1
|
Han Y, Chang J, Lin L, Zhou C, Zhu J, Wu H, He J, Fu W. miR-100 rs1834306 a > G polymorphism decreases neuroblastoma risk in Chinese children. Cancer Rep (Hoboken) 2023; 6:e1875. [PMID: 37503828 PMCID: PMC10598254 DOI: 10.1002/cnr2.1875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Neuroblastoma is a common malignant tumor stemming from the sympathetic nervous system in children, which is often life-threatening. The genetics of neuroblastoma remains unclear. Studies have shown that miRNAs participate in the regulation of a broad spectrum of biological pathways. The abnormity in the miRNA is associated with the risk of various cancers, including neuroblastoma. However, research on the relationship of miRNA polymorphisms with neuroblastoma susceptibility is still in the initial stage. METHODS In this research, a retrospective case-control study was conducted to explore whether miR-100 rs1834306 A > G polymorphism is associated with neuroblastoma susceptibility. We enrolled 402 cases and 473 controls for the study. The logistic regression analysis was adopted to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between miR-100 rs1834306 A > G and neuroblastoma risk. RESULTS Our results elucidated that the miR-100 rs1834306 A > G polymorphism was associated with the decreased risk of neuroblastoma (AG versus AA: adjusted OR = 0.72, 95% CI = 0.53-0.98, and P = 0.038). The subsequent stratified analysis further found that rs1834306 AG/GG genotype reduced the risk of neuroblastoma in the subgroup with tumors of the mediastinum origin (adjusted OR = 0.63, 95% CI = 0.41-0.95, and P = 0.029). CONCLUSIONS In summary, miR-100 rs1834306 A > G polymorphism was shown to associate with decreased neuroblastoma risk in Chinese children, especially for neuroblastoma of mediastinum origin. This conclusion needs to be verified in additional large-size case-control studies.
Collapse
Affiliation(s)
- Yufeng Han
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child HealthGuangzhouGuangdongChina
| | - Jiaming Chang
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child HealthGuangzhouGuangdongChina
| | - Lei Lin
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child HealthGuangzhouGuangdongChina
| | - Chunlei Zhou
- Department of PathologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jinhong Zhu
- Department of Clinical Laboratory, BiobankHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Haiyan Wu
- Department of PathologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jing He
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child HealthGuangzhouGuangdongChina
| | - Wen Fu
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child HealthGuangzhouGuangdongChina
| |
Collapse
|
2
|
Wang X, Chai XQ. Application of a preoperative scoring system for small liver lesions in predicting small hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2023; 31:638-646. [DOI: 10.11569/wcjd.v31.i15.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND The treatment of small hepatocellular carcinoma (SHCC) is mainly based on surgical procedures, and early treatment can significantly improve the prognosis. How to improve the diagnostic rate of SHCC in patients with small liver lesions is a challenge faced by clinical doctors. Therefore, assessing the risk of SHCC in patients with small liver lesions and taking corresponding intervention measures are crucial for prolonging patient survival.
AIM To evaluate the application value of a preoperative scoring system for small liver lesions established based on common clinical indicators in the clinical diagnosis of SHCC.
METHODS The clinical data of 243 patients with small liver lesions who underwent surgery at our hospital from November 2014 to December 2022 were retrospectively analyzed. Multivariate logistic regression analysis was used to screen the variables with significant differences between the two groups of patients, and the weights of the main risk factors were assigned according to the screened values. A preoperative scoring system for small liver lesions was established. Finally, receiver operating characteristic curve (ROC) analysis was performed to evaluate its efficacy in the diagnosis of SHCC.
RESULTS Logistic regression analysis showed that four variables, including viral hepatitis, cirrhosis, preoperative AFP level elevation, and imaging diagnosis of malignant tumor, were significantly associated with the occurrence of SHCC (P < 0.05). ROC analysis showed that the accuracy of the preoperative scoring system for small liver lesions in the diagnosis of malignant tumors was 0.864, and the cut-off value was 3.5. Based on the distribution of scores and ROC analysis results of the two groups of patients, the risk of developing SHCC in patients can be graded and analyzed.
CONCLUSION The preoperative scoring system of small liver lesions has good efficacy for early diagnosis of benign and malignant small liver lesions.
Collapse
Affiliation(s)
- Xi Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xin-Qun Chai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
3
|
Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Włodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol 2022; 12:965231. [PMID: 36158660 PMCID: PMC9492973 DOI: 10.3389/fonc.2022.965231] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
MiRNAs are short non-coding RNAs that regulate gene expression post-transcriptionally contributing to the development of different diseases including cancer. The miR-200 family consists of five members, miR-200a, miR-200b, miR-200c, miR-141, and miR-429. Their expression is dysregulated in cancer tissue and their level is altered in the body fluids of cancer patients. Moreover, the levels of miR-200 family members correlate with clinical parameters such as cancer patients' survival which makes them potentially useful as diagnostic and prognostic biomarkers. MiRNAs can act as either oncomiRs or tumor suppressor miRNAs depending on the target genes and their role in the regulation of key oncogenic signaling pathways. In most types of cancer, the miR-200 family acts as tumor suppressor miRNA and regulates all features of cancer. In this review, we summarized the expression pattern of the miR-200 family in different types of cancer and their potential utility as biomarkers. Moreover, we comprehensively described the role of miR-200 family members in the regulation of all hallmarks of cancer proposed by Hanahan and Weinberg with the focus on the epithelial-mesenchymal transition, invasiveness, and metastasis of tumor cells.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
4
|
Circulating MicroRNAs as a Tool for Diagnosis of Liver Disease Progression in People Living with HIV-1. Viruses 2022; 14:v14061118. [PMID: 35746590 PMCID: PMC9227922 DOI: 10.3390/v14061118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that post-transcriptionally regulate gene expression by binding specific cell mRNA targets, preventing their translation. miRNAs are implicated in the regulation of important physiological and pathological pathways. Liver disease, including injury, fibrosis, metabolism dysregulation, and tumor development disrupts liver-associated miRNAs. In addition to their effect in the originating tissue, miRNAs can also circulate in body fluids. miRNA release is an important form of intercellular communication that plays a role in the physiological and pathological processes underlying multiple diseases. Circulating plasma levels of miRNAs have been identified as potential disease biomarkers. One of the main challenges clinics face is the lack of available noninvasive biomarkers for diagnosing and predicting the different stages of liver disease (e.g., nonalcoholic fatty liver disease and nonalcoholic steatohepatitis), particularly among individuals infected with human immunodeficiency virus type 1 (HIV-1). Liver disease is a leading cause of death unrelated to acquired immunodeficiency syndrome (AIDS) among people living with HIV-1 (PLWH). Here, we review and discuss the utility of circulating miRNAs as biomarkers for early diagnosis, prognosis, and assessment of liver disease in PLWH. Remarkably, the identification of dysregulated miRNA expression may also identify targets for new therapeutics.
Collapse
|
5
|
Bioinformatics Methods Reveal the Biomarkers and the miRNA-mRNA Network in Hepatocellular Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9963096. [PMID: 35340237 PMCID: PMC8942659 DOI: 10.1155/2022/9963096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) has threatened the health of humans, and few therapeutic strategies can completely uproot this illness. Bioinformatics methods have been widely used for investigating the pathological mechanisms of disease. In this study, datasets including GSE20077 and GSE108724, obtained from the Gene Expression Omnibus (GEO) database, were used for investigating the biomarker and molecular mechanism of HCC. The differentially expressed genes (DEGs) in the datasets were identified, and the targets of the miRNAs were searched in the miRDIP and miRNET databases. Enrichment analysis was performed for delving the molecular mechanism of DEGs, and protein-protein interaction (PPI) networks and miRNA-mRNA networks were used to reveal the hub nodes and the related interaction relationships. Moreover, the expression and diagnostic values of hub nodes were analyzed with the GEPIA2 database. The results showed that 53 upregulated miRNAs and 48 downregulated miRNAs were found in GSE20077, and 55 upregulated miRNAs and 69 downregulated miRNAs were found in GSE108724. Moreover, seven common miRNAs including miR-146b-5p, miR-338-3p, miR-375, miR-502-3p, miR-532-3p, miR-532-5p, and miR-557 were found in the datasets. The targets of the common miRNAs were related with the P53, HIF1, Wnt, and NF-κB pathways. Besides, YWHAZ and CDC42 were identified as the hub nodes and served as the downstream targets of miR-375-3p. The GEPIA2 database showed that YWHAZ and CDC42 were related with the survival rate of the patients. In conclusion, this study suggests that miR-375-3p functions as a tumor suppressor which could inhibit the progression of HCC via targeting YWHAZ and CDC42.
