1
|
Ismail M, Fadul MM, Taha R, Siddig O, Elhafiz M, Yousef BA, Jiang Z, Zhang L, Sun L. Dynamic role of exosomal long non-coding RNA in liver diseases: pathogenesis and diagnostic aspects. Hepatol Int 2024; 18:1715-1730. [PMID: 39306594 DOI: 10.1007/s12072-024-10722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/15/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Liver disease has emerged as a significant health concern, characterized by high rates of morbidity and mortality. Circulating exosomes have garnered attention as important mediators of intercellular communication, harboring protein and stable mRNAs, microRNAs, and long non-coding RNAs (lncRNA). This review highlights the involvement of exosomal lncRNA in the pathogenesis and diagnosis of various liver diseases. Notably, exosomal lncRNAs exhibit therapeutic potential as targets for conditions including hepatic carcinoma, hepatic fibrosis, and hepatic viral infections. METHOD An online screening process was employed to identify studies investigating the association between exosomal lncRNA and various liver diseases. RESULT Our study revealed a diverse array of lncRNAs carried by exosomes, including H19, Linc-ROR, VLDLR, MALAT1, DANCR, HEIH, ENSG00000248932.1, ENST00000457302.2, ZSCAN16-AS1, and others, exhibiting varied levels across different liver diseases compared to normal liver tissue. These exosomal-derived lncRNAs are increasingly recognized as pivotal biomarkers for diagnosing and prognosticating liver diseases, supported by emerging evidence. However, the precise mechanisms underlying the involvement of certain exosomal lncRNAs remain incompletely understood. Furthermore, the combined analysis of serum exosomes using ENSG00000258332.1, LINC00635, and serum AFP may serve as novel and valuable biomarker for HCC. Clinically, exosomal ATB expression is upregulated in HCC, while exosomal HEIH and RP11-513I15.6 have shown potential for distinguishing HCC related to HCV infection. CONCLUSION The lack of reliable biomarkers for liver diseases, coupled with the high specificity and sensitivity of exosomal lncRNA and its non-invasive detection, promotes exploring their role in pathogenesis and biomarker for diagnosis, prognosis, and response to treatment liver diseases.
Collapse
Affiliation(s)
- Mohammed Ismail
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacology, Faculty of Medicine and Health Science, Dongola University, Dongola, Sudan
| | - Missaa M Fadul
- Department of Pharmacology, Faculty of Medicine and Health Science, Dongola University, Dongola, Sudan
| | - Reham Taha
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Orwa Siddig
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Muhanad Elhafiz
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
| | - Bashir A Yousef
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Zhenzhou Jiang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Luyong Zhang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- Centre for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Lixin Sun
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Vij P, Hussain MS, Satapathy SK, Cobos E, Tripathi MK. The Emerging Role of Long Noncoding RNAs in Sorafenib Resistance Within Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3904. [PMID: 39682093 DOI: 10.3390/cancers16233904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a liver cancer originating from hepatocytes, is a major health concern and among the most common malignancies worldwide. Sorafenib, approved by the U.S. F.D.A., is the primary first-line treatment for patients with advanced HCC. While the preferred first-line systemic regimen for HCC is immunotherapy with Atezolizumab plus bevacizumab or Tremelimumab-actl + durvalumab, Sorafenib is still an alternative recommended regimen. While some patients with advanced HCC may benefit from Sorafenib treatment, most eventually develop resistance, leading to poor prognosis. Long noncoding RNAs (lncRNAs) have been found to play a critical role in tumorigenesis and the development of HCC, as well as other cancers. They are also key players in tumor drug resistance, though the mechanisms of lncRNAs in Sorafenib resistance in HCC remain poorly understood. This review summarizes the molecular mechanisms contributing to Sorafenib resistance in HCC with their potential correlation with lncRNAs, including the roles of transporters, receptors, cell death regulation, and other influencing factors.
Collapse
Affiliation(s)
- Puneet Vij
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | - Mohammad Shabir Hussain
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sanjaya K Satapathy
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health Center for Liver Diseases & Transplantation, Northshore University Hospital, Manhasset, NY 11030, USA
| | - Everardo Cobos
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Manish K Tripathi
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
3
|
Saleh RO, Hamad HA, Najim MA, Menon SV, Kaur M, Sivaprasad GV, Abohassan M, Juan WT, Husseen B, Mustafa YF. Exosome-mediated Transfer of lncRNA in Liver Associated Diseases; Uncovered Truths. Cell Biochem Biophys 2024:10.1007/s12013-024-01617-x. [PMID: 39567423 DOI: 10.1007/s12013-024-01617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Exosomes are extracellular vesicles with a diameter ranging from 40 to 160 nm. They are produced by hepatocytes, cholangiocytes, hepatic stellate cells (HSCs), liver sinusoidal endothelial cells (LSECs) and Kupffer cells in liver tissue. The secretion of exosomes might vary in quantity and composition in reaction to multiple triggers and various stages of disease. They transport various payloads, such as proteins, DNAs, and RNAs, and enable cell interaction to regulate myriad physiological and pathological processes in liver tissue. Long non-coding RNAs (lncRNAs) are a crucial component of exosomes with an excellent capability to regulate multiple cellular activities such as differentiation, development, metabolism, proliferation, apoptosis, and activation. With the advancements in transcriptomic and genomic study methods and database management technology, the functions and mechanisms of exosomal lncRNAs in liver diseases have been well-studied. This article delves into the detailed role of exosomal lncRNAs in liver disease onset and progression, ranging from hepatocellular carcinoma (HCC) to liver fibrosis drug-induced liver damage (DILI) and steatotic liver diseases.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq.
| | - Hamad Ali Hamad
- Department of Pathological Analysis, Collage of Applied Sciences, University of Fallujah, Fallujah, Iraq
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Malaysia
| | | | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Wen-Tau Juan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Beneen Husseen
- Medical Laboratory Technique college, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique college, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique college, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
4
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
5
|
Żychowska J, Ćmil M, Skórka P, Olejnik-Wojciechowska J, Plewa P, Bakinowska E, Kiełbowski K, Pawlik A. The Role of Epigenetic Mechanisms in the Pathogenesis of Hepatitis C Infection. Biomolecules 2024; 14:986. [PMID: 39199374 PMCID: PMC11352264 DOI: 10.3390/biom14080986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus that can be transmitted through unsafe medical procedures, such as injections, transfusions, and dental treatment. The infection may be self-limiting or manifest as a chronic form that induces liver fibrosis, cirrhosis, or progression into hepatocellular carcinoma (HCC). Epigenetic mechanisms are major regulators of gene expression. These mechanisms involve DNA methylation, histone modifications, and the activity of non-coding RNAs, which can enhance or suppress gene expression. Abnormal activity or the dysregulated expression of epigenetic molecules plays an important role in the pathogenesis of various pathological disorders, including inflammatory diseases and malignancies. In this review, we summarise the current evidence on epigenetic mechanisms involved in HCV infection and progression to HCC.
Collapse
Affiliation(s)
- Justyna Żychowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Maciej Ćmil
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Patryk Skórka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | | | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| |
Collapse
|
6
|
Augello G, Cusimano A, Cervello M, Cusimano A. Extracellular Vesicle-Related Non-Coding RNAs in Hepatocellular Carcinoma: An Overview. Cancers (Basel) 2024; 16:1415. [PMID: 38611093 PMCID: PMC11011022 DOI: 10.3390/cancers16071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. It is a major public health problem worldwide, and it is often diagnosed at advanced stages, when no effective treatment options are available. Extracellular vesicles (EVs) are nanosized double-layer lipid vesicles containing various biomolecule cargoes, such as lipids, proteins, and nucleic acids. EVs are released from nearly all types of cells and have been shown to play an important role in cell-to-cell communication. In recent years, many studies have investigated the role of EVs in cancer, including HCC. Emerging studies have shown that EVs play primary roles in the development and progression of cancer, modulating tumor growth and metastasis formation. Moreover, it has been observed that non-coding RNAs (ncRNAs) carried by tumor cell-derived EVs promote tumorigenesis, regulating the tumor microenvironment (TME) and playing critical roles in the progression, angiogenesis, metastasis, immune escape, and drug resistance of HCC. EV-related ncRNAs can provide information regarding disease status, thus encompassing a role as biomarkers. In this review, we discuss the main roles of ncRNAs present in HCC-derived EVs, including micro(mi) RNAs, long non-coding (lnc) RNAs, and circular (circ) RNAs, and their potential clinical value as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
| | - Alessandra Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
| |
Collapse
|
7
|
Ai JH, Wen YZ, Dai SJ, Zhang LD, Huang ZJ, Shi J. Exosomal lncRNA HEIH, an essential communicator for hepatocellular carcinoma cells and macrophage M2 polarization through the miR-98-5p/STAT3 axis. J Biochem Mol Toxicol 2024; 38:e23686. [PMID: 38549433 DOI: 10.1002/jbt.23686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Part of human long noncoding RNAs (lncRNAs) has been elucidated to play an essential role in the carcinogenesis and progression of hepatocellular carcinoma (HCC), a type of malignant tumor with poor outcomes. Tumor-derived exosomes harboring lncRNAs have also been implicated as crucial mediators to orchestrate biological functions among neighbor tumor cells. The recruitment of tumor-associated macrophages (TAMs) exerting M2-like phenotype usually indicates the poor prognosis. Yet, the precise involvement of tumor-derived lncRNAs in cross-talk with environmental macrophages has not been fully identified. In this study, we reported the aberrantly overexpressed HCC upregulated EZH2-associated lncRNA (HEIH) in tumor tissues and cell lines was positively correlated with poor prognosis, as well as enriched exosomal HEIH levels in blood plasma and cell supernatants. Besides, HCC cell-derived exosomes transported HEIH into macrophages for triggering macrophage M2 polarization, thereby in turn promoting the proliferation, migration, and invasion of HCC cells. Mechanistically, HEIH acted as a miRNA sponge for miR-98-5p to up-regulate STAT3, which was then further verified in the tumor xenograft models. Collectively, our study provides the evidence for recognizing tumor-derived exosomal lncRNA HEIH as a novel regulatory function through targeting miR-98-5p/STAT3 axis in environmental macrophages, which may shed light on the complicated tumor microenvironment among tumor and immune cells for HCC treatment.
