1
|
Hashemi M, Mohandesi Khosroshahi E, Asadi S, Tanha M, Ghatei Mohseni F, Abdolmohammad Sagha R, Taheri E, Vazayefi P, Shekarriz H, Habibi F, Mortazi S, Khorrami R, Nabavi N, Rashidi M, Taheriazam A, Rahimzadeh P, Entezari M. Emerging roles of non-coding RNAs in modulating the PI3K/Akt pathway in cancer. Noncoding RNA Res 2025; 10:1-15. [PMID: 39296640 PMCID: PMC11406677 DOI: 10.1016/j.ncrna.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Forough Ghatei Mohseni
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramina Abdolmohammad Sagha
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Paria Vazayefi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helya Shekarriz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Habibi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Mortazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Independent Researchers, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Razipour M, Jamali Z, Khorsand M, Zargar M, Maghsudlu M, Ghadami E, Shakoori A. Circular RNAs in laryngeal cancer. Clin Chim Acta 2025; 564:119916. [PMID: 39153653 DOI: 10.1016/j.cca.2024.119916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Laryngeal cancer remains a significant global health concern, with poor prognosis for advanced-stage disease highlighting the need for novel diagnostic, prognostic, and therapeutic approaches. Circular RNAs (circRNAs), a class of covalently closed non-coding RNAs, have emerged as important regulators of gene expression and cellular processes in various cancers, including laryngeal cancer. This review summarizes the current understanding of circRNAs in laryngeal cancer, covering their biogenesis, regulatory mechanisms, and potential clinical applications. We explore the diverse functions of circRNAs, including their roles as miRNA sponges, protein interactors, and direct mRNA regulators, and their influence on key cellular processes such as proliferation, invasion, and metastasis. The review highlights promising circRNAs as diagnostic and prognostic biomarkers, as well as potential therapeutic targets. We also outline current strategies for circRNA modulation, including suppression techniques like RNA interference and CRISPR/Cas systems, and overexpression methods using vectors and synthetic circRNAs.
Collapse
Affiliation(s)
- Masoumeh Razipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Khorsand
- Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Zargar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohaddese Maghsudlu
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shakoori
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, Cancer Institute of Iran, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Tashakori N, Mikhailova MV, Mohammedali ZA, Mahdi MS, Ali Al-Nuaimi AM, Radi UK, Alfaraj AM, Kiasari BA. Circular RNAs as a novel molecular mechanism in diagnosis, prognosis, therapeutic target, and inhibiting chemoresistance in breast cancer. Pathol Res Pract 2024; 263:155569. [PMID: 39236498 DOI: 10.1016/j.prp.2024.155569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Breast cancer (BC) is the most common cancer among women, characterized by significant heterogeneity. Diagnosis of the disease in the early stages and appropriate treatment plays a crucial role for these patients. Despite the available treatments, many patients due to drug resistance do not receive proper treatments. Recently, circular RNAs (circRNAs), a type of non-coding RNAs (ncRNAs), have been discovered to be involved in the progression and resistance to drugs in BC. CircRNAs can promote or inhibit malignant cells by their function. Numerous circRNAs have been discovered to be involved in the proliferation, invasion, and migration of tumor cells, as well as the progression, pathogenesis, tumor metastasis, and drug resistance of BC. Circular RNAs can also serve as a biomarker for diagnosing, predicting prognosis, and targeting therapy. In this review, we present an outline of the variations in circRNAs expression in various BCs, the functional pathways, their impact on the condition, and their uses in clinical applications.