Collapse
|
6
|
Lv XF, Zhang AQ, Liu WQ, Zhao M, Li J, He L, Cheng L, Sun YF, Qin G, Lu P, Ji YH, Ji JL. Liver injury changes the biological characters of serum small extracellular vesicles and reprograms hepatic macrophages in mice. World J Gastroenterol 2021; 27:7509-7529. [PMID: 34887646 PMCID: PMC8613741 DOI: 10.3748/wjg.v27.i43.7509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Serum small extracellular vesicles (sEVs) and their small RNA (sRNA) cargoes could be promising biomarkers for the diagnosis of liver injury. However, the dynamic changes in serum sEVs and their sRNA components during liver injury have not been well characterized. Given that hepatic macrophages can quickly clear intravenously injected sEVs, the effect of liver injury-related serum sEVs on hepatic macrophages deserves to be explored.
AIM To identify the characteristics of serum sEVs and the sRNAs during liver injury and explore their effects on hepatic macrophages.
METHODS To identify serum sEV biomarkers for liver injury, we established a CCL4-induced mouse liver injury model in C57BL/6 mice to simulate acute liver injury (ALI), chronic liver injury (CLI) and recovery. Serum sEVs were obtained and characterized by transmission electron microscopy and nanoparticle tracking analysis. Serum sEV sRNAs were profiled by sRNA sequencing. Differentially expressed microRNAs (miRNAs) were compared to mouse liver-enriched miRNAs and previously reported circulating miRNAs related to human liver diseases. The biological significance was evaluated by Ingenuity Pathway Analysis of altered sEV miRNAs and conditioned cultures of ALI serum sEVs with primary hepatic macrophages.
RESULTS We found that both ALI and CLI changed the concentration and morphology of serum sEVs. The proportion of serum sEV miRNAs increased upon liver injury, with the liver as the primary contributor. The altered serum sEV miRNAs based on mouse studies were consistent with human liver disease-related circulating miRNAs. We established serum sEV miRNA signatures for ALI and CLI and a panel of miRNAs (miR-122-5p, miR-192-5p, and miR-22-3p) as a common marker for liver injury. The differential serum sEV miRNAs in ALI contributed mainly to liver steatosis and inflammation, while those in CLI contributed primarily to hepatocellular carcinoma and hyperplasia. ALI serum sEVs decreased both CD86 and CD206 expression in monocyte-derived macrophages but increased CD206 expression in resident macrophages in vitro.
CONCLUSION Serum sEVs acquired different concentrations, sizes, morphologies and sRNA contents upon liver injury and could change the phenotype of liver macrophages. Serum sEVs therefore have good diagnostic and therapeutic potential for liver injury.
Collapse
Affiliation(s)
- Xiu-Fang Lv
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - An-Qi Zhang
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Wei-Qi Liu
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Min Zhao
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Jing Li
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Li He
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, Jiangsu Province, China
| | - Li Cheng
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Pathology, Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, Jiangsu Province, China
| | - Yu-Feng Sun
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Gang Qin
- Nantong Institute of Liver Diseases, Nantong Third People’s Hospital, Nantong University, Nantong 226006, Jiangsu Province, China
| | - Peng Lu
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Yu-Hua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226001, Jiangsu Province, China
- Institute of Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Ju-Ling Ji
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
7
|
Franco S, Buccione D, Tural C, Martinez MA. Circulating microRNA signatures that predict liver fibrosis progression in patients with HIV-1/hepatitis C virus coinfections. AIDS 2021; 35:1355-1363. [PMID: 33813557 DOI: 10.1097/qad.0000000000002895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The lack of available biomarkers for diagnosing and predicting different stages of liver disease with a noninvasive strategy is currently one of the main challenges that clinicians are facing. Recent evidence indicates that the plasma levels of specific microRNAs (miRNAs) may be significantly altered in patients with liver injury, including those with HIV type 1 (HIV-1) infections. DESIGN/METHODS Large-scale deep sequencing analysis of small RNA expression was performed on plasma samples from 46 patients with HIV-1/hepatitis C virus (HCV) coinfections that did not exhibit liver fibrosis at the time of sampling. RESULTS A total of 1065 different miRNAs were identified. After a mean of 10.3 years, 26 out of the 46 patients developed liver fibrosis (stage F2-4) and 20 remained without signs of liver fibrosis (stage F0-1). We identified a signature of seven miRNAs: 100-5p, 192-5p, 99a-5p, 122-5p, 125b-2-3p, 1246 and 194-5p, which were highly correlated with progression to liver fibrosis. These seven miRNAs detected liver fibrosis progression with an area under the curve (AUC) of 0.910-0.806. Two miRNAs, 100-5p and 192-5p, which displayed the best AUC values, yielded a sensitivity of 88% and a specificity of 85% for detecting liver fibrosis progression. CONCLUSION Our results demonstrated that circulating miRNA levels had potential in predicting liver fibrosis progression before the clinical detection of liver fibrosis or significant clinical signs, such as elevated liver transaminases or platelets. Thus, our results might facilitate predictions of liver injury progression in patients with HIV-1-infections.
Collapse
Affiliation(s)
| | - Daniela Buccione
- Internal Medicine Department, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Cristina Tural
- Internal Medicine Department, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | | |
Collapse
|
8
|
Broermann A, Schmid R, Gabrielyan O, Sakowski M, Eisele C, Keller S, Wolff M, Baum P, Stierstorfer B, Huber J, Krämer BK, Hocher B, Streicher R, Delić D. Exosomal miRNAs as Potential Biomarkers to Monitor Phosphodiesterase 5 Inhibitor Induced Anti-Fibrotic Effects on CCl 4 Treated Rats. Int J Mol Sci 2020; 22:ijms22010382. [PMID: 33396535 PMCID: PMC7795540 DOI: 10.3390/ijms22010382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA species that are important post-transcriptional regulators of gene expression and play an important role in the pathogenesis of non-alcoholic fatty liver disease. Here, we investigated the phosphodiesterase 5 (PDE5) inhibitor induced effects on hepatic and plasma exosomal miRNA expression in CCl4-treated rats. In the present study, hepatic miRNA profiling was conducted using the Nanostring nCounter technology and mRNA profiling using RNA sequencing from PDE5 treated rats in the model of CCl4-induced liver fibrosis. To evaluate if the PDE5 inhibitor affected differentially expressed miRNAs in the liver can be detected in plasma exosomes, qRT-PCR specific assays were used. In livers from CCl4-treated rats, the expression of 22 miRNAs was significantly increased (>1.5-fold, adj. p < 0.05), whereas the expression of 16 miRNAs was significantly decreased (>1.5-fold, adj. p < 0.05). The majority of the deregulated miRNA species are implicated in fibrotic and inflammatory processes. The PDE5 inhibitor suppressed the induction of pro-fibrotic miRNAs, such as miR-99b miR-100 and miR-199a-5p, and restored levels of anti-fibrotic miR-122 and miR-192 in the liver. In plasma exosomes, we observed elevated levels of miR-99b, miR-100 and miR-142-3p after treatment with the PDE5-inhibitor compared to CCl4/Vehicle-treated. Our study demonstrated for the first time that during the development of hepatic fibrosis in the preclinical model of CCl4-induced liver fibrosis, defined aspects of miRNA regulated liver pathogenesis are influenced by PDE5 treatment. In conclusion, miRNA profiling of plasma exosomes might be used as a biomarker for NASH progression and monitoring of treatment effects.