Collapse
Affiliation(s)
- Jun-Hua Ai
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| | - Yu-Zhong Wen
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| | - Shi-Jie Dai
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| | - Li-Dong Zhang
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| | - Zhong-Jing Huang
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| | - Jun Shi
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| |
Collapse
|
8
|
Ferro A, Saccu G, Mattivi S, Gaido A, Herrera Sanchez MB, Haque S, Silengo L, Altruda F, Durazzo M, Fagoonee S. Extracellular Vesicles as Delivery Vehicles for Non-Coding RNAs: Potential Biomarkers for Chronic Liver Diseases. Biomolecules 2024; 14:277. [PMID: 38540698 PMCID: PMC10967855 DOI: 10.3390/biom14030277] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 01/03/2025] Open
Abstract
In recent years, EVs have emerged as promising vehicles for coding and non-coding RNAs (ncRNAs), which have demonstrated remarkable potential as biomarkers for various diseases, including chronic liver diseases (CLDs). EVs are small, membrane-bound particles released by cells, carrying an arsenal of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and other ncRNA species, such as piRNAs, circRNAs, and tsRNAs. These ncRNAs act as key regulators of gene expression, splicing, and translation, providing a comprehensive molecular snapshot of the cells of origin. The non-invasive nature of EV sampling, typically via blood or serum collection, makes them highly attractive candidates for clinical biomarker applications. Moreover, EV-encapsulated ncRNAs offer unique advantages over traditional cell-free ncRNAs due to their enhanced stability within the EVs, hence allowing for their detection in circulation for extended periods and enabling more sensitive and reliable biomarker measurements. Numerous studies have investigated the potential of EV-enclosed ncRNAs as biomarkers for CLD. MiRNAs, in particular, have gained significant attention due to their ability to rapidly respond to changes in cellular stress and inflammation, hallmarks of CLD pathogenesis. Elevated levels of specific miRNAs have been consistently associated with various CLD subtypes, including metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), and chronic hepatitis B and C. LncRNAs have also emerged as promising biomarkers for CLD. These transcripts are involved in a wide range of cellular processes, including liver regeneration, fibrosis, and cancer progression. Studies have shown that lncRNA expression profiles can distinguish between different CLD subtypes, providing valuable insights into disease progression and therapeutic response. Promising EV-enclosed ncRNA biomarkers for CLD included miR-122 (elevated levels of miR-122 are associated with MASLD progression and liver fibrosis), miR-21 (increased expression of miR-21 is linked to liver inflammation and fibrosis in CLD patients), miR-192 (elevated levels of miR-192 are associated with more advanced stages of CLD, including cirrhosis and HCC), LncRNA HOTAIR (increased HOTAIR expression is associated with MASLD progression and MASH development), and LncRNA H19 (dysregulation of H19 expression is linked to liver fibrosis and HCC progression). In the present review, we focus on the EV-enclosed ncRNAs as promising tools for the diagnosis and monitoring of CLD of various etiologies.
Collapse
Affiliation(s)
- Arianna Ferro
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Gabriele Saccu
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Simone Mattivi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Andrea Gaido
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Maria Beatriz Herrera Sanchez
- 2i3T, Società per la Gestione Dell’incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, 10126 Turin, Italy;
- Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy; (L.S.); (F.A.)
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Lorenzo Silengo
- Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy; (L.S.); (F.A.)
| | - Fiorella Altruda
- Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy; (L.S.); (F.A.)
| | - Marilena Durazzo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Sharmila Fagoonee
- Institute for Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy
| |
Collapse
|
9
|
Latanova A, Karpov V, Starodubova E. Extracellular Vesicles in Flaviviridae Pathogenesis: Their Roles in Viral Transmission, Immune Evasion, and Inflammation. Int J Mol Sci 2024; 25:2144. [PMID: 38396820 PMCID: PMC10889558 DOI: 10.3390/ijms25042144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The members of the Flaviviridae family are becoming an emerging threat for public health, causing an increasing number of infections each year and requiring effective treatment. The consequences of these infections can be severe and include liver inflammation with subsequent carcinogenesis, endothelial damage with hemorrhage, neuroinflammation, and, in some cases, death. The mechanisms of Flaviviridae pathogenesis are being actively investigated, but there are still many gaps in their understanding. Extracellular vesicles may play important roles in these mechanisms, and, therefore, this topic deserves detailed research. Recent data have revealed the involvement of extracellular vesicles in steps of Flaviviridae pathogenesis such as transmission, immune evasion, and inflammation, which is critical for disease establishment. This review covers recent papers on the roles of extracellular vesicles in the pathogenesis of Flaviviridae and includes examples of clinical applications of the accumulated data.
Collapse
Affiliation(s)
- Anastasia Latanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.K.); (E.S.)
| | | | | |
Collapse
|
10
|
Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms. Int J Mol Sci 2024; 25:597. [PMID: 38203767 PMCID: PMC10779127 DOI: 10.3390/ijms25010597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health threat, particularly in regions endemic to hepatitis B and C viruses, and because of the ongoing pandemic of obesity causing metabolic-dysfunction-related fatty liver disease (MAFLD), a precursor to HCC. The molecular intricacies of HCC, genetic and epigenetic alterations, and dysregulated signaling pathways facilitate personalized treatment strategies based on molecular profiling. Epigenetic regulation, encompassing DNA methyltion, histone modifications, and noncoding RNAs, functions as a critical layer influencing HCC development. Long noncoding RNAs (lncRNAs) are spotlighted for their diverse roles in gene regulation and their potential as diagnostic and therapeutic tools in cancer. In this review, we explore the pivotal role of lncRNAs in HCC, including MAFLD and viral hepatitis, the most prevalent risk factors for hepatocarcinogenesis. The dysregulation of lncRNAs is implicated in HCC progression by modulating chromatin regulation and transcription, sponging miRNAs, and influencing structural functions. The ongoing studies on lncRNAs contribute to a deeper comprehension of HCC pathogenesis and offer promising routes for precision medicine, highlighting the utility of lncRNAs as early biomarkers, prognostic indicators, and therapeutic targets.
Collapse
Affiliation(s)
- Mimansha Shah
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, and VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
11
|
Owliaee I, Khaledian M, Boroujeni AK, Shojaeian A. Engineered small extracellular vesicles as a novel platform to suppress human oncovirus-associated cancers. Infect Agent Cancer 2023; 18:69. [PMID: 37915098 PMCID: PMC10621078 DOI: 10.1186/s13027-023-00549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Cancer, as a complex, heterogeneous disease, is currently affecting millions of people worldwide. Even if the most common traditional treatments, namely, chemotherapy (CTx) and radiotherapy (RTx), have been so far effective in some conditions, there is still a dire need for novel, innovative approaches to treat types of cancer. In this context, oncoviruses are responsible for 12% of all malignancies, such as human papillomavirus (HPV), Merkel cell polyomavirus (MCPyV), Epstein-Barr virus (EBV), human herpesvirus 8 (HHV-8), as well as hepatitis B virus (HBV) and hepatitis C virus (HCV), and the poorest in the world also account for 80% of all human cancer cases. Against this background, nanomedicine has developed nano-based drug delivery systems (DDS) to meet the demand for drug delivery vectors, e.g., extracellular vesicles (EVs). This review article aimed to explore the potential of engineered small EVs (sEVs) in suppressing human oncovirus-associated cancers. METHODS Our search was conducted for published research between 2000 and 2022 using several international databases, including Scopus, PubMed, Web of Science, and Google Scholar. We also reviewed additional evidence from relevant published articles. RESULTS In this line, the findings revealed that EV engineering as a new field is witnessing the development of novel sEV-based structures, and it is expected to be advanced in the future. EVs may be further exploited in specialized applications as therapeutic or diagnostic tools. The techniques of biotechnology have been additionally utilized to create synthetic bilayers based on the physical and chemical properties of parent molecules via a top-down strategy for downsizing complicated, big particles into nano-sized sEVs. CONCLUSION As the final point, EV-mediated treatments are less toxic to the body than the most conventional ones, making them a safer and even more effective option. Although many in vitro studies have so far tested the efficacy of sEVs, further research is still needed to develop their potential in animal and clinical trials to reap the therapeutic benefits of this promising platform.
