride) blend as the best candidate for cartilage repair.
Collapse
Affiliation(s)
- Anusha Mairpady
- Chemical and Petroleum Engineering Department, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Abdel-Hamid I. Mourad
- Mechanical and Aerospace Engineering Department, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mohammad Sayem Mozumder
- Chemical and Petroleum Engineering Department, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
- Correspondence:
| |
Collapse
|
2
|
Vasso M, Corona K, Capasso L, Toro G, Schiavone Panni A. Intraarticular injection of microfragmented adipose tissue plus arthroscopy in isolated primary patellofemoral osteoarthritis is clinically effective and not affected by age, BMI, or stage of osteoarthritis. J Orthop Traumatol 2022; 23:7. [PMID: 35122541 PMCID: PMC8818068 DOI: 10.1186/s10195-022-00628-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/25/2022] [Indexed: 01/08/2023] Open
Abstract
Purpose This study aimed to report the clinical and functional results of a series of patients with isolated primary patellofemoral osteoarthritis (PFOA) treated with intraarticular injection of microfragmented autologous adipose tissue plus knee arthroscopy. The results were also analyzed in relation to the age and body mas index (BMI) of patients, and to the stage of PFOA. Methods Twenty-three patients with early-to-moderate (stage 1–3 according to the Iwano classification system) PFOA who received this treatment were retrospectively analyzed, with a mean follow-up of 22.1 ± 4.2 months. Patients were assessed using the International Knee Society (IKS) knee and function and visual analog scale (VAS) scores, and relative to their capacity for climbing stairs. Differences in improvements of IKS and VAS scores in relation to age (< 60 versus ≥ 60 years), BMI (< 30 versus ≥ 30 kg/m2), and stage of PFOA (stages 1–2 versus stage 3) were finally analyzed. Results The mean IKS knee score significantly improved from 35.6 ± 14.9 points preoperatively to 61.9 ± 17.8 points at the latest follow-up, while the mean IKS function score significantly improved from 52.0 ± 14.7 points preoperatively to 82.3 ± 19.1 points at the latest follow-up. The mean VAS score significantly decreased from 8.7 ± 2.2 preoperatively to 5.2 ± 2.5 at the latest follow-up. A significant improvement in the capacity to climb stairs was found. No significant differences in improvements of IKS knee and function and VAS scores were found in relation to age, BMI, or stage of PFOA. Conclusion Intraarticular injection of microfragmented autologous adipose tissue following arthroscopic debridement significantly improved overall clinical and functional scores in patients with early or moderate isolated primary PFOA at a mean follow-up of almost 2 years. Improvements were not significantly affected by age, BMI, or stage of PFOA. Level of evidence Level IV, retrospective case series.
Collapse
Affiliation(s)
- Michele Vasso
- Multidisciplinary Department of Medico-Surgical and Dentistry Specialties, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Katia Corona
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy.
| | - Luigi Capasso
- Multidisciplinary Department of Medico-Surgical and Dentistry Specialties, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Giuseppe Toro
- Multidisciplinary Department of Medico-Surgical and Dentistry Specialties, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Alfredo Schiavone Panni
- Multidisciplinary Department of Medico-Surgical and Dentistry Specialties, "Luigi Vanvitelli" University of Campania, Naples, Italy
| |
Collapse
|
3
|
Szustak M, Gendaszewska-Darmach E. Nanocellulose-Based Scaffolds for Chondrogenic Differentiation and Expansion. Front Bioeng Biotechnol 2021; 9:736213. [PMID: 34485266 PMCID: PMC8415884 DOI: 10.3389/fbioe.2021.736213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Nanocellulose deserves special attention among the large group of biocompatible biomaterials. It exhibits good mechanical properties, which qualifies it for potential use as a scaffold imitating cartilage. However, the reconstruction of cartilage is a big challenge due to this tissue's limited regenerative capacity resulting from its lack of vascularization, innervations, and sparsely distributed chondrocytes. This feature restricts the infiltration of progenitor cells into damaged sites. Unfortunately, differentiated chondrocytes are challenging to obtain, and mesenchymal stem cells have become an alternative approach to promote chondrogenesis. Importantly, nanocellulose scaffolds induce the differentiation of stem cells into chondrocyte phenotypes. In this review, we present the recent progress of nanocellulose-based scaffolds promoting the development of cartilage tissue, especially within the emphasis on chondrogenic differentiation and expansion.