Collapse
Affiliation(s)
- Andre Broermann
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany; (A.B.); (R.S.)
| | - Ramona Schmid
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany; (R.S.); (O.G.); (M.S.); (C.E.); (M.W.); (P.B.)
| | - Ogsen Gabrielyan
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany; (R.S.); (O.G.); (M.S.); (C.E.); (M.W.); (P.B.)
| | - Marlene Sakowski
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany; (R.S.); (O.G.); (M.S.); (C.E.); (M.W.); (P.B.)
| | - Claudia Eisele
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany; (R.S.); (O.G.); (M.S.); (C.E.); (M.W.); (P.B.)
| | - Sascha Keller
- Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany;
| | - Michael Wolff
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany; (R.S.); (O.G.); (M.S.); (C.E.); (M.W.); (P.B.)
| | - Patrick Baum
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany; (R.S.); (O.G.); (M.S.); (C.E.); (M.W.); (P.B.)
| | - Birgit Stierstorfer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany;
| | - Jochen Huber
- Clinical Operations, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany;
| | - Bernhard K. Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (B.K.K.); (B.H.)
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (B.K.K.); (B.H.)
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410078, China
| | - Ruediger Streicher
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany; (A.B.); (R.S.)
| | - Denis Delić
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany; (R.S.); (O.G.); (M.S.); (C.E.); (M.W.); (P.B.)
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (B.K.K.); (B.H.)
- Correspondence: ; Tel.: +49-7351-5414-3839; Fax: +49-7351-8314-3839
| |
Collapse
|
9
|
Wang Y, Wang F, He J, Du J, Zhang H, Shi H, Chen Y, Wei Y, Xue W, Yan J, Feng Y, Gao Y, Li D, Han J, Zhang J. miR-30a-3p Targets MAD2L1 and Regulates Proliferation of Gastric Cancer Cells. Onco Targets Ther 2019; 12:11313-11324. [PMID: 31908496 PMCID: PMC6927793 DOI: 10.2147/ott.s222854] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose This study was done to investigate the inhibition effects of miR-30a-3p on mitotic arrest deficient 2 like 1 (MAD2L1) expression and the proliferation of gastric cancer cells. Patients and methods Cluster analysis and the TCGA database were used to screen the key genes highly expressed in gastric cancer. Based on the LinkedOmics website, the correlation between the miR-30a-3p and the cell cycle-related target gene MAD2L1 in gastric cancer was analyzed. The mRNA and protein expression levels were detected with the quantitative real-time PCR and Western blot analysis. The cell proliferation and cell cycle were also detected and analyzed. Results Bioinformatics analysis showed that MAD2L1 was highly expressed in tumor tissues compared with normal tissues. Compared with normal tissues, the miR-30a-3p was significantly decreased in the gastric cancer tissues. Moreover, MAD2L1 was significantly negatively correlated with the miR-30a-3p expression. Furthermore, over-expression of miR-30a-3p decreased the expression of MAD2L1 at the protein level, which inhibited the proliferation of AGS and BGC-823 gastric cancer cells. In addition, the cell cycles of AGS and BGC-823 cells were arrested at the G0/G1 phase. Conclusion MAD2L1 is a pro-oncogene which is up-regulated in gastric cancer. The miR-30a-3p can down-regulate the MAD2L1 expression, inhibiting the proliferation of gastric cancer cells and affect the cell cycle.
Collapse
Affiliation(s)
- Yu Wang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Fenghui Wang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Jing He
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Juan Du
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Huahua Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Haiyan Shi
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Yani Chen
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Yameng Wei
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Wanjuan Xue
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Jing Yan
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Yun Feng
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Yi Gao
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Dan Li
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Jiming Han
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Jing Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| |
Collapse
|
10
|
He QL, Qin SY, Tao L, Ning HJ, Jiang HX. Prognostic value and prospective molecular mechanism of miR-100-5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples. Oncol Lett 2019; 18:6126-6142. [PMID: 31788087 PMCID: PMC6865135 DOI: 10.3892/ol.2019.10962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
The prognostic value and molecular mechanism of microRNA-100-5p (miR-100-5p) in hepatocellular carcinoma (HCC) are still unclear. To explore the prognostic value and the mechanism of miR-100-5p in HCC, the present study analyzed the results of 18 previous studies and bioinformatic datasets. The clinical significance of miR-100-5p and its targets in HCC were investigated using The Cancer Genome Atlas and the Gene Expression Omnibus, as well as relevant literature. In total, 12 online tools were used to predict the target genes of miR-100-5p. Bioinformatics analysis and Spearman correlation analysis were performed, and genomic alterations of the hub genes were evaluated. A meta-analysis with 1,258 samples revealed that miR-100-5p was significantly downregulated in HCC [standard mean difference (SMD), -0.94; 95% confidence interval (CI), -1.14 to -0.74; I2, 35.2%]. Lower miR-100-5p expression was associated with poorer clinical characteristics and a poorer prognosis for patients with HCC. Additionally, bioinformatics analysis revealed that the 'regulation of transcription', 'chromatin remodeling complex', 'transcription regulator activity', 'pathways in cancer' and 'heparan sulfate biosynthesis' were the most enriched terms. Furthermore, expression of histone deacetylase (HDAC)2, HDAC3, SHC-transforming protein 1 (SHC1), Ras-related protein Rac1 (RAC1) and E3 ubiquitin-protein ligase CBL (CBL) was negatively correlated with miR-100-5p expression. Among these, upregulated HDAC2 [hazard ratio (HR), 1.910; 95% CI, 1.309-2.787; P=0.0007], HDAC3 (HR, 1.474; 95% CI, 1.012-2.146; P=0.0435), SHC1 (HR, 1.52; 95% CI, 1.043-2.215; P=0.0281) and RAC1 (HR, 1.817; 95% CI, 1.248-2.645; P=0.0022) were associated with shorter survival. Alterations in HDAC2, SHC1, RAC1 and IGF1R were linked with a poorer outcome for HCC, and alternative splicing of SHC and RAC1 were significantly decreased and increased in HCC, respectively. In summary, the downregulation of miR-100-5p may be involved in the progression and prognosis of HCC. The upregulation of HDAC2, HDAC3, SHC1 and RAC1 may indicate a poorer survival rate for patients with HCC. Thus, miR-100-5p and these 4 potential target genes may provide novel therapeutic targets and prognostic predictors for patients with HCC.
Collapse
Affiliation(s)
- Qing-Lin He
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shan-Yu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lin Tao
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong-Jian Ning
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hai-Xing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
11
|
Jin Y, Wong YS, Goh BKP, Chan CY, Cheow PC, Chow PKH, Lim TKH, Goh GBB, Krishnamoorthy TL, Kumar R, Ng TP, Chong SS, Tan HH, Chung AYF, Ooi LLPJ, Chang JPE, Tan CK, Lee CGL. Circulating microRNAs as Potential Diagnostic and Prognostic Biomarkers in Hepatocellular Carcinoma. Sci Rep 2019; 9:10464. [PMID: 31320713 PMCID: PMC6639394 DOI: 10.1038/s41598-019-46872-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer with high mortality, due to late diagnosis and limited treatment options. Blood miRNAs, which circulate in a highly stable, cell-free form, show promise as novel potential biomarkers for early detection of HCC. Whole miRNome profiling was performed to identify deregulated miRNAs between HCC and normal healthy (NH) volunteers. These deregulated miRNAs were validated in an independent cohort of HCC, NH and chronic Hepatitis B (CHB) volunteers and finally in a 3rd cohort comprising NH, CHB, cirrhotic and HCC volunteers to evaluate miRNA changes during disease progression. The associations between circulating miRNAs and liver-damage markers, clinicopathological characteristics and survival outcomes were analysed to identify prognostic markers. Twelve miRNAs are differentially expressed between HCC and NH individuals in all three cohorts. Five upregulated miRNAs (miR-122-5p, miR-125b-5p, miR-885-5p, miR-100-5p and miR-148a-3p) in CHB, cirrhosis and HCC patients are potential biomarkers for CHB infection, while miR-34a-5p can be a biomarker for cirrhosis. Notably, four miRNAs (miR-1972, miR-193a-5p, miR-214-3p and miR-365a-3p) can distinguish HCC from other non-HCC individuals. Six miRNAs are potential prognostic markers for overall survival.