Collapse
Affiliation(s)
- Iman Owliaee
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehran Khaledian
- Department of Medical Entomology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Khaghani Boroujeni
- Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Hosseini SA, Haddadi MH, Fathizadeh H, Nemati F, Aznaveh HM, Taraj F, Aghabozorgizadeh A, Gandomkar G, Bazazzadeh E. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications. Biomed Pharmacother 2023; 163:114407. [PMID: 37100014 DOI: 10.1016/j.biopha.2023.114407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/28/2023] Open
Abstract
The frequent metastasis of gastric cancer (GC) complicates the cure and therefore the development of effective diagnostic and therapeutic approaches is urgently necessary. In recent years, lncRNA has emerged as a drug target in the treatment of GC, particularly in the areas of cancer immunity, cancer metabolism, and cancer metastasis. This has led to the demonstration of the importance of these RNAs as prognostic, diagnostic and therapeutic agents. In this review, we provide an overview of the biological activities of lncRNAs in GC development and update the latest pathological activities, prognostic and diagnostic strategies, and therapeutic options for GC-related lncRNAs.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Foroogh Nemati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Farima Taraj
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - AmirArsalan Aghabozorgizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Golmaryam Gandomkar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elaheh Bazazzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
13
|
Lu X, Li Y, Li Y, Zhang X, Shi J, Feng H, Gao Y, Yu Z. Advances of multi-omics applications in hepatic precancerous lesions and hepatocellular carcinoma: The role of extracellular vesicles. Front Mol Biosci 2023; 10:1114594. [PMID: 37006626 PMCID: PMC10060991 DOI: 10.3389/fmolb.2023.1114594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Due to the lack of distinct early symptoms and specific biomarkers, most patients with hepatocellular carcinoma (HCC) are usually diagnosed at advanced stages, rendering the treatment ineffective and useless. Therefore, recognition of the malady at precancerous lesions and early stages is particularly important for improving patient outcomes. The interest in extracellular vesicles (EVs) has been growing in recent years with the accumulating knowledge of their multiple cargoes and related multipotent roles in the modulation of immune response and tumor progression. By virtue of the rapid advancement of high-throughput techniques, multiple omics, including genomics/transcriptomics, proteomics, and metabolomics/lipidomics, have been widely integrated to analyze the role of EVs. Comprehensive analysis of multi-omics data will provide useful insights for discovery of new biomarkers and identification of therapeutic targets. Here, we review the attainment of multi-omics analysis to the finding of the potential role of EVs in early diagnosis and the immunotherapy in HCC.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyao Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuemei Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Shi
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| |
Collapse
|
14
|
Malgundkar SH, Tamimi Y. Exosomes as crucial emerging tools for intercellular communication with therapeutic potential in ovarian cancer. Future Sci OA 2023; 9:FSO833. [PMID: 37006229 PMCID: PMC10051132 DOI: 10.2144/fsoa-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
More than two-thirds of epithelial ovarian cancer (EOC) patients are diagnosed at advanced stages due to the lack of sensitive biomarkers. Currently, exosomes are intensively investigated as non-invasive cancer diagnostic markers. Exosomes are nanovesicles released in the extracellular milieu with the potential to modulate recipient cells' behavior. EOC cells release many altered exosomal cargoes that exhibit clinical relevance to tumor progression. Exosomes represent powerful therapeutic tools (drug carriers or vaccines), posing a promising option in clinical practice for curing EOC in the near future. In this review, we highlight the importance of exosomes in cell–cell communication, epithelial–mesenchymal transition (EMT), and their potential to serve as diagnostic and prognostic factors, particularly in EOC.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Department of Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Department of Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| |
Collapse
|
15
|
Hu X, Ge Q, Zhang Y, Li B, Cheng E, Wang Y, Huang Y. A review of the effect of exosomes from different cells on liver fibrosis. Biomed Pharmacother 2023; 161:114415. [PMID: 36812711 DOI: 10.1016/j.biopha.2023.114415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic fibrosis (HF) is a common pathological process caused by various acute and chronic liver injury factors, which is mainly characterized by inflammation and excessive accumulation of extracellular matrix (ECM) in the liver. A better understanding of the mechanisms leading to liver fibrosis helps develop better treatments. The exosome is a crucial vesicle secreted by almost all cells, containing nucleic acids, proteins, lipids, cytokines, and other bioactive components, which play an important role in the transmission of intercellular material and information. Recent studies have shown the relevance of exosomes in the pathogenesis of hepatic fibrosis, and exosomes dominate an essential role in hepatic fibrosis. In this review, we systematically analyze and summarize exosomes from diverse cell sources as potential promoters, inhibitors, and even treatments for hepatic fibrosis to provide a clinical reference for exosomes as the diagnostic target or therapeutic means of hepatic fibrosis.
Collapse
Affiliation(s)
- Xiaojie Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China
| | - Qinglin Ge
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yunting Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China
| | - Bowen Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China
| | - Erli Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yinghong Wang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
16
|
Vosough P, Khatami SH, Hashemloo A, Tajbakhsh A, Karimi-Fard F, Taghvimi S, Taheri-Anganeh M, Soltani Fard E, Savardashtaki A, Movahedpour A. Exosomal lncRNAs in gastrointestinal cancer. Clin Chim Acta 2023; 540:117216. [PMID: 36592922 DOI: 10.1016/j.cca.2022.117216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Gastrointestinal cancer (GIC) remains a leading cause of morbidity and mortality worldwide. Unfortunately, these cancers are diagnosed in advanced metastatic stages due to lack of reliable biomarkers that are sufficiently specific and sensitive in early disease. There has been growing evidence that circulating exosomes can be used to diagnose cancer non-invasively with limited risks and side effects. Furthermore, exosomal long non-coding RNAs (lncRNAs) are emerging as a new class of promising biomarkers in cancer. This review provides an overview of the extraction and detection of exosomal lncRNAs with a focus on their potential role in GIC.
Collapse
Affiliation(s)
- Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sina Taghvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
17
|
Yao M, Liang S, Cheng B. Role of exosomes in hepatocellular carcinoma and the regulation of traditional Chinese medicine. Front Pharmacol 2023; 14:1110922. [PMID: 36733504 PMCID: PMC9886889 DOI: 10.3389/fphar.2023.1110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) usually occurs on the basis of chronic liver inflammatory diseases and cirrhosis. The liver microenvironment plays a vital role in the tumor initiation and progression. Exosomes, which are nanometer-sized membrane vesicles are secreted by a number of cell types. Exosomes carry multiple proteins, DNAs and various forms of RNA, and are mediators of cell-cell communication and regulate the tumor microenvironment. In the recent decade, many studies have demonstrated that exosomes are involved in the communication between HCC cells and the stromal cells, including endothelial cells, macrophages, hepatic stellate cells and the immune cells, and serve as a regulator in the tumor proliferation and metastasis, immune evasion and immunotherapy. In addition, exosomes can also be used for the diagnosis and treatment HCC. They can potentially serve as specific biomarkers for early diagnosis and drug delivery vehicles of HCC. Chinese herbal medicine, which is widely used in the prevention and treatment of HCC in China, may regulate the release of exosomes and exosomes-mediated intercellular communication. In this review, we summarized the latest progresses on the role of the exosomes in the initiation, progression and treatment of HCC and the potential value of Traditional Chinese medicine in exosomes-mediated biological behaviors of HCC.
Collapse
Affiliation(s)
- Man Yao
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China
| | - Shufang Liang
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China,Faculty of Traditional Chinese Medicine, Naval Medical University (The Second Military Medical University), Shanghai, China,*Correspondence: Binbin Cheng,
| |
Collapse
|
18
|
Hashemi M, Mirzaei S, Zandieh MA, Rezaei S, Amirabbas Kakavand, Dehghanpour A, Esmaeili N, Ghahremanzade A, Saebfar H, Heidari H, Salimimoghadam S, Taheriazam A, Entezari M, Ahn KS. Long non-coding RNAs (lncRNAs) in hepatocellular carcinoma progression: Biological functions and new therapeutic targets. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:207-228. [PMID: 36584761 DOI: 10.1016/j.pbiomolbio.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Liver is an important organ in body that performs vital functions such as detoxification. Liver is susceptible to development of cancers, and hepatocellular carcinoma (HCC) is among them. 75-85% of liver cancer cases are related to HCC. Therefore, much attention has been directed towards understanding factors mediating HCC progression. LncRNAs are epigenetic factors with more than 200 nucleotides in length located in both nucleus and cytoplasm and they are promising candidates in cancer therapy. Directing studies towards understanding function of lncRNAs in HCC is of importance. LncRNAs regulate cell cycle progression and growth of HCC cells, and they can also induce/inhibit apoptosis in tumor cells. LncRNAs affect invasion and metastasis in HCC mainly by epithelial-mesenchymal transition (EMT) mechanism. Revealing the association between lncRNAs and downstream signaling pathways in HCC is discussed in the current manuscript. Infectious diseases can affect lncRNA expression in mediating HCC development and then, altered expression level of lncRNA is associated with drug resistance and radio-resistance. Biomarker application of lncRNAs and their role in prognosis and diagnosis of HCC are also discussed to pave the way for treatment of HCC patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Hajar Heidari
- Department of Biomedical Sciences, School of Public Health University at Albany State University of New York, Albany, NY, 12208, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
The Role of LINC01564, RAMS11, CBX4 and TOP2A in Hepatocellular Carcinoma. Biomedicines 2022; 11:biomedicines11010056. [PMID: 36672564 PMCID: PMC9855990 DOI: 10.3390/biomedicines11010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the most common histologic type of primary liver cancers worldwide. Hepatitis C virus (HCV) infection remains a major risk factor for chronic liver disease, cirrhosis, and HCC. To understand the molecular pathogenesis of HCC in chronic HCV infection, many molecular markers are extensively studied, including long noncoding RNAs (lncRNA). Objective: To evaluate the expression levels of lncRNAs (LINC01564, RAMS11), CBX4, and TOP2A in patients with chronic HCV infection and patients with HCC on top of chronic HCV infection and correlate these levels with the clinicopathological features of HCC. Subjects and Methods: One hundred and fifty subjects were enrolled in this study and divided into three groups: group I included 50 patients with HCC on top of chronic hepatitis C (CHC), group II included 50 patients with CHC only, and group III included 50 healthy individuals as a control group. LncRNAs relative expression level was determined by RT-PCR. Results: lncRNA (LINC01564, RAMS11), CBX4, and TOP2A relative expression levels were upregulated in both patient groups compared to controls (p < 0.001*), with the highest levels in the HCC group compared with the CHC group. Additionally, these levels were significantly positively correlated with the clinicopathological features of HCC. Conclusions: The lncRNA (LINC01564, RAMS11), CBX4, and TOP2A relative expression levels were upregulated in CHC patients—in particular, patients with HCC. Thus, these circulatory lncRNAs may be able to serve as promising noninvasive diagnostic markers for HCC associated with viral C hepatitis.
Collapse
|
20
|
Yin Y, Zhao Y, Chen Q, Chen Y, Mao L. Dual roles and potential applications of exosomes in HCV infections. Front Microbiol 2022; 13:1044832. [PMID: 36578571 PMCID: PMC9791051 DOI: 10.3389/fmicb.2022.1044832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
The hepatitis C virus (HCV) causes severe liver diseases, including hepatitis, liver cirrhosis, and hepatocellular carcinoma, which have high morbidity and mortality. Antibody targeting receptor-mediated HCV infections have limited therapeutic benefits, suggesting that the transmission of HCV infections is possibly mediated via receptor-independent mechanisms. Exosomes are membrane-enclosed vesicles with a diameter of 30-200 nm, which originate from the fusion of endosomal multivesicular bodies with the plasma membrane. Accumulating evidence suggests that exosomes have a pivotal role in HCV infections. Exosomes can transfer viral and cellular bioactive substances, including nucleic acids and proteins, to uninfected cells, thus spreading the infection by masking these materials from immunological recognition. In addition, exosomes originating from some cells can deliver antiviral molecules or prompt the immune response to inhibit HCV infection. Exosomes can be used for the diagnosis of HCV-related diseases, and are being presently evaluated as therapeutic tools for anti-HCV drug delivery. This review summarizes the current knowledge on the dual roles and potential clinical applications of exosomes in HCV infections.