Collapse
Affiliation(s)
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
4
|
Olive M, Boyer C, Lesoeur J, Thorin C, Weiss P, Fusellier M, Gauthier O. Preliminary evaluation of an osteochondral autograft, a prosthetic implant, and a biphasic absorbable implant for osteochondral reconstruction in a sheep model. Vet Surg 2020; 49:570-581. [PMID: 31916628 PMCID: PMC7154554 DOI: 10.1111/vsu.13373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 10/11/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the ability of three implants to enhance the healing of osteochondral defects: (1) a biphasic construct composed of calcium phosphate (CaP) and chitosan/cellulosic polymer, (2) a titanium-polyurethane implant, and (3) an osteochondral autograft. STUDY DESIGN Experimental study. ANIMALS Ten adult female sheep. METHODS In five sheep, an 8-mm diameter osteochondral defect was created on the medial femoral condyle of a stifle and filled with a synthetic titanium-polyurethane implant. In five sheep, a similar defect was filled with an osteochondral autograft, and the donor site was filled with a biphasic construct combining CaP granules and a chitosan/cellulosic polymer. Sheep were monitored daily for lameness. Stifle radiographs and MRI were evaluated at 20 weeks, prior to animals being humanely killed. Surgical sites were evaluated with histology, microcomputed tomography, and scanning electron microscopy. RESULTS Clinical outcomes were satisfactory regardless of the tested biomaterials. All implants appeared in place on imaging studies. Osteointegration of prosthetic implants varied between sites, with limited ingrowth of new bone into the titanium structure. Autografts and biphasic constructs were consistently well integrated in subchondral bone. All autografts except one contained a cartilage surface, and all biphasic constructs except one partially restored hyaline cartilage surface. CONCLUSION Biphasic constructs supported hyaline cartilage and subchondral bone regeneration, although restoration of the articular cartilage was incomplete. CLINICAL IMPACT Biphasic constructs may provide an alternative treatment for osteochondral defects, offering a less invasive approach compared with autologous grafts and eliminating the requirement for a prosthetic implant.
Collapse
Affiliation(s)
- Mélanie Olive
- Department of Small Animal Surgery, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France
| | - Cécile Boyer
- University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Julie Lesoeur
- University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Chantal Thorin
- Department of Management and Statistics, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France
| | - Pierre Weiss
- University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Marion Fusellier
- Department of Small Animal Surgery, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France.,University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Olivier Gauthier
- Department of Small Animal Surgery, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France.,University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| |
Collapse
|
5
|
Correia CR, Gil S, Reis RL, Mano JF. A Closed Chondromimetic Environment within Magnetic-Responsive Liquified Capsules Encapsulating Stem Cells and Collagen II/TGF-β3 Microparticles. Adv Healthc Mater 2016; 5:1346-55. [PMID: 26990273 DOI: 10.1002/adhm.201600034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/05/2016] [Indexed: 12/19/2022]
Abstract
TGF-β3 is enzymatically immobilized by transglutaminase-2 action to poly(l-lactic acid) microparticles coated with collagen II. Microparticles are then encapsulated with stem cells inside liquified spherical compartments enfolded with a permselective shell through layer-by-layer adsorption. Magnetic nanoparticles are electrostatically bound to the multilayered shell, conferring magnetic-response ability. The goal of this study is to engineer a closed environment inside which encapsulated stem cells would undergo a self-regulated chondrogenesis. To test this hypothesis, capsules are cultured in chondrogenic differentiation medium without TGF-β3. Their biological outcome is compared with capsules encapsulating microparticles without TGF-β3 immobilization and cultured in normal chondrogenic differentiation medium containing soluble TGF-β3. Glycosaminoglycans quantification demosntrates that similar chondrogenesis levels are achieved. Moreover, collagen fibrils resembling the native extracellular matrix of cartilage can be observed. Importantly, the genetic evaluation of characteristic cartilage markers confirms the successful chondrogenesis, while hypertrophic markers are downregulated. In summary, the engineered capsules are able to provide a suitable and stable chondrogenesis environment for stem cells without the need of TGF-β3 supplementation. This kind of self-regulated capsules with softness, robustness, and magnetic responsive characteristics is expected to provide injectability and in situ fixation, which is of great advantage for minimal invasive strategies to regenerate cartilage.
Collapse
Affiliation(s)
- Clara R. Correia
- 3B's Research Group - Biomaterials Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| | - Sara Gil
- 3B's Research Group - Biomaterials Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| | - João F. Mano
- 3B's Research Group - Biomaterials Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| |
Collapse
|
6
|
Jiang H, Pan V, Vivek S, Weeks ER, Ke Y. Programmable DNA Hydrogels Assembled from Multidomain DNA Strands. Chembiochem 2016; 17:1156-62. [PMID: 26888015 DOI: 10.1002/cbic.201500686] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 01/09/2023]
Abstract
Hydrogels are important in biological and medical applications, such as drug delivery and tissue engineering. DNA hydrogels have attracted significant attention due to the programmability and biocompatibility of the material. We developed a series of low-cost one-strand DNA hydrogels self-assembled from single-stranded DNA monomers containing multiple palindromic domains. This new hydrogel design is simple and programmable. Thermal stability, mechanical properties, and loading capacity of these one-strand DNA hydrogels can be readily regulated by simply adjusting the DNA domains.
Collapse
Affiliation(s)
- Huiling Jiang
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, 1760 Haygood Drive, Atlanta, Georgia, 30322, USA
| | - Victor Pan
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, 1760 Haygood Drive, Atlanta, Georgia, 30322, USA
| | - Skanda Vivek
- Emory University, Department of Physics, 400 Dowman Drive, Atlanta, GA, 30322-2430, USA
| | - Eric R Weeks
- Emory University, Department of Physics, 400 Dowman Drive, Atlanta, GA, 30322-2430, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, 1760 Haygood Drive, Atlanta, Georgia, 30322, USA.
| |
Collapse
|