Collapse
Affiliation(s)
- Yu Jin
- Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Ye Shen Wong
- Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Brian K P Goh
- Department of Hepato-pancreato-biliary & Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Chung Yip Chan
- Department of Hepato-pancreato-biliary & Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Peng Chung Cheow
- Department of Hepato-pancreato-biliary & Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Pierce K H Chow
- Division of Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Tony K H Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - George B B Goh
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore
| | | | - Rajneesh Kumar
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Tze Pin Ng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Samuel S Chong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Hwee Huang Tan
- Blood Services Group, Health Sciences Authority, Singapore, Singapore
| | - Alexander Y F Chung
- Department of Hepato-pancreato-biliary & Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - London Lucien P J Ooi
- Department of Hepato-pancreato-biliary & Transplant Surgery, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jason P E Chang
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore
| | - Chee Kiat Tan
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore.
| | - Caroline G L Lee
- Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, Singapore. .,Duke-NUS Graduate Medical School, Singapore, Singapore. .,Department of Biochemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
12
|
Yang D, Tang S, Yang Y, Yang F, Jiang W, Liu Y, Zhang F, Fang H, Wang S, Zhang Y. Generation and Validation of miR-100 Hepatocyte-Specific Knock-Out Mice. Front Oncol 2019; 9:535. [PMID: 31293973 PMCID: PMC6606737 DOI: 10.3389/fonc.2019.00535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Inactivation of microRNA-100 (miR-100) is involved in hepatocellular carcinoma (HCC) and miR-100 behaves as a tumor suppressor. To understand miR-100 function in HCC genesis and development in vivo, we developed hepatocyte-specific miR-100 deficient mice. Methods: Mice homozygous for floxed miR-100 allele that carried the Alb-Cre transgene (miR-100flox/floxAlb -Cre+) were developed by mating miR-100flox/flox mice with Alb-Cre+/+mice. The mice tails DNA were genotyped using the primers for LoxP sites and Cre recombinase, respectively. The specific deletion of miR-100 in the livers was verified by quantitative Real-time PCR (qRT-PCR). HE-staining was performed for histology analysis. Liver function was assessed by transaminase activity. The metabolic profiles of the hepatocytes were detected using a Seahorse XFe24 extracellular flux analyzer. The direct targets of miR-100 (such as IGF1R-β, mTOR and CDC25A) and HCC related protein (SHP-2) were detected by qRT-PCR and Western blot in liver tissues. Results: The resultant homozygous knockout mice with genotype of miR-100flox/flox-Alb-Cre+ showed an 80% decrease in hepatic miR-100 expression. In adult mice, miR-100 knockout has no effect on the liver function and morphology. In aged mice, HE staining showed that miR-100 knockout caused infiltration of inflammatory cells and expansion of hepatocellular nuclei. Consistently, liver function was impaired in miR-100 knockout aged mice as indicated by increased serum AST and ALT levels. The metabolic analysis demonstrated that the miR-100 knockout hepatocytes tend to adopt glycolysis. The expressions of the miR-100 target genes, such as IGF1R-β, CDC25A and mTOR, were increased. In addition, the known HCC related protein, SHP-2 also was up-regulated in the knockout livers. Conclusions: We successfully generated a miR-100 hepatocyte-specific knock-out mouse model. The malignant transformation related to HCC were observed in aged mice. Therefore, this model is suitable for investigating the mechanism of miR-100 inactivation contributing to HCC genesis in vivo.
Collapse
Affiliation(s)
- Dong Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Sai Tang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yan Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Fan Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Wengang Jiang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yakun Liu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Fengyun Zhang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Haoshu Fang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Siying Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yuxia Zhang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Motawi TK, Mady AE, Shaheen S, Elshenawy SZ, Talaat RM, Rizk SM. Genetic variation in microRNA-100 (miR-100) rs1834306 T/C associated with Hepatitis B virus (HBV) infection: Correlation with expression level. INFECTION GENETICS AND EVOLUTION 2019; 73:444-449. [PMID: 31176032 DOI: 10.1016/j.meegid.2019.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/15/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
Circulating microRNAs (miRNAs) have a vital role in Hepatitis B virus (HBV) diagnosis and therapeutics. miR-100 was reported to be associated with various aspects of HBV biology. This study focused on a miR-100 Single Nucleotide Polymorphism (SNP) (rs1834306 T/C) and its contribution to an individual's susceptibility and prognosis of HBV infection. The effect of SNP on miR-100 expression will be also evaluated. Two hundred subjects: 100 HBV infected patients and 100 age-and-sex-matched healthy individuals served as a control group. SNP detection was performed using polymerase chain reaction technique with sequence-specific primers (PCR-SSP) method and miR-100 expression through quantitative real-time PCR (qRT-PCR). Our result showed a significant up-regulation of miR-100 expression in HBV patients versus the control group (P < .01). A positive correlation was found between viral load and elevation in miR-100 expression (r = 0.508; P < .01). Concerning miR-100 expression in different genotypes/alleles, TC genotype and T allele in coincides with a significantly elevated expression level of miR-100 (P < .001) in HBV patients than in controls. Best of our knowledge, it is the first observational prospective case-control study concerned with miR-100 (rs1834306 T/C) SNP in the Egyptian population. However, the small size of this preliminary work required more prospective investigations to confirm our data.
Collapse
Affiliation(s)
- Tarek K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Egypt.
| | - Amira E Mady
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Egypt; Pharmacy Department, National Liver Institute, Menoufia University, Egypt.
| | - Samar Shaheen
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Egypt.
| | - Soha Z Elshenawy
- Clinical Biochemistry and Molecular Diagnostics Department, National Liver Institute, Menoufia University, Egypt.
| | - Roba M Talaat
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Egypt.