Collapse
|
21
|
Mahmoudvand S, Shokri S, Nakhaie M, Jalilian FA, Mehri-Ghahfarrokhi A, Yarani R, Shojaeian A. Small extracellular vesicles as key players in cancer development caused by human oncogenic viruses. Infect Agent Cancer 2022; 17:58. [DOI: 10.1186/s13027-022-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Exosomes are the smallest group of extracellular vesicles in size from 30 to 150 nm, surrounded by a lipid bilayer membrane, and originate from multivesicular bodies secreted by different types of cells, such as virus-infected cells. The critical role of exosomes is information transfer among cells, representing a unique way for intercellular communication via a load of many kinds of molecules, including various signaling proteins and nucleic acids. In this review, we aimed to comprehensively investigate the role of exosomes in promoting human oncogenic viruses-associated cancers.
Methods
Our search was conducted for published researches between 2000 and 2022 by using several international databases includeing Scopus, PubMed, and Web of Science as well as Google scholar. We also reviewed additional evidence from relevant published articles.
Results
It has been shown that exosomes can create the conditions for viral spread in viral infections. Exosome secretion in a human tumor virus can switch on the cell signaling pathways by transferring exosome-encapsulated molecules, including viral oncoproteins, signal transduction molecules, and virus-encoded miRNAs, into various cells.
Conclusion
Given the role of exosomes in viruses-associated cancers, they can also be considered as molecular targets in diagnosis and treatment.
Collapse
|
22
|
Machida K. HCV and tumor-initiating stem-like cells. Front Physiol 2022; 13:903302. [PMID: 36187761 PMCID: PMC9520593 DOI: 10.3389/fphys.2022.903302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Neoplasms contain tumor-initiating stem-like cells (TICs) that are characterized by increased drug resistance. The incidence of many cancer types have trended downward except for few cancer types, including hepatocellular carcinoma (HCC). Therefore mechanism of HCC development and therapy resistance needs to be understood. These multiple hits by hepatitis C virus (HCV) eventually promotes transformation and TIC genesis, leading to HCC development. This review article describes links between HCV-associated HCC and TICs. This review discusses 1) how HCV promotes genesis of TICs and HCC development; 2) how this process avails itself as a novel therapeutic target for HCC treatment; and 3) ten hall marks of TIC oncogenesis and HCC development as targets for novel therapeutic modalities.
Collapse
|
23
|
Xin W, Qin Y, Lei P, Zhang J, Yang X, Wang Z. From cerebral ischemia towards myocardial, renal, and hepatic ischemia: Exosomal miRNAs as a general concept of intercellular communication in ischemia-reperfusion injury. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:900-922. [PMID: 36159596 PMCID: PMC9464648 DOI: 10.1016/j.omtn.2022.08.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Peña-Flores JA, Bermúdez M, Ramos-Payán R, Villegas-Mercado CE, Soto-Barreras U, Muela-Campos D, Álvarez-Ramírez A, Pérez-Aguirre B, Larrinua-Pacheco AD, López-Camarillo C, López-Gutiérrez JA, Garnica-Palazuelos J, Estrada-Macías ME, Cota-Quintero JL, Barraza-Gómez AA. Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front Oncol 2022; 12:965628. [PMID: 35978835 PMCID: PMC9376329 DOI: 10.3389/fonc.2022.965628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates in the squamous cell lining the mucosal surfaces of the head and neck region, including the oral cavity, nasopharynx, tonsils, oropharynx, larynx, and hypopharynx. The heterogeneity, anatomical, and functional characteristics of the patient make the HNSCC a complex and difficult-to-treat disease, leading to a poor survival rate and a decreased quality of life due to the loss of important physiologic functions and aggressive surgical injury. Alteration of driver-oncogenic and tumor-suppressing lncRNAs has recently been recently in HNSCC to obtain possible biomarkers for diagnostic, prognostic, and therapeutic approaches. This review provides current knowledge about the implication of lncRNAs in drug resistance mechanisms in HNSCC. Chemotherapy resistance is a major therapeutic challenge in HNSCC in which lncRNAs are implicated. Lately, it has been shown that lncRNAs involved in autophagy induced by chemotherapy and epithelial–mesenchymal transition (EMT) can act as mechanisms of resistance to anticancer drugs. Conversely, lncRNAs involved in mesenchymal–epithelial transition (MET) are related to chemosensitivity and inhibition of invasiveness of drug-resistant cells. In this regard, long non-coding RNAs (lncRNAs) play a pivotal role in both processes and are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. As the involvement of more lncRNAs is elucidated in chemoresistance mechanisms, an improvement in diagnostic and prognostic tools could promote an advance in targeted and specific therapies in precision oncology.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
- *Correspondence: Mercedes Bermúdez,
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | - Uriel Soto-Barreras
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | | | | | | | | | - Jorge A. López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | | | - Juan L. Cota-Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Odontology , Autonomous University of Sinaloa, Culiacán, Mexico
| | | |
Collapse
|
25
|
Yang S, Wang J, Wang S, Zhou A, Zhao G, Li P. Roles of small extracellular vesicles in the development, diagnosis and possible treatment strategies for hepatocellular carcinoma (Review). Int J Oncol 2022; 61:91. [PMID: 35674180 PMCID: PMC9262158 DOI: 10.3892/ijo.2022.5381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignancy of hepatocytes accounting for 75-85% of primary hepatic carcinoma cases. Small extracellular vesicles (sEVs), previously known as exosomes with a diameter of 30-200 nm, can transport a variety of biological molecules between cells, and have been proposed to function in physiological and pathological processes. Recent studies have indicated that the cargos of sEVs are implicated in intercellular crosstalk among HCC cells, paratumor cells and the tumor microenvironment. sEV-encapsulated substances (including DNA, RNA, proteins and lipids) regulate signal transduction pathways in recipient cells and contribute to cancer initiation and progression in HCC. In addition, the differential expression of sEV cargos between patients facilitates the potential utility of sEVs in the diagnosis and prognosis of patients with HCC. Furthermore, the intrinsic properties of low immunogenicity and high stability render sEVs ideal vehicles for targeted drug delivery in the treatment of HCC. The present review article summarizes the carcinogenic and anti-neoplastic capacities of sEVs and discusses the potential and prospective diagnostic and therapeutic applications of sEVs in HCC.
Collapse
Affiliation(s)
- Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Jiaxin Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Shidong Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Guiping Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
26
|
Zhang Q, Li H, Liu Y, Li J, Wu C, Tang H. Exosomal Non-Coding RNAs: New Insights into the Biology of Hepatocellular Carcinoma. CURRENT ONCOLOGY (TORONTO, ONT.) 2022; 29:5383-5406. [PMID: 36005165 PMCID: PMC9406833 DOI: 10.3390/curroncol29080427] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
Exosomes, extracellular vesicles with a diameter of 40 to 160 nm, are among the smallest extracellular vesicles released by cells. They deliver different cargoes, including proteins, DNAs, and RNAs, and facilitate communication between cells to coordinate a variety of physiological and pathological functions. Hepatocellular carcinoma (HCC) is the sixth common malignant tumor and the fourth leading cause of cancer-related death worldwide. Its molecular mechanism remains largely unknown, and there is a lack of reliable and noninvasive biomarkers for early diagnosis and prognosis prediction. Mounting evidence has shown that exosomes carry a variety of ncRNAs, such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), which play critical roles in the occurrence and progression of HCC. In this review, we summarize the recent findings of exosomal miRNAs, lncRNAs, and circRNAs in HCC from their impact on the development of HCC to their potential applications in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Qian Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (Q.Z.); (H.L.); (Y.L.)
| | - Hanlin Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (Q.Z.); (H.L.); (Y.L.)
| | - Yang Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (Q.Z.); (H.L.); (Y.L.)
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China;
| | - Chunling Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (Q.Z.); (H.L.); (Y.L.)
- Correspondence: (C.W.); (H.T.)
| | - Hua Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (Q.Z.); (H.L.); (Y.L.)
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou 646000, China
- Engineering, Informatics Fusion and Transformation Key Laboratory, Luzhou 646000, China
- Correspondence: (C.W.); (H.T.)
| |
Collapse
|
27
|
HEIH Promotes Malignant Progression of Gastric Cancer by Regulating STAT3-Mediated Autophagy and Glycolysis. DISEASE MARKERS 2022; 2022:2634526. [PMID: 36246567 PMCID: PMC9568361 DOI: 10.1155/2022/2634526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022]
Abstract
To study the clinical value of HEIH hyperexpression in gastric cancer and the molecular mechanism of promoting malignant proliferation of gastric cancer cells, qRT-PCR was used to detect the expression of HEIH in gastric cancer and nontumor gastric tissues. HEIH interference sequence was constructed to downregulate HEIH expression in MGC-803 and BGC-823 cell lines. CCK8, clonogenesis, and Transwell assay were used to detect the effects of HEIH on proliferation and invasion of tumor cells. The protein levels of STAT3, p-STAT3, P62, and LC3 were detected by Western blotting. The results showed that HEIH was highly expressed in gastric cancer (P < 0.01). Interference of HEIH expression in MGC-803 and BGC-823 cells reduced the proliferation and invasion of gastric cancer cells, and the results were statistically significant (P < 0.05). HEIH acts as a miRNA sponge for miR-4500. HEIH promotes gastric cancer development by inhibiting miR-4500. STAT3 is a downstream target of miR-4500. HEIH inhibits autophagy and promotes glycolysis. In conclusion, HEIH is highly expressed in gastric cancers. HEIH promotes malignant proliferation and development of gastric cancer cells. HEIH may be a new candidate site for pathological diagnosis and molecular drug therapy for future clinical treatment of gastric cancer.