| | - Sherine M Rizk
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
14
|
Plasma Level of miR-5193 As a Novel Biomarker for Diagnosis of HBV-Related Hepatocellular Carcinoma. HEPATITIS MONTHLY 2019. [DOI: 10.5812/hepatmon.84455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
15
|
Zhang H, Wang J, Wang Z, Ruan C, Wang L, Guo H. Serum miR-100 is a potential biomarker for detection and outcome prediction of glioblastoma patients. Cancer Biomark 2019; 24:43-49. [PMID: 30530966 DOI: 10.3233/cbm-181416] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huiping Zhang
- Department of Neurology, Baoji Hi-Tech People’s Hospital, Baoji, Shaanxi 721000, China
| | - Jianfeng Wang
- Department of Neurology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi 712000, China
| | - Zhanying Wang
- Department of Neurology, Xianyang Hospital of Yan’an University, Xianyang, Shaanxi 712000, China
| | - Cailian Ruan
- Medical College, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Lu Wang
- Medical College, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Hongtao Guo
- College of Physical Education, Yan’an University, Yan’an, Shaanxi 716000, China
| |
Collapse
|
16
|
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A, Tabibzadeh A, Karimzadeh M, Moghoofei M, Marjani A, Yaghoubi S, Keyvani H. microRNAs: Key players in virus-associated hepatocellular carcinoma. J Cell Physiol 2018; 234:12188-12225. [PMID: 30536673 DOI: 10.1002/jcp.27956] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Mohajeri
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Azadeh Moshtzan
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezo Marjani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Shoeleh Yaghoubi
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Keyvani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Sanchez-Mejias A, Kwon J, Chew XH, Siemens A, Sohn HS, Jing G, Zhang B, Yang H, Tay Y. A novel SOCS5/miR-18/miR-25 axis promotes tumorigenesis in liver cancer. Int J Cancer 2018; 144:311-321. [DOI: 10.1002/ijc.31857] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/14/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Avencia Sanchez-Mejias
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Junsu Kwon
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Xiao Hong Chew
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Angela Siemens
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Hye Seon Sohn
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Guo Jing
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Bin Zhang
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
- Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117597 Singapore
| |
Collapse
|
18
|
Sárközy M, Kahán Z, Csont T. A myriad of roles of miR-25 in health and disease. Oncotarget 2018; 9:21580-21612. [PMID: 29765562 PMCID: PMC5940376 DOI: 10.18632/oncotarget.24662] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Small non-coding RNAs including microRNAs (miRNAs) have been recently recognized as important regulators of gene expression. MicroRNAs play myriads of roles in physiological processes as well as in the pathogenesis of a number of diseases by translational repression or mRNA destabilization of numerous target genes. The miR-106b-25 cluster is highly conserved in vertebrates and consists of three members including miR-106b, miR-93 and miR-25. MiR-106b and miR-93 share the same seed sequences; however, miR-25 has only a similar seed sequence resulting in different predicted target mRNAs. In this review, we specifically focus on the role of miR-25 in healthy and diseased conditions. Many of miR-25 target mRNAs are involved in biological processes such as cell proliferation, differentiation, and migration, apoptosis, oxidative stress, inflammation, calcium handling, etc. Therefore, it is no surprise that miR-25 has been reported as a key regulator of common cancerous and non-cancerous diseases. MiR-25 plays an important role in the pathogenesis of acute myocardial infarction, left ventricular hypertrophy, heart failure, diabetes mellitus, diabetic nephropathy, tubulointerstitial nephropathy, asthma bronchiale, cerebral ischemia/reperfusion injury, neurodegenerative diseases, schizophrenia, multiple sclerosis, etc. MiR-25 is also a well-described oncogenic miRNA playing a crucial role in the development of many tumor types including brain tumors, lung, breast, ovarian, prostate, thyroid, oesophageal, gastric, colorectal, hepatocellular cancers, etc. In this review, our aim is to discuss the translational therapeutic role of miR-25 in common diseased conditions based on relevant basic research and clinical studies.
Collapse
Affiliation(s)
- Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Zsuzsanna Kahán
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Tamás Csont
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
19
|
Wang M, Wei C, Shi Z, Zhu J. Study on the diagnosis of small hepatocellular carcinoma caused by hepatitis B cirrhosis via multi-slice spiral CT and MRI. Oncol Lett 2017; 15:503-508. [PMID: 29375718 DOI: 10.3892/ol.2017.7313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
The present study compared the diagnostic accuracy of multi-slice spiral computed tomography (CT) and magnetic resonance imaging (MRI) on small hepatocellular carcinoma (SHCC) caused by hepatitis B cirrhosis. A total of 160 patients with hepatitis B cirrhosis were selected between January 2012 and April 2016, and 183 SHCC lesions were included in the present retrospective study. Patients were divided into the SHCC group (T stage) and the micro hepatocellular carcinoma (MHCC) group (T1 stage). There were a total of 129 SHCC lesions and 54 MHCC lesions identified. All patients underwent multiphasic CT and MRI imaging. The liver acquisition with volume acquisition (LAVA) technique was utilized for MRI. Furthermore, SPSS 20.0 was used for statistical analyses. LAVA in the arterial phase and CT in the arterial phase revealed significantly higher diagnostic rates for the diagnoses of 183 lesions. In addition, standard CT scan exhibited significantly reduced diagnostic rates in SHCC lesions. Results indicated that LAVA in the equilibrium phase had the lowest diagnostic rate in MHCC lesions, which was statistically significant (P<0.05). Overall, the diagnostic rate of CT (79.63%) for MHCC was significantly lower than that of MRI (96.29%) (P<0.05). However, the diagnostic rate of CT for SHCC (96.12%) was significantly higher than that for MHCC (79.63%) (P<0.05). MRI-LAVA in the arterial phase has the highest diagnostic rate for SHCC and MHCC. However, the diagnostic capability of MRI for MHCC lesions is superior to that of CT.
Collapse
Affiliation(s)
- Mei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Medical Imaging, The Affiliated Hospital of Taishan Medical College, Taian, Shandong 271000, P.R. China
| | - Congxin Wei
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhaojuan Shi
- Department of Medical Imaging, The Affiliated Hospital of Taishan Medical College, Taian, Shandong 271000, P.R. China
| | - Jianzhong Zhu
- Department of Medical Imaging, The Affiliated Hospital of Taishan Medical College, Taian, Shandong 271000, P.R. China
| |
Collapse
|
20
|
Wu XM, Xi ZF, Liao P, Huang HD, Huang XY, Wang C, Ma Y, Xia Q, Yao JG, Long XD. Diagnostic and prognostic potential of serum microRNA-4651 for patients with hepatocellular carcinoma related to aflatoxin B1. Oncotarget 2017; 8:81235-81249. [PMID: 29113383 PMCID: PMC5655278 DOI: 10.18632/oncotarget.16027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/18/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The serum microRNAs have been reported as potential biomarkers for hepatitis virus-related hepatocellular carcinoma (HCC); however, their role in aflatoxin B1 (AFB1)-related HCC to has not yet been evaluated. MATERIALS AND METHODS We conducted a case-control study, including 366 HCC cases and 662 controls without any evidence of tumors, to identify and assess diagnostic and prognostic potential of serum microRNAs for AFB1-related HCC. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were used to elucidate diagnostic performance, and to compare the microRNAs with α-fetoprotein (AFP) at a cutoff of 20 ng/mL (AFP20) and 400 ng/mL (AFP400). RESULTS We found 8 differentially expressed microRNAs via the microRNA array analysis; however, only microRNA-4651 was further identified to detect AFB1-positive HCC but not AFB1-negative HCC. For AFB1-positive HCC, microRNA-4651 showed higher accuracy and sensitivity than AFP400 (AUC, 0.85 vs. 0.72; Sensitivity, 78.1% vs. 43.0%). Compared to AFP20, microRNA-4651 exhibited higher potential in identifying small-size (0.68 vs. 0.84 for AUC and 36.7% vs. 75.5% for sensitivity, respectively) and early-stage HCC (0.69 vs. 0.84 for AUC and 38.7% vs. 75.7% for sensitivity, respectively). Additionally, miR-4651 was also associated with HCC prognosis (hazard risk value, 2.67 for overall survival and 3.62 for tumor recurrence analysis). CONCLUSIONS These data suggest that serum microRNA-4651 may be a useful marker for HCC diagnosis and prognosis, especially AFB1-positive cases.
Collapse
Affiliation(s)
- Xue-Min Wu
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhi-Feng Xi
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pinhu Liao
- Department of Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hong-Dong Huang
- Division of Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Ying Huang
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chao Wang
- Department of Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yun Ma
- Department of Pathology, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Guang Yao
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xi-Dai Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Circulating miR-122 and miR-200a as biomarkers for fatal liver disease in ART-treated, HIV-1-infected individuals. Sci Rep 2017; 7:10934. [PMID: 28883647 PMCID: PMC5589757 DOI: 10.1038/s41598-017-11405-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 06/23/2017] [Indexed: 02/07/2023] Open
Abstract
Liver disease is one of the main contributors to the increased levels of morbidity and mortality seen in the HIV-1-infected, ART-treated population. Circulating miRNAs, particularly those located inside extracellular vesicles, are seen as promising biomarkers for a number of human disease conditions, including liver-related diseases. Here, we show that serum levels of miR-122 and miR-200a are greater in HIV/HCV co-infected individuals compared to HIV-1 mono-infected individuals. We also show that miR-122 and miR-200a are elevated in ART-treated, HIV-1-infected individuals prior to the development of fatal liver disease, suggesting that these miRNA may have some potential clinical utility as biomarkers. While this study is hypothesis generating, it shows clearly that both miR-122 and miR-200a are promising novel biomarkers for liver disease in the ART-treated, HIV-1-infected population.