Collapse
|
28
|
Tsuchiya A, Natsui K, Ishii Y, Koseki Y, Takeda N, Tomiyoshi K, Yamazaki F, Yoshida Y, Terai S. Small extracellular vesicles and liver diseases: From diagnosis to therapy. World J Hepatol 2022; 14:1307-1318. [PMID: 36158910 PMCID: PMC9376785 DOI: 10.4254/wjh.v14.i7.1307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/20/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs), especially small EVs (sEVs) derived from liver cells, have been the focus of much attention in the normal physiology and pathogenesis of various diseases affecting the liver. sEVs are approximately 100 nm in size, enclosed within lipid bilayers, and are very stable. The lipids, proteins, and nucleic acids, including miRNAs, contained within these vesicles are known to play important roles in intercellular communication. This mini-review summarizes the application of sEVs. First, liver diseases and the related diagnostic markers are described, and the current active status of miRNA research in diagnosis of hepatocellular carcinoma (HCC) is reported. Second, the biodistribution and pharmacokinetics of sEVs are described, and the liver is highlighted as the organ with the highest accumulation of sEVs. Third, the relationship between sEVs and the pathogenesis of liver disorders is described with emphesis on the current active status of miRNA research in HCC recurrence and survival. Finally, the possibility of future therapy using sEVs from mesenchymal stem (stromal) cells for cirrhosis and other diseases is described.
Collapse
Affiliation(s)
- Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Niigata University Medical and Dental Hospital, Niigata 951-8510, Japan
| | - Kazuki Natsui
- Department of Gastroenterology and Hepatology, Niigata University, Niigata 951-8510, Japan
| | - Yui Ishii
- Department of Gastroenterology and Hepatology, Niigata University, Niigata 951-8510, Japan
| | - Yohei Koseki
- Department of Gastroenterology and Hepatology, Niigata University, Niigata 951-8510, Japan
| | - Nobutaka Takeda
- Department of Gastroenterology and Hepatology, Niigata University, Niigata 951-8510, Japan
| | - Kei Tomiyoshi
- Department of Gastroenterology and Hepatology, Niigata University, Niigata 951-8510, Japan
| | - Fusako Yamazaki
- Department of Gastroenterology and Hepatology, Niigata University, Niigata 951-8510, Japan
| | - Yuki Yoshida
- Department of Gastroenterology and Hepatology, Niigata University, Niigata 951-8510, Japan
| | - Shuji Terai
- Department of Gastroenterology and Hepatology, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
29
|
Wang H, Yu L, Huang P, Zhou Y, Zheng W, Meng N, He R, Xu Y, Keong TS, Cui Y. Tumor-associated Exosomes Are Involved in Hepatocellular Carcinoma Tumorigenesis, Diagnosis, and Treatment. J Clin Transl Hepatol 2022; 10:496-508. [PMID: 35836772 PMCID: PMC9240252 DOI: 10.14218/jcth.2021.00425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has become a challenging disease worldwide. There are still limitations in the diagnosis and treatment of HCC, and its high metastatic capacity and high recurrence rate are the main reasons for its poor prognosis. The ability of extracellular vesicles (EVs) to transfer functionally-active substances and their widespread presence in almost all body fluids suggest their unprecedented potential in the study of various cancers. The unique physicochemical properties of EVs determine their potential as antitumor vaccines and drug carriers. In the last decade, the study of EVs in HCC has evolved from a single hot topic to a system with considerable scale. This paper summarizes the role of EVs, especially exosomes, in the occurrence, metastasis and tumor immunity of HCC, reviews their applications in tumor diagnosis, prognosis and treatment, describes the pros and cons of these studies, and looks forward towards the future research directions of EVs in HCC.
Collapse
Affiliation(s)
- Hang Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Peng Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Yongxu Zhou
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Wangyang Zheng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Nanfeng Meng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Correspondence to: Yunfu Cui and Yi Xu, Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China. ORCID: https://orcid.org/0000-0001-7393-1680 (YC), https://orcid.org/0000-0003-2720-0005 (YX). Tel: +86-451-86605113, Fax: +86-451-86605356, E-mail: (YC) or (YX); Tey Sze Keong, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China. Tel: +852-22552706, Fax: +852-28725197, E-mail:
| | - Tey Sze Keong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Correspondence to: Yunfu Cui and Yi Xu, Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China. ORCID: https://orcid.org/0000-0001-7393-1680 (YC), https://orcid.org/0000-0003-2720-0005 (YX). Tel: +86-451-86605113, Fax: +86-451-86605356, E-mail: (YC) or (YX); Tey Sze Keong, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China. Tel: +852-22552706, Fax: +852-28725197, E-mail:
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Correspondence to: Yunfu Cui and Yi Xu, Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China. ORCID: https://orcid.org/0000-0001-7393-1680 (YC), https://orcid.org/0000-0003-2720-0005 (YX). Tel: +86-451-86605113, Fax: +86-451-86605356, E-mail: (YC) or (YX); Tey Sze Keong, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China. Tel: +852-22552706, Fax: +852-28725197, E-mail:
| |
Collapse
|
30
|
Wang J, Wang X, Zhang X, Shao T, Luo Y, Wang W, Han Y. Extracellular Vesicles and Hepatocellular Carcinoma: Opportunities and Challenges. Front Oncol 2022; 12:884369. [PMID: 35692794 PMCID: PMC9175035 DOI: 10.3389/fonc.2022.884369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing worldwide. Extracellular vesicles (EVs) contain sufficient bioactive substances and are carriers of intercellular information exchange, as well as delivery vehicles for nucleic acids, proteins and drugs. Although EVs show great potential for the treatment of HCC and their role in HCC progression has been extensively studied, there are still many challenges such as time-consuming extraction, difficult storage, easy contamination, and low drug loading rate. We focus on the biogenesis, morphological characteristics, isolation and extraction of EVs and their significance in the progression of HCC, tumor invasion, immune escape and cancer therapy for a review. EVs may be effective biomarkers for molecular diagnosis of HCC and new targets for tumor-targeted therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoya Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xintong Zhang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Tingting Shao
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yanmei Luo
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
31
|
Di Santo R, Vaccaro M, Romanò S, Di Giacinto F, Papi M, Rapaccini GL, De Spirito M, Miele L, Basile U, Ciasca G. Machine Learning-Assisted FTIR Analysis of Circulating Extracellular Vesicles for Cancer Liquid Biopsy. J Pers Med 2022; 12:jpm12060949. [PMID: 35743734 PMCID: PMC9224706 DOI: 10.3390/jpm12060949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are abundantly released into the systemic circulation, where they show remarkable stability and harbor molecular constituents that provide biochemical information about their cells of origin. Due to this characteristic, EVs are attracting increasing attention as a source of circulating biomarkers for cancer liquid biopsy and personalized medicine. Despite this potential, none of the discovered biomarkers has entered the clinical practice so far, and novel approaches for the label-free characterization of EVs are highly demanded. In this regard, Fourier Transform Infrared Spectroscopy (FTIR) has great potential as it provides a quick, reproducible, and informative biomolecular fingerprint of EVs. In this pilot study, we investigated, for the first time in the literature, the capability of FTIR spectroscopy to distinguish between EVs extracted from sera of cancer patients and controls based on their mid-IR spectral response. For this purpose, EV-enriched suspensions were obtained from the serum of patients diagnosed with Hepatocellular Carcinoma (HCC) of nonviral origin and noncancer subjects. Our data point out the presence of statistically significant differences in the integrated intensities of major mid-IR absorption bands, including the carbohydrate and nucleic acids band, the protein amide I and II bands, and the lipid CH stretching band. Additionally, we used Principal Component Analysis combined with Linear Discriminant Analysis (PCA-LDA) for the automated classification of spectral data according to the shape of specific mid-IR spectral signatures. The diagnostic performances of the proposed spectral biomarkers, alone and combined, were evaluated using multivariate logistic regression followed by a Receiving Operator Curve analysis, obtaining large Areas Under the Curve (AUC = 0.91, 95% CI 0.81–1.0). Very interestingly, our analyses suggest that the discussed spectral biomarkers can outperform the classification ability of two widely used circulating HCC markers measured on the same groups of subjects, namely alpha-fetoprotein (AFP), and protein induced by the absence of vitamin K or antagonist-II (PIVKA-II).
Collapse
Affiliation(s)
- Riccardo Di Santo
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Correspondence:
| | - Maria Vaccaro
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
| | - Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Flavio Di Giacinto
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Massimiliano Papi
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Gian Ludovico Rapaccini
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Sezione di Medicina Interna, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Marco De Spirito
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Luca Miele
- Sezione di Medicina Interna, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Umberto Basile
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
32
|
Zhou ZW, Zheng W, Xiang Z, Ye CS, Yin QQ, Wang SH, Xu CA, Wu WH, Hui TC, Wu QQ, Zhao LY, Pan HY, Xu KY. Clinical implications of exosome-derived noncoding RNAs in liver. J Transl Med 2022; 102:464-473. [PMID: 35013531 DOI: 10.1038/s41374-021-00723-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/19/2022] Open
Abstract
Exosomes, one of three main types of extracellular vesicles, are ~30-100 nm in diameter and have a lipid bilayer membrane. They are widely distributed in almost all body fluids. Exosomes have the potential to regulate unknown cellular and molecular mechanisms in intercellular communication, organ homeostasis, and diseases. They are critical signal carriers that transfer nucleic acids, proteins, lipids, and other substances into recipient cells, participating in cellular signal transduction and material exchange. ncRNAs are non-protein-coding genes that account for over 90% of the genome and include microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs). ncRNAs are crucial for physiological and pathological activities in the liver by participating in gene transcription, posttranscriptional epigenetic regulation, and cellular processes through interacting with DNA, RNA, or proteins. Recent evidence from both clinical and preclinical studies indicates that exosome-derived noncoding RNAs (ncRNAs) are highly involved in the progression of acute and chronic liver diseases by regulating hepatic lipid metabolism, innate immunity, viral infection, fibrosis, and cancer. Therefore, exosome-derived ncRNAs have promising potential and clinical implications for the early diagnosis, targeted therapy, and prognosis of liver diseases.
Collapse
Affiliation(s)
- Zhe Wen Zhou
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Wei Zheng
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Zheng Xiang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Cun Si Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China
| | - Qiao Qiao Yin
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Shou Hao Wang
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Cheng An Xu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Wen Hao Wu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Tian Chen Hui
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Qing Qing Wu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Ling Yun Zhao
- Emergency Medicine Unit, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Hong Ying Pan
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China. .,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, Anhui, China.
| | - Ke Yang Xu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China.
| |
Collapse
|
33
|
Li L, Bi Y, Diao S, Li X, Yuan T, Xu T, Huang C, Li J. Exosomal LncRNAs and hepatocellular Carcinoma: From basic research to clinical practice. Biochem Pharmacol 2022; 200:115032. [PMID: 35395241 DOI: 10.1016/j.bcp.2022.115032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with poor prognosis. The incidences of HCC and HCC-related deaths have increased over the last several decades. However, the treatment options for advanced HCC are very limited. Long noncoding RNAs (lncRNAs) wrapped in exosomes can change the expression of their target genes in recipient cells, thereby regulating the behavior of recipient cells. Increasing evidence has demonstrated that there is a correlation between the activation of exosomal lncRNAs and the development of HCC. In this review article, we highlighted the functions of exosomal lncRNAs in the development of HCC, showing that exosomal lncRNAs play a vital role in the growth and progression of HCC and are targets for HCC.
Collapse
Affiliation(s)
- Liangyun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Yihui Bi
- The Second Affiliated Hospital of Anhui Medical University, China
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Tong Yuan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China.
| |
Collapse
|
34
|
Yan X, Zhang S, Jia J, Yang J, Song Y, Duan H. Exosomal MiR-423-3p Inhibits Macrophage M2 Polarization to Suppress the Malignant Progression of Cervical Cancer. Pathol Res Pract 2022; 235:153882. [DOI: 10.1016/j.prp.2022.153882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 12/21/2022]
|
35
|
Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S, El-Rifai W, Bedognetti D, Batra SK, Haris M, Bhat AA, Macha MA. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer 2022; 21:79. [PMID: 35303879 PMCID: PMC8932066 DOI: 10.1186/s12943-022-01543-7] [Citation(s) in RCA: 298] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, invasive techniques for diagnosing and monitoring cancers are slowly being replaced by non-invasive methods such as liquid biopsy. Liquid biopsies have drastically revolutionized the field of clinical oncology, offering ease in tumor sampling, continuous monitoring by repeated sampling, devising personalized therapeutic regimens, and screening for therapeutic resistance. Liquid biopsies consist of isolating tumor-derived entities like circulating tumor cells, circulating tumor DNA, tumor extracellular vesicles, etc., present in the body fluids of patients with cancer, followed by an analysis of genomic and proteomic data contained within them. Methods for isolation and analysis of liquid biopsies have rapidly evolved over the past few years as described in the review, thus providing greater details about tumor characteristics such as tumor progression, tumor staging, heterogeneity, gene mutations, and clonal evolution, etc. Liquid biopsies from cancer patients have opened up newer avenues in detection and continuous monitoring, treatment based on precision medicine, and screening of markers for therapeutic resistance. Though the technology of liquid biopsies is still evolving, its non-invasive nature promises to open new eras in clinical oncology. The purpose of this review is to provide an overview of the current methodologies involved in liquid biopsies and their application in isolating tumor markers for detection, prognosis, and monitoring cancer treatment outcomes.
Collapse
Affiliation(s)
- Saife N Lone
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Arshi Rizwan
- Department of Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Davide Bedognetti
- Cancer Research Department, Research Branch, Sidra Medicince, Doha, Qatar
- Department of Internal Medicine and Medical Specialities, University of Genova, Genova, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE 68198, Omaha, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, University of Nebraska Medical Center, NE 68198, Omaha, USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, (IUST), 192122, Awantipora, Jammu & Kashmir, India.
| |
Collapse
|
36
|
Wang W, Hao LP, Song H, Chu XY, Wang R. The Potential Roles of Exosomal Non-Coding RNAs in Hepatocellular Carcinoma. Front Oncol 2022; 12:790916. [PMID: 35280805 PMCID: PMC8912917 DOI: 10.3389/fonc.2022.790916] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth highest-incidence cancer and the 4th most deadly cancer all over the world, with a high fatality and low diagnostic rate. Nowadays, Excessive alcohol consumption, type-2 diabetes, smoking and obesity have become some primary risk factors of HCC. As intercellular messenger transporting information cargoes between cells, exosomes are a type of extracellular vesicles (EVs) released by most types of cells including tumor cells and non-tumor cells and play a pivotal role in establishing an HCC microenvironment. Exosomes, and more generally EVs, contain different molecules, including messenger RNAs (mRNAs), non-coding RNAs (ncRNAs), proteins, lipids and transcription factors. The three main ncRNAs in exosomes are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs). NcRNAs, identified as essential components, are selectively sorted into exosomes and exosomal ncRNAs show great potential in regulating tumor development, including proliferation, invasion, angiogenesis, metastasis, immune escape and drug resistance. Here, we chiefly review the formation and uptake of exosomes, classification of exosomal ncRNAs and current research on the roles of exosomal ncRNAs in HCC progression. We also explored their clinical applications as new diagnostic biomarkers and therapeutic avenues in HCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Li-Ping Hao
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Haizhu Song
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiao-Yuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
37
|
Fan Q, Yu Y, Zhou Y, Zhang S, Wu C. An emerging role of radiation‑induced exosomes in hepatocellular carcinoma progression and radioresistance (Review). Int J Oncol 2022; 60:46. [PMID: 35266016 PMCID: PMC8923655 DOI: 10.3892/ijo.2022.5336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
The incidence rates of hepatocellular carcinoma (HCC) worldwide are increasing, and the role of radiotherapy is currently under discussion. Radioresistance is one of the most important challenges in the therapy of HCC compared with other local advanced, recurrent and metastatic cancers. The mechanisms of radioresistance are complex and remain to be fully understood; however, extracellular vesicles have been investigated in recent studies. Exosomes, which are 40- to 150-nm extracellular vesicles released by cancer cells, contain multiple pathogenic components, including proteins, nucleic acids and lipids, and play critical functions in cancer progression. Emerging data indicate a diagnosis potential for exosomes in HCC, since radiation-derived exosomes promote radioresistance. Radiation-based therapy alters the contents and components of exosomes, suggesting that exosomes and their components may serve as prognostic and predictive biomarkers to monitor radiation response. Therefore, understanding the roles and mechanisms of exosomes in HCC progression and radiation response during HCC therapy may increase our knowledge concerning the roles of exosomes in radioresistance, and may lead to novel approaches for HCC prognosis and treatment. The current review summarizes recent studies on exosome involvement in HCC and the molecular changes in exosome components during HCC progression. It also discusses the functions of exosomes in HCC therapy, and highlights the importance of exosomes in HCC progression and resistance for the development of novel therapies.
Collapse
Affiliation(s)
- Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Yue Yu
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Yueling Zhou
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Sheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Chunli Wu
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
38
|
Liang W, Ke J. Remifentanil reduces the proliferation, migration and invasion of HCC cells via lncRNA NBR2/miR‐650/TIMP3 axis. Int J Exp Pathol 2022; 103:44-53. [PMID: 35156240 PMCID: PMC8961499 DOI: 10.1111/iep.12429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer cell hyperproliferation and metastasis are major causes of cancer-associated mortality. Although the use of anaesthetics and analgesics may affect cancer cell metastasis, the underlying molecular mechanism remains unclear. This study aimed to explore the mechanisms of action of remifentanil on hepatocellular carcinoma (HCC) progression. Cell viability was measured by the 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-h-tetrazolium bromide assay. Quantitative real-time polymerase chain reaction and Western blotting were performed to assess the expression levels of long non-coding RNA (lncRNA) neighbour of BRCA1 gene 2 (NBR2), microRNA (miR)-650 and tissue inhibitor of metalloproteinase-3 (TIMP3) in HCC cells. Wound healing and transwell assays were employed to evaluate the migration and invasion of HCC cells respectively. The target relationships between miR-650 and NBR2/TIMP3 were confirmed by dual luciferase reporter assay. Remifentanil reduced the viability of HCC cells in a dose-dependent manner. Remifentanil treatment significantly increased the expression of lncRNA NBR2 and TIMP3, and repressed miR-650 expression in HCC cells. Decreased lncRNA NBR2 or increased miR-650 promoted the proliferation, migration and invasion of remifentanil-treated HCC cells. LncRNA NBR2 targeted miR-650, and miR-650 further targeted TIMP3. Moreover, miR-650 down-regulation or TIMP3 up-regulation reversed the effects of lncRNA NBR2 knockdown that caused an enhancement of cell viability, migration and invasiveness in remifentanil-treated HCC cells. Thus remifentanil reduces the proliferation, migration and invasion of HCC cells via the lncRNA NBR2/miR-650/TIMP3 axis in vitro.