Collapse
|
22
|
MiR-200c-5p suppresses proliferation and metastasis of human hepatocellular carcinoma (HCC) via suppressing MAD2L1. Biomed Pharmacother 2017; 92:1038-1044. [PMID: 28609841 DOI: 10.1016/j.biopha.2017.05.092] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To explore the biological functions of miR-200c-5p/MAD2L1 axis on the proliferation and metastasis of human hepatocellular carcinoma (HCC) cells. METHODS The expression levels of miR-200c-5p and MAD2L1 in HCC tissues, adjacent tissues as well as HCC cell lines were detected by RT-qPCR or Western blot. The interaction between miR-200c-5p and MAD2L1 was verified by dual luciferase reporter gene system. Transfection was performed to manipulate the expression of miR-200c-5p and MAD2L1 in HCCLM3 cells. Colony formation, MTT, wound healing and Transwell assays were applied to measure the cell proliferation, migration and invasion of HCC, besides, flow cytometry analysis was also conducted to evaluate HCC cell cycle and apoptosis. RESULTS Low expression of miR-200c-5p and remarkable overexpression of MAD2L1 was uncovered in HCC tissues and cells compared with the normal. The aberrant expression of miR-200c-5p and MAD2L1 was correlated with tumor stage, adjacent organ invasion and prognosis. Direct target relationship between miR-200c-5p and MAD2L1 was confirmed by dual luciferase reporting assay. Up-regulation of miR-200c-5p downregulated MAD2L1 and suppressed the proliferation, migration, invasion and induced apoptosis and cell cycle arrest of HCC cells. Moreover, MAD2L1 promoted HCC cell viabilities and co-transfection of MAD2L1 restored the anti-tumor effects of miR-200c-5p overexpression. CONCLUSION Replenishing of miR-200c-5p inhibited the proliferation, migration and invasion of HCC cells by suppressing MAD2L1. MiR-200c-5p can serve as a prognostic indicator and a promising therapeutic target for HCC patients.
Collapse
|
23
|
Ren C, Chen H, Han C, Fu D, Wang D, Shen M. High expression of miR-16 and miR-451 predicating better prognosis in patients with gastric cancer. J Cancer Res Clin Oncol 2016; 142:2489-2496. [PMID: 27605261 DOI: 10.1007/s00432-016-2243-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the expression pattern of miR-16 and miR-451 and evaluate their prognostic value in 180 GC patients undergoing surgery. METHODS In our previous study, a panel of five circulating miRNAs (miR-16, miR-25, miR-92a, miR-451 and miR-486-5p) can be used as a potential biomarker for detecting of early-stage gastric carcinoma (GC). Tissue microarrays were constructed from 180 patients with GC after surgery. MiR-16 and miR-451 expression was detected by miRNA-locked nucleic acid in situ hybridization, and their relationship with clinicopathological parameters and overall survival was analyzed. RESULTS MiR-16 expression was decreased in 30.6 % (55/180) of GC, increased in 54.4 % (98/180) and unchanged in 15.0 % (27/180), compared with paracancerous normal tissue (P < 0.001). MiR-451 expression was decreased in 17.8 % (32/180), increased in 62.8 % (113/180) and unchanged in 19.4 % (35/180) of GC, compared with paracancerous normal tissue (P < 0.001).Univariate analysis indicated that low miR-16 and miR-451 expression, tumor stage, tumor status, node status and tumor size were significant negative prognostic predictors for overall survival in patients with GC (P < 0.001, P < 0.001, P = 0.002, P < 0.001 and P = 0.001, respectively). Multivariate regression analysis demonstrated that stage [hazard ratio (HR) 1.80; 95 % confidence interval (CI) 1.0-3.26; P = 0.05], low expression of miR-16 (HR 2.26; 95 % CI 1.51-3.40; P < 0.001) and miR-451 (HR 2.01; 95 % CI 1.36-2.96; P < 0.001) predicted shorter OS, while tumor status (HR 1.59; 95 % CI 0.73-3.48 P = 0.242), lymph node metastasis (HR 1.41; 95 % CI 0.71-2.82; P = 0.326) and tumor size (HR 1.53; 95 % CI 0.92-2.55; P = 0.099) were not. Moreover, patients with both miR-16 and miR-451 high expression have better OS than those with two miRNAs unchanged or low expression in GC tissues. Patients with both miR-16 and miR-451 high have better OS than patients with single miR-451 high expression. CONCLUSIONS High expression of miR-16 and miR-451 was associated with longer OS in GC patients. Especially patients with miR-16 and miR-451 double high expression will predict better OS. MiR-16 and miR-451 may be used as novel makers to evaluate prognosis and provide a new treatment target in GC.
Collapse
Affiliation(s)
- Chuanli Ren
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China.
- Department of Epidemiology and Biostatistics, Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Hui Chen
- Geriatric Medicine, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Chongxu Han
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China
| | - Deyuan Fu
- Breast Oncology Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Daxin Wang
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China
| | - Ming Shen
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Liu XL, Pan Q, Zhang RN, Shen F, Yan SY, Sun C, Xu ZJ, Chen YW, Fan JG. Disease-specific miR-34a as diagnostic marker of non-alcoholic steatohepatitis in a Chinese population. World J Gastroenterol 2016; 22:9844-9852. [PMID: 27956809 PMCID: PMC5124990 DOI: 10.3748/wjg.v22.i44.9844] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To assess disease-specific circulating microRNAs (miRNAs) in non-alcoholic steatohepatitis (NASH) patients. METHODS A total of 111 biopsy-proven non-alcoholic fatty liver disease (NAFLD) or chronic hepatitis B (CHB) patients and healthy controls from mainland China were enrolled to measure their serum levels of miR-122, -125b, -146b, -16, -21, -192, -27b and -34a. The correlations between serum miRNAs and histological features of NAFLD were determined. The diagnostic value of miRNA in NASH and significant fibrosis was analyzed and compared with that of cytokeratin-18 (CK-18), fibrosis-4 (FIB-4), and aspartate aminotransferase to platelet ratio index (APRI), respectively. RESULTS Circulating miR-122, -16, -192 and -34a showed differential expression levels between NAFLD and CHB patients, and miR-34a had an approximately 2-fold increase in NAFLD samples compared with that of CHB samples (P < 0.01). Serum miR-122, -192 and -34a levels were correlated with steatosis (R = 0.302, 0.323 and 0.470, respectively, P < 0.05) and inflammatory activity (R = 0.445, 0.447 and 0.517, respectively, P < 0.01); only serum miR-16 levels were associated with fibrosis (R = 0.350, P < 0.05) in patients with NAFLD. The diagnostic value of miR-34a for NASH (area under the receiver operating characteristic, 0.811, 95%CI: 0.670-0.953) was superior to that of alanine aminotransferase, CK-18, FIB-4 and APRI in NAFLD, but miR-16 showed a limited performance in the diagnosis of significant fibrosis in NASH. CONCLUSION Circulating miR-34a may serve as a disease-specific noninvasive biomarker for the diagnosis of NASH.