Collapse
Affiliation(s)
- Wei Liang
- Department of Anesthesia Wuhan Fourth Hospital Puai Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jinyuan Ke
- Department of Anesthesia Wuhan Fourth Hospital Puai Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
39
|
Relationship between Expression of Plasma lncRNA-HEIH and Prognosis in Patients with Coronary Artery Disease. DISEASE MARKERS 2022; 2021:5662080. [PMID: 35003390 PMCID: PMC8741405 DOI: 10.1155/2021/5662080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Objective We aimed to investigate the expression of long noncoding RNA- (lncRNA-) HEIH in patients with coronary artery disease (CAD) and its impact on patients' prognosis. Patients and Methods. From July 2015 to December 2018, 250 patients who underwent coronary angiography, including 50 in the control group and 150 in the CAD group, were collected for detection of the expression of lncRNA-HEIH by real-time quantitative polymerase chain reaction (qPCR). The severity of CAD was evaluated through SYNTAX scoring system. In addition, these patients with CAD were followed up for 3 years, and the major cardiac adverse events such as myocardial infarction and revascularization were recorded. Results The expression of lncRNA-HEIH in plasma of patients with CAD was remarkably higher than that in the control subjects and was verified to be relevant to the severity of CAD. Meanwhile, it was found that CAD patients with high expression of lncRNA-HEIH had higher rates of dyslipidemia as well as CAD family history and higher overall incidence of major cardiac adverse events than those with low expression of lncRNA-HEIH. Conclusions lncRNA-HEIH expression is upregulated in the plasma of CAD patients, which is capable of affecting the prognosis of patients.
Collapse
|
40
|
Fei B, Zhou H, He Z, Wang S. KCNQ1OT1 inhibition alleviates high glucose-induced podocyte injury by adsorbing miR-23b-3p and regulating Sema3A. Clin Exp Nephrol 2022; 26:385-397. [PMID: 34997887 DOI: 10.1007/s10157-021-02173-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN), a diabetic complication, is the leading cause of end-stage renal disease. KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1), a long non-coding RNA, has been unmasked to participate in the pathogenesis of DN. However, the specific mechanism by which KCNQ1OT1 regulates podocyte injury remains unclear. METHODS Relative expression of KCNQ1OT1 was measured with quantitative real-time polymerase chain reaction (qRT-PCR). The levels of inflammatory cytokines were analyzed by enzyme linked immunosorbent assay (ELISA). The viability, proliferation, and apoptosis of high glucose (HG)-treated podocyte were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. Protein levels were analyzed by western blotting. The regulatory mechanism of KCNQ1OT1 was surveyed by bioinformatics analysis, dual-luciferase reporter, and RNA immunoprecipitation (RIP) assays. RESULTS We observed an apparent upregulation in KCNQ1OT1 expression in serums of DN patients and HG-treated podocytes. Furthermore, KCNQ1OT1 downregulation alleviated HG-induced inflammation, proliferation repression, and apoptosis in podocytes. Notably, KCNQ1OT1 was identified as a miR-23b-3p sponge, and miR-23b-3p directly targeted Semaphorin-3A (Sema3A). Moreover, miR-23b-3p silencing reversed KCNQ1OT1 knockdown-mediated effects on inflammation, proliferation, and apoptosis of HG-induced podocytes. Also, Sema3A overexpression reversed the effects of miR-23b-3p mimic on inflammation, proliferation, and apoptosis of HG-induced podocytes. Importantly, KCNQ1OT1 regulated Sema3A expression by sponging miR-23b-3p. CONCLUSIONS HG-induced KCNQ1OT1 promoted inflammation, proliferation repression, and apoptosis of podocytes via increasing Sema3A expression through sponging miR-23b-3p. This study provided evidence to support the involvement of KCNQ1OT1 in the pathogenesis of DN.
Collapse
Affiliation(s)
- Bingru Fei
- Department of Nephrology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an City, Jiangsu Province, China
| | - Hui Zhou
- Department of Nephrology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an City, Jiangsu Province, China
| | - Zengjiao He
- Department of Nephrology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an City, Jiangsu Province, China
| | - Suyu Wang
- Department of Nephrology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an City, Jiangsu Province, China.
| |
Collapse
|
41
|
Akbar A, Malekian F, Baghban N, Kodam SP, Ullah M. Methodologies to Isolate and Purify Clinical Grade Extracellular Vesicles for Medical Applications. Cells 2022; 11:186. [PMID: 35053301 PMCID: PMC8774122 DOI: 10.3390/cells11020186] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The use of extracellular vesicles (EV) in nano drug delivery has been demonstrated in many previous studies. In this study, we discuss the sources of extracellular vesicles, including plant, salivary and urinary sources which are easily available but less sought after compared with blood and tissue. Extensive research in the past decade has established that the breadth of EV applications is wide. However, the efforts on standardizing the isolation and purification methods have not brought us to a point that can match the potential of extracellular vesicles for clinical use. The standardization can open doors for many researchers and clinicians alike to experiment with the proposed clinical uses with lesser concerns regarding untraceable side effects. It can make it easier to identify the mechanism of therapeutic benefits and to track the mechanism of any unforeseen effects observed.
Collapse
Affiliation(s)
- Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Farzaneh Malekian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Neda Baghban
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
42
|
Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther 2021; 6:383. [PMID: 34753929 PMCID: PMC8578673 DOI: 10.1038/s41392-021-00779-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes play a role as mediators of cell-to-cell communication, thus exhibiting pleiotropic activities to homeostasis regulation. Exosomal non-coding RNAs (ncRNAs), mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are closely related to a variety of biological and functional aspects of human health. When the exosomal ncRNAs undergo tissue-specific changes due to diverse internal or external disorders, they can cause tissue dysfunction, aging, and diseases. In this review, we comprehensively discuss the underlying regulatory mechanisms of exosomes in human diseases. In addition, we explore the current knowledge on the roles of exosomal miRNAs, lncRNAs, and circRNAs in human health and diseases, including cancers, metabolic diseases, neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and infectious diseases, to determine their potential implication in biomarker identification and therapeutic exploration.
Collapse
|
43
|
Niu B, Yao L, Zhang Y, Xia X, Su H. LncRNA KCNQ1OT1 promoted hepatitis C virus-induced pyroptosis of β-cell through mediating the miR-223-3p/NLRP3 axis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1387. [PMID: 34733939 PMCID: PMC8506540 DOI: 10.21037/atm-21-3862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/12/2021] [Indexed: 01/10/2023]
Abstract
Background Type 2 diabetes is a well described extra-hepatic manifestation of hepatitis C virus (HCV) infection. This study aimed to explore the potential mechanism of KCNQ1 overlapping transcript 1 (KCNQ1OT1) in type 2 diabetes mellitus (T2DM) caused by HCV infection. Methods Min6 cells were infected with HCV to establish a vitro model, and the HCV copy number was detected by real-time quantitative PCR (RT-qPCR). The mRNA and protein expressions of IL-1β, IL-18, NLRP3, caspase-1, and GSDMD were analyzed by RT-qPCR and Western blot. Flow cytometry and TUNEL assay were used to evaluate the pyroptosis of cells and enzyme-linked immunosorbent assay (ELISA) detected the secretion of insulin. A dual luciferase reporter gene assay then verified the targeting relationship of KCNQ1OT1, miRNA-223-3p, and NLRP3. Results KCNQ1OT1 was highly expressed in HCV-infected T2DM patients and HCV-infected β-cells. Silencing KCNQ1OT1 inhibited β-cell pyroptosis by regulating miR-223-3p/NLRP3, and inhibition of miR-223-3p or overexpression of NLRP3 reversed the pyroptosis by silencing KCNQ1OT1. Conclusions Our findings indicate KCNQ1OT1 promotes HCV-infected β-cell pyroptosis through the miRNA-223-3p/NLRP3 axis, effecting the production of insulin and accelerating the occurrence and development of T2DM.Regulating KCNQ1OT1 and its target genes will help to better understand the pathogenesis of T2DM induced by HCV infection and provide new theoretical foundations and therapeutic targets.
Collapse
Affiliation(s)
- Ben Niu
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lixuan Yao
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yating Zhang
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Heng Su
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
44
|
Sun JY, Ni MM. Long non-coding RNA HEIH: a novel tumor activator in multiple cancers. Cancer Cell Int 2021; 21:558. [PMID: 34689775 PMCID: PMC8543845 DOI: 10.1186/s12935-021-02272-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/16/2021] [Indexed: 12/27/2022] Open
Abstract
The last decade has witnessed the altered expression levels of long non-coding RNA HEIH in different types of cancer. More than half of the HEIH studies in cancer have been published within the last two years. To our knowledge, this is the first review to discuss very recent developments and insights into HEIH contribution to carcinogenesis. The functional role, molecular mechanism, and clinical significance of HEIH in human cancers are described in detail. The expression of HEIH is elevated in a broad spectrum of cancers, and its disorder contributes to cell proliferation, migration, invasion, and drug resistance of cancer cells through different underlying mechanisms. In addition, the high expression of HEIH is significantly associated with advanced tumor stage, tumor size and decreased overall survival, suggesting HEIH may function as a prognostic biomarker and potential therapeutic target for human cancers.
Collapse
Affiliation(s)
- Jie-Yu Sun
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Ming-Ming Ni
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Rd., Nanjing, 210008, People's Republic of China.
| |
Collapse
|
45
|
Nie G, Peng D, Li B, Lu J, Cai Y, Xiong X, Cheng N. Diagnostic Accuracy of Serum/Plasma Circular RNAs and the Combination of Circular RNAs and α-Fetoprotein for Detecting Hepatocellular Carcinoma: A Meta-Analysis. Front Genet 2021; 12:722208. [PMID: 34659344 PMCID: PMC8514948 DOI: 10.3389/fgene.2021.722208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/19/2021] [Indexed: 02/05/2023] Open
Abstract
The lack of an accurate biomarker in hepatocellular carcinoma (HCC) has hindered early detection, diagnosis, and treatment. Circular RNAs (circRNAs), which can be used as novel biomarkers in liquid biopsies, have been brought to light as a result of the advances in research on molecular biomarkers and the progression of genomic medicine. We conducted a meta-analysis of the diagnostic accuracy of serum/plasma circRNAs or the combination of circRNAs and α-fetoprotein (AFP) in HCC. We identified eight studies that met the inclusion/exclusion criteria from PubMed, Web of Science, EMBASE, and Cochrane Library databases. The data were pooled, and the sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (+LR), and negative likelihood ratio (-LR) with 95% confidence intervals (CIs) were calculated. The areas under the summary receiver operator characteristic (SROC) curves (AUCs) were also calculated. The sensitivity of circRNAs was 0.82 (95% CI: 0.78-0.85), and the specificity was 0.82 (95% CI: 0.78-0.86). The sensitivity of AFP was 0.65 (95% CI: 0.61-0.68), and the specificity was 0.90 (95% CI: 0.85-0.93). The AUC was 0.89 (95% CI: 0.86-0.91) for circRNAs and 0.77 (95% CI: 0.74-0.81) for AFP. The sensitivity of the combination of circRNAs and AFP was 0.88 (95% CI: 0.84-0.92), specificity was 0.86 (95% CI: 0.80-0.91), and AUC was 0.94 (95% CI: 0.91-0.96). Additionally, a subgroup analysis was conducted based on the control groups used; the diagnostic accuracy was particularly high in the comparison of HCC vs. healthy controls. In summary, serum/plasma circRNAs are accurate biomarkers suitable for clinical use for detecting HCC, and the combination of circRNAs and AFP improved the diagnostic accuracy.