Collapse
|
25
|
Shen J, Wang Q, Gurvich I, Remotti H, Santella RM. Evaluating normalization approaches for the better identification of aberrant microRNAs associated with hepatocellular carcinoma. ACTA ACUST UNITED AC 2016; 2:305-315. [PMID: 28393113 DOI: 10.20517/2394-5079.2016.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM Dysregulated microRNAs (miRNAs) have been identified in hepatocellular carcinoma (HCC), but only a small proportion have been confirmed. An appropriate normalizer is crucial to determining the accuracy and reliability of data from miRNA studies. METHODS Different normalization strategies were used to validate genome-wide miRNA profiles in HCC tumor and non-tumor tissues, and to determine the consistency and discrepancy of data on dysregulated miRNAs. RESULTS Two sets of stable miRNAs (miR-30c/miR-30b and miR-30c/miR-126) were identified in HCC tissues by geNorm and NormFinder tools, respectively. The mean of global miRNAs also showed good stability for ranking the top 1-2 miRNAs, but the stabilities of the manufacturer-recommended ncRNAs controls were poor. Four panels of miRNAs were significantly associated with HCC by separately using various normalizers, and 14 miRNAs were consistently identified by three normalization strategies. Although fewer miRNAs (17-26) were dysregulated in HCC using the global mean or the 2 stable miRNAs as normalizers, perfect clustering of tissues was also obtained with only 1 to 2 misclassifications, suggesting the efficiency of the miRNA panels. Using global mean as the normalizer, the authors identified 7 miRNAs, including 2 novel (miR-324-5p and miR-550) significantly upregulated in HCC that were omitted when using 3 endogenous controls as the normalizer. CONCLUSION An optimal normalization strategy to identify biologically important miRNAs in HCC tissue studies of miRNA may be the combination of global mean and 2 stable miRNAs. Selection of appropriate normalization strategies to adjust miRNAs levels is particularly important for epidemiological studies dealing with large data sets and covering multiple experimental batches.
Collapse
Affiliation(s)
- Jing Shen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| | - Qiao Wang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| | - Irina Gurvich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| | - Helen Remotti
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
26
|
Circulating MicroRNAs: A Next-Generation Clinical Biomarker for Digestive System Cancers. Int J Mol Sci 2016; 17:ijms17091459. [PMID: 27598137 PMCID: PMC5037738 DOI: 10.3390/ijms17091459] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that post-transcriptionally regulate gene expression and play important roles in various physiological and developmental processes such as oncogenic or tumor suppressive regulators. Specific miRNA expression signatures have been identified in a number of human cancers. Cell-free miRNAs have recently been stably detected in plasma and serum (circulating miRNAs), and their presence in blood has attracted the attention of researchers due to their potential as non-invasive biomarkers. Circulating miRNAs have emerged as tumor-associated biomarkers that reflect not only the existence of early-stage tumors, but also the dynamics and status of advanced stage tumors, tumor recurrence, and drug sensitivities. This methodology for liquid biopsy may provide non-invasive and reproductive biomarkers and individualized therapeutic strategies for cancer patients. We herein review the current phase of biological and clinical research on the circulating miRNAs of solid cancers, particularly digestive tract cancers, and discuss future perspectives. The present review may be beneficial for future research on miRNAs used to detect various cancers.
Collapse
|
27
|
Liu P, Zhang H, Liang X, Ma H, Luan F, Wang B, Bai F, Gao L, Ma C. HBV preS2 promotes the expression of TAZ via miRNA-338-3p to enhance the tumorigenesis of hepatocellular carcinoma. Oncotarget 2016; 6:29048-59. [PMID: 26315112 PMCID: PMC4745710 DOI: 10.18632/oncotarget.4804] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 07/24/2015] [Indexed: 02/07/2023] Open
Abstract
Transactivators encoded by HBV, including HBx and preS2, play critical role in hepatocellular carcinoma (HCC). YAP, a downstream effector of the Hippo pathway, is involved in hepatocarcinogenesis mediated by HBx. Here, we investigated whether preS2, another transactivator encoded by HBV, regulates the Hippo pathway to promote HCC. We found that preS2 overexpression upregulated TAZ, a downstream effector of the Hippo pathway, at protein level but not at mRNA level. preS2 suppressed miRNA-338-3p expression in HCC cell lines. miRNA-338-3p mimics downregulated TAZ, while miRNA-338-3p inhibitor restored the expression of TAZ, suggesting that TAZ is a direct target of miRNA-338-3p. TAZ overexpression stimulated growth of HCC cell lines. Knockdown of TAZ dampened preS2-promoted HCC proliferation and migration. Thus, preS2 upregulates TAZ expression by repressing miRNA-338-3p. TAZ is necessary for preS2-promoted HCC proliferation and migration
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Hualin Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Hongxin Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Fang Luan
- Department of Clinical Laboratory, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250021, P.R. China
| | - Bo Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Fuxiang Bai
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
28
|
Yu G, Chen X, Chen S, Ye W, Hou K, Liang M. MiR-19a, miR-122 and miR-223 are differentially regulated by hepatitis B virus X protein and involve in cell proliferation in hepatoma cells. J Transl Med 2016; 14:122. [PMID: 27150195 PMCID: PMC4858919 DOI: 10.1186/s12967-016-0888-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 04/30/2016] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis B virus (HBV) X protein (HBx) is a type of oncogenic protein involved in the progression of hepatocellular carcinoma (HCC) via interacting with host genes. Dysregulation of microRNAs (miRNAs) has been observed in HCC. This study aimed to investigate the role of HBx protein in the regulation of miR-19a, miR-122 and miR-223, and examine if these miRNAs involve in progression of malignant hepatocytes. Methods Quantitative real time PCR (qRT-PCR) was used to measure the expression of miR-19a, miR-122 and miR-223 in patient samples and in HepG2 cells transfected with HBx or 1.3 fold HBV genome and also in HepG2.2.15 cells, which stably produces HBV. Their target mRNAs and proteins-PTEN, cyclin G1 and c-myc were measured by qRT-PCR and western blot, respectively. The effect of miR-19a, miR-122 and miR-223, and their respective target genes, on cell proliferation was analyzed using 5-ethynyl-2-deoxyuridine incorporation and MTT assay. Results MiR-19a showed an up-regulation in HBV-positive HCC patients compared to healthy controls and HBV-negative HCC patients, while miR-122 and miR-223 showed a down-regulation compared to healthy controls, and miR-122 in HBV-positive HCC patients was also down-regulated when compared to HBV-negative HCC patients. MiR-19a was found to be up-regulated in HepG2 cells transfected with HBx or 1.3 fold HBV genome, but down-regulated in HepG2.2.15 cells. MiR-122 and miR-223 were down-regulated in HBx or 1.3 fold HBV transfected HepG2 cells as well as in HepG2.2.15 cell. Their target mRNAs and corresponding proteins-PTEN was down-regulated, while cyclin G1 and c-myc were found to be up-regulated. Modulated expression of miR-19a, miR-122 and miR-223 enhanced cell proliferation of HBx-transfected HepG2 cells, and rescue experiment further showed that their target genes-PTEN, cyclin G1and c-myc involved in cell proliferation of HBx-transfected HepG2 cells. Conclusions The expression of miR-19a, miR-122 and miR-223 were differentially regulated by HBx protein, the differential expression of miR-19a, miR-122 and miR-223 plays an important role in cell proliferation of HCC. This study provides new insight into understanding how HBx protein interacts with miRNAs and subsequently regulates host function.