Collapse
Affiliation(s)
- Guilin Nie
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China.,Department of Biliary Disease Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dingzhong Peng
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Bei Li
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jiong Lu
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yulong Cai
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xianze Xiong
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Nansheng Cheng
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Zou H, Lu C, Qiu J. Long non-coding RNA LINC00265 promotes proliferation, apoptosis, and inflammation of chondrocytes in osteoarthritis by sponging miR-101-3p. Autoimmunity 2021; 54:526-538. [PMID: 34633248 DOI: 10.1080/08916934.2021.1978432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) play a part in a wide variety of diseases, including osteoarthritis (OA). This study was designed to investigate the biological role of lncRNA LINC00265 in OA and its underlying mechanisms. We examined the levels of LINC00265 and miR-101-3p using RT-qPCR, inflammatory factors using ELISA, and caspase-3, c-caspase-3, Bcl-2, Bax, and MMP-13 levels using Western blot in normal and OA chondrocytes, analysed the relationship between LINC00265 and miR-101-3p using bioinformatics analysis and luciferase reporter assays, performed loss- and gain-of-function analyses. The results showed that (1) LINC00265 expression was increased in OA chondrocytes, (2) si-LINC00265 inhibited OA chondrocyte apoptosis and inflammation, and (3) LINC00265 overexpression promoted normal and OA chondrocyte apoptosis and inflammation. Furthermore, we predicted and confirmed that miR-101-3p was a target of LINC00265. LINC00265 negatively regulated miR-101-3p in OA chondrocytes and LINC00265 promoted OA and normal chondrocyte apoptosis via miR-101-3p. Overall, lncRNA LINC00265 regulates chondrocyte apoptosis by acting as a sponge of miR-101-3p in OA.
Collapse
Affiliation(s)
- Hanlin Zou
- Department of Orthopedics, Shanghai Putuo District Central Hospital, Shanghai City, P. R. China
| | - Chunde Lu
- Department of Orthopedics, Shanghai Jiangong Hospital, Shanghai City, P. R. China
| | - Jianjun Qiu
- Department of Orthopedics, Shanghai Putuo District Central Hospital, Shanghai City, P. R. China
| |
Collapse
|
47
|
Wang Y, Zhao R, Jiao X, Wu L, Wei Y, Shi F, Zhong J, Xiong L. Small Extracellular Vesicles: Functions and Potential Clinical Applications as Cancer Biomarkers. Life (Basel) 2021; 11:life11101044. [PMID: 34685415 PMCID: PMC8541078 DOI: 10.3390/life11101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer, as the second leading cause of death worldwide, is a major public health concern that imposes a heavy social and economic burden. Effective approaches for either diagnosis or therapy of most cancers are still lacking. Dynamic monitoring and personalized therapy are the main directions for cancer research. Cancer-derived extracellular vesicles (EVs) are potential disease biomarkers. Cancer EVs, including small EVs (sEVs), contain unique biomolecules (protein, nucleic acid, and lipids) at various stages of carcinogenesis. In this review, we discuss the biogenesis of sEVs, and their functions in cancer, revealing the potential applications of sEVs as cancer biomarkers.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Ruichen Zhao
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Xueqiao Jiao
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Longyuan Wu
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Yuxuan Wei
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Fuxiu Shi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Junpei Zhong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-8636-0556
| |
Collapse
|
48
|
Jiao Y, Liu Q, Zhao H, Hu X, Sun J, Liu X. Changes and Prognostic Value of lncRNA CASC9 in Patients with Advanced Colon Cancer after Chemotherapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1858974. [PMID: 34589129 PMCID: PMC8476242 DOI: 10.1155/2021/1858974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/29/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Colon cancer (CC) shows a gradual increasing incidence in recent years, and chemotherapy is a frequently adopted treatment for patients with middle or advanced colon cancer (ACC), but it lacks prognostic markers after CC. METHODS The changes of lncRNA CASC9 in 58 patients with CC were determined using a real-time quantitative PCR (qRT-PCR) assay before and after chemotherapy, and the correlation of serum lncRNA CASC9 with efficacy of FOLFOX4 regimen (oxaliplatin + calcium folinate + fluorouracil) was analyzed. The patients were followed up to understand the association of lncRNA CASC9 with overall survival (OS) and progression-free survival (PFS). RESULTS Patients with CC showed notably higher lncRNA CASC9 expression than controls, and lncRNA CASC9 presented an association with the clinical stage of the patients. In addition, lncRNA CASC9 demonstrated a clinical value in predicting efficacy on patients and acted as one independent prognostic factor for PFS in patients with ACC. CONCLUSIONS With increased expression of serum lncRNA CASC9, patients with ACC suffered an unfavorable chemotherapy effect. In addition, serum lncRNA CASC9 is a promising sensitive indicator for prediction of ACC and is related to the clinical efficacy and prognosis of patients.
Collapse
Affiliation(s)
- Yingwei Jiao
- Department of Proctology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi 712000, China
| | - Qiang Liu
- Department of Proctology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi 712000, China
| | - Hongbo Zhao
- Department of Proctology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi 712000, China
| | - Xianzhen Hu
- Four Departments of General Surgery, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi 712000, China
| | - Jinlong Sun
- Department of Proctology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi 712000, China
| | - Xiaohong Liu
- Department of Traditional Chinese Medicine, Baoji Maternal and Child Health Care Hospital, Baoji, Shaanxi 721000, China
| |
Collapse
|
49
|
Zhang K, Liu H, Yu M, Zhao H, Yang N, Bi X, Sun L, Lin R, Lü G. Upregulated LINC01667 Expression Is Correlated With Poor Prognosis in Hepatocellular Carcinoma. Front Oncol 2021; 11:650173. [PMID: 34458133 PMCID: PMC8397520 DOI: 10.3389/fonc.2021.650173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022] Open
Abstract
The development of hepatocellular carcinoma (HCC) is a complex pathological process. Long intergenic non–protein-coding RNA 1667 (LINC01667, also known as MGC38584) plays an oncogenic role in several human cancers; however, its functional role in HCC tumorigenesis remains unknown. Here, we first evaluated the gene expression levels of LINC01667 in HCC using data from The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis (GEPIA) databases. We then elucidated the association between LINC01667 gene expression levels and the survival rates of patients with HCC. We detected the effect of LINC01667 on the malignant phenotypes (cell proliferation, migration, invasion and apoptosis etc.) and the MAPK and PI3K/AKT/mTOR signaling pathways of HepG2, SMMC-7721 and HUH7 cells. We also analyzed the sensitivity of HepG2, SMMC-7721 and HUH7 with different expression levels of LINC01667 to anti-HCC drugs in vitro. Based on data from the aforementioned databases and our experiments in vitro, we found that LINC01667 was overexpressed in HCC, and that patients with high LINC01667 levels had a remarkably poor overall survival rate. In addition, inhibition of LINC01667 expression suppressed the proliferation, migration and invasion of HepG2 and SMMC-7721 cells and promoted their apoptosis in vitro. In contrast, overexpression of LINC01667 promoted the proliferation, migration and invasion of HUH7 cells and suppressed their apoptosis in vitro. ChIRP-seq (chromatin isolation by RNA purification) showed that LINC01667 bound to MEG3, and downregulated the expression of MEG3. In addition, western blotting showed that LINC01667 could activate the NF-κB pathway to promote cancer progression. In conclusion, we report that LINC01667 is an important oncogene in HCC and may be used as a potential diagnostic and prognostic biomarker of HCC.
Collapse
Affiliation(s)
- Kainan Zhang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Graduate Academy, Xinjiang Medical University, Urumqi, China
| | - Hui Liu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mengsi Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ning Yang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaojuan Bi
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Sun
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guodong Lü
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,College of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
50
|
Peng XF, Huang SF, Chen LJ, Xu L, Ye WC. Targeting epigenetics and lncRNAs in liver disease: From mechanisms to therapeutics. Pharmacol Res 2021; 172:105846. [PMID: 34438063 DOI: 10.1016/j.phrs.2021.105846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Early onset and progression of liver diseases can be driven by aberrant transcriptional regulation. Different transcriptional regulation processes, such as RNA/DNA methylation, histone modification, and ncRNA-mediated targeting, can regulate biological processes in healthy cells, as well also under various pathological conditions, especially liver disease. Numerous studies over the past decades have demonstrated that liver disease has a strong epigenetic component. Therefore, the epigenetic basis of liver disease has challenged our knowledge of epigenetics, and epigenetics field has undergone an important transformation: from a biological phenomenon to an emerging focus of disease research. Furthermore, inhibitors of different epigenetic regulators, such as m6A-related factors, are being explored as potential candidates for preventing and treating liver diseases. In the present review, we summarize and discuss the current knowledge of five distinct but interconnected and interdependent epigenetic processes in the context of hepatic diseases: RNA methylation, DNA methylation, histone methylation, miRNAs, and lncRNAs. Finally, we discuss the potential therapeutic implications and future challenges and ongoing research in the field. Our review also provides a perspective for identifying therapeutic targets and new hepatic biomarkers of liver disease, bringing precision research and disease therapy to the modern era of epigenetics.
Collapse
Affiliation(s)
- Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Shi-Feng Huang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Lingqing Xu
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Wen-Chu Ye
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|