Collapse
Affiliation(s)
- Guifang Yu
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No.621, Gangwan Road, Huangpu District, Guangzhou, 510700, China.
| | - Xuezhu Chen
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No.621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Shudi Chen
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No.621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Weipeng Ye
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No.621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Kailian Hou
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No.621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Min Liang
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No.621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| |
Collapse
|
29
|
Van Keuren‐Jensen KR, Malenica I, Courtright AL, Ghaffari LT, Starr AP, Metpally RP, Beecroft TA, Carlson EW, Kiefer JA, Pockros PJ, Rakela J. microRNA changes in liver tissue associated with fibrosis progression in patients with hepatitis C. Liver Int 2016; 36:334-43. [PMID: 26189820 PMCID: PMC5049661 DOI: 10.1111/liv.12919] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/12/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Accumulating evidence indicates that microRNAs play a role in a number of disease processes including the pathogenesis of liver fibrosis in hepatitis C infection. Our goal is to add to the accruing information regarding microRNA deregulation in liver fibrosis to increase our understanding of the underlying mechanisms of pathology and progression. METHODS We used next generation sequencing to profile all detectable microRNAs in liver tissue and serum from patients with hepatitis C, stages F1-F4 of fibrosis. RESULTS We found altered expression of several microRNAs, in particular, miR-182, miR199a-5p, miR-200a-5p and miR-183 were found to be significantly upregulated in tissue from liver biopsies of hepatitis C patients with advanced fibrosis, stage F3 and F4, when compared with liver biopsies from patients with early fibrosis, stages F1 and F2. We also found miR-148-5p, miR-1260b, miR-122-3p and miR-378i among the microRNAs most significantly down-regulated from early to advanced fibrosis of the liver. We also sequenced the serum microRNAs; however, we were not able to detect significant changes in circulating microRNAs associated with fibrosis stage after adjusting for multiple tests. CONCLUSIONS Adding measurements of tissue microRNAs acquired during routine biopsies will continue to increase our knowledge of underlying mechanisms of fibrosis. Our goal is that these data, in combination with studies from other researchers and future long-term studies, could be used to enhance the staging accuracy of liver biopsies and expand the surveillance of patients at increased risk for cancer and progression to advanced fibrosis.
Collapse
Affiliation(s)
| | - Ivana Malenica
- NeurogenomicsTranslational Genomics Research InstitutePhoenixAZUSA
| | | | | | - Alex P. Starr
- NeurogenomicsTranslational Genomics Research InstitutePhoenixAZUSA
| | | | | | | | | | | | - Jorge Rakela
- Gastroenterology and HepatologyMayo ClinicScottsdaleAZUSA
| |
Collapse
|
30
|
Ono S, Lam S, Nagahara M, Hoon DSB. Circulating microRNA Biomarkers as Liquid Biopsy for Cancer Patients: Pros and Cons of Current Assays. J Clin Med 2015; 4:1890-907. [PMID: 26512704 PMCID: PMC4626661 DOI: 10.3390/jcm4101890] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/01/2015] [Accepted: 10/09/2015] [Indexed: 02/08/2023] Open
Abstract
An increasing number of studies have focused on circulating microRNAs (cmiRNA) in cancer patients’ blood for their potential as minimally-invasive biomarkers. Studies have reported the utility of assessing specific miRNAs in blood as diagnostic/prognostic biomarkers; however, the methodologies are not validated or standardized across laboratories. Unfortunately, there is often minimum limited overlap in techniques between results reported even in similar type studies on the same cancer. This hampers interpretation and reliability of cmiRNA as potential cancer biomarkers. Blood collection and processing, cmiRNA extractions, quality and quantity control of assays, defined patient population assessment, reproducibility, and reference standards all affect the cmiRNA assay results. To date, there is no reported definitive method to assess cmiRNAs. Therefore, appropriate and reliable methodologies are highly necessary in order for cmiRNAs to be used in regulated clinical diagnostic laboratories. In this review, we summarize the developments made over the past decade towards cmiRNA detection and discuss the pros and cons of the assays.
Collapse
Affiliation(s)
- Shigeshi Ono
- Department of Molecular Oncology, John Wayne Cancer Institute, Providence Saint John's Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404, USA.
| | - Stella Lam
- Department of Molecular Oncology, John Wayne Cancer Institute, Providence Saint John's Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404, USA.
| | - Makoto Nagahara
- Department of Molecular Oncology, John Wayne Cancer Institute, Providence Saint John's Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404, USA.
| | - Dave S B Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute, Providence Saint John's Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404, USA.
| |
Collapse
|
31
|
Dhayat SA, Hüsing A, Senninger N, Schmidt HH, Haier J, Wolters H, Kabar I. Circulating microRNA-200 Family as Diagnostic Marker in Hepatocellular Carcinoma. PLoS One 2015; 10:e0140066. [PMID: 26447841 PMCID: PMC4598187 DOI: 10.1371/journal.pone.0140066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/20/2015] [Indexed: 02/07/2023] Open
Abstract
Goals In this clinical study, we aimed to evaluate the role of circulating microRNA-200 family as a non-invasive tool to identify patients with cirrhosis-associated hepatocellular carcinoma (HCC). Background Prognosis of HCC remains poor with increasing incidence worldwide, mainly related to liver cirrhosis. So far, no reliable molecular targets exist for early detection of HCC at surgically manageable stages. Recently, we identified members of the microRNA-200 family as potential diagnostic markers of cirrhosis-associated HCC in patient tissue samples. Their value as circulating biomarkers for HCC remained undefined. Methods Blood samples and clinicopathological data of consecutive patients with liver diseases were collected prospectively. Expression of the microRNA-200 family was investigated by qRT-PCR in blood serum samples of 22 HCC patients with and without cirrhosis. Serum samples of patients with non-cancerous chronic liver cirrhosis (n = 22) and of healthy volunteers (n = 15) served as controls. Results MicroRNA-141 and microRNA-200a were significantly downregulated in blood serum of patients with HCC compared to liver cirrhosis (p<0.007) and healthy controls (p<0.002). MicroRNA-141 and microRNA-200a could well discriminate patients with cirrhosis-associated HCC from healthy volunteers with area under the receiver-operating characteristic curve (AUC) values of 0.85 and 0.82, respectively. Additionally, both microRNAs could differentiate between HCC and non-cancerous liver cirrhosis with a fair accuracy. Conclusions Circulating microRNA-200 family members are significantly deregulated in patients with HCC and liver cirrhosis. Further studies are necessary to confirm the diagnostic value of the microRNA-200 family as accurate serum marker for cirrhosis-associated HCC.
Collapse
Affiliation(s)
- Sameer A. Dhayat
- Department of General and Visceral Surgery, University Hospital Muenster, Muenster, Germany
- * E-mail:
| | - Anna Hüsing
- Department of Transplant Medicine, University Hospital Muenster, Muenster, Germany
| | - Norbert Senninger
- Department of General and Visceral Surgery, University Hospital Muenster, Muenster, Germany
| | - Hartmut H. Schmidt
- Department of Transplant Medicine, University Hospital Muenster, Muenster, Germany
| | - Jörg Haier
- Comprehensive Cancer Center Muenster, University Hospital Muenster, Muenster, Germany
| | - Heiner Wolters
- Department of General and Visceral Surgery, University Hospital Muenster, Muenster, Germany
| | - Iyad Kabar
- Department of Transplant Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
32
|
Huang YK, Yu JC. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: An update and review. World J Gastroenterol 2015; 21:9863-9886. [PMID: 26379393 PMCID: PMC4566381 DOI: 10.3748/wjg.v21.i34.9863] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/15/2015] [Accepted: 07/18/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer and the third leading cause of cancer mortality worldwide. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most popular non-coding RNAs in cancer research. To date, the roles of miRNAs and lncRNAs have been extensively studied in GC, suggesting that miRNAs and lncRNAs represent a vital component of tumor biology. Furthermore, circulating miRNAs and lncRNAs are found to be dysregulated in patients with GC compared with healthy individuals. Circulating miRNAs and lncRNAs may function as promising biomarkers to improve the early detection of GC. Multiple possibilities for miRNA secretion have been elucidated, including active secretion by microvesicles, exosomes, apoptotic bodies, high-density lipoproteins and protein complexes as well as passive leakage from cells. However, the mechanism underlying lncRNA secretion and the functions of circulating miRNAs and lncRNAs have not been fully illuminated. Concurrently, to standardize results of global investigations of circulating miRNAs and lncRNAs biomarker studies, several recommendations for pre-analytic considerations are put forward. In this review, we summarize the known circulating miRNAs and lncRNAs for GC diagnosis. The possible mechanism of miRNA and lncRNA secretion as well as methodologies for identification of circulating miRNAs and lncRNAs are also discussed. The topics covered here highlight new insights into GC diagnosis and screening.
Collapse
|