Collapse
Affiliation(s)
- Nafiseh Tashakori
- Department of Medicine, Faculty of Internal Medicine,Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maria V Mikhailova
- Department of Prosthetic Dentistry, I.M. Schenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Bahman Abedi Kiasari
- Microbiology & Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Liu D, Wang X, Cui L, Zhang M, Lei K, Aierken N. SPECC1 as a pan-cancer biomarker: unraveling its role in drug sensitivity and resistance mechanisms. Discov Oncol 2024; 15:552. [PMID: 39397181 PMCID: PMC11471742 DOI: 10.1007/s12672-024-01426-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Previous studies have shown a relationship between SPECC1 and the prognosis of breast cancer, indicating a potential function for SPECC1 in the initiation and progression of cancer. However, the role played by SPECC1 in other tumors is not yet known. Therefore, we used bioinformatics techniques to conduct a thorough investigation into the possible mechanism of SPECC1 in pan-cancer, analyzing data reported in the literature as well as databases such as GTEx and CCLE, cBioportal, TCGA, and UCSC XENA. Comparing the results with matching normal tissues, the majority of cancers, including pancreatic adenocarcinoma (PAAD) and breast invasive carcinoma (BRCA), exhibited higher levels of SPECC1, while hepatocellular carcinoma (HCC) showed lower expression levels. SPECC1 was also found to be genetically mutated in endometrial cancer, sarcoma, and esophageal cancer. The prognosis of lung adenocarcinoma, kidney papillary cell carcinoma, and breast cancer is highly correlated with dysregulation of SPECC1 expression. This work helps guide clinical therapy by highlighting the sensitivity of tumor-treating medicines and the prognostic importance of SPECC1 in various malignancies. KEGG pathway enrichment analysis revealed focused adhesion, collagen-containing extracellular matrix (collagen), and the primary enrichment domains for SPECC1-related genes. These findings were obtained through gene annotation (GO) examination of SPECC1 expression. Primary mediators of the cytokine-cytokine receptor interaction include PICOC1-associated genes, cell-substrate junction genes, and extracellular matrix containing collagen. PICOC1-associated genes primarily mediate the PI3K-AKT signaling pathway. Drug sensitivity assay showed that SPECC1 high-expressing cell lines were more sensitive to docetaxel, doxorubicin, etc. In conclusion, the current study shows how SPECC1 is expressed in different cancers and how this expression relates to the prognosis of the tumor. It also revealed the mutations and copy number variations of SPECC1 in various tumors and its potential involvement in cellular pathway regulatory networks and cytological processes. This study examines the relationship between immune genes, cellular infiltration, and immunological scores in the tumor microenvironment, which explain the severity of the disease. This study looks at the response of SPEC1 expression to anticancer therapy. Explains the prognostic significance and drug response of SPECC-1.
Collapse
Affiliation(s)
- Dongwei Liu
- Department of General Practice, The seventh Affiliated Hospital of sun yat-sen university, Shenzhen, 518107, China
| | - Xidi Wang
- Department of Thyroid and Breast surgery, The seventh Affiliated Hospital of sun yat-sen university, Shenzhen, 518107, China
| | - Lingfei Cui
- Department of Thyroid and Breast surgery, The seventh Affiliated Hospital of sun yat-sen university, Shenzhen, 518107, China
| | - Mingxia Zhang
- Department of Thyroid and Breast surgery, The seventh Affiliated Hospital of sun yat-sen university, Shenzhen, 518107, China
| | - Kefeng Lei
- Department of Thyroid and Breast surgery, The seventh Affiliated Hospital of sun yat-sen university, Shenzhen, 518107, China.
| | - Nijiati Aierken
- Department of Thyroid and Breast surgery, The seventh Affiliated Hospital of sun yat-sen university, Shenzhen, 518107, China.
| |
Collapse
|
5
|
Fang L, Zhu Z, Han M, Li S, Kong X, Yang L. Unlocking the potential of extracellular vesicle circRNAs in breast cancer: From molecular mechanisms to therapeutic horizons. Biomed Pharmacother 2024; 180:117480. [PMID: 39357330 DOI: 10.1016/j.biopha.2024.117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Breast cancer remains the leading cause of cancer-related morbidity and mortality among women worldwide, underscoring the urgent need for novel diagnostic and therapeutic strategies. This review explores the emerging roles of circular RNAs (circRNAs) within extracellular vesicles (exosomes) in breast cancer. circRNAs, known for their stability and tissue-specific expression, are aberrantly expressed in breast cancer and regulate critical cellular processes such as proliferation, migration, and apoptosis, positioning them as promising biomarkers. Exosomes facilitate intercellular communication by delivering circRNAs, reflecting the physiological and pathological state of their source cells. This review highlights the multifaceted roles of exosomal circRNAs in promoting tumor growth, metastasis, and drug resistance through their modulation of tumor metabolism, the tumor microenvironment, and immune responses. In particular, we emphasize their contributions to chemotherapy resistance and their potential as both diagnostic markers and therapeutic targets. By synthesizing current research, this review provides novel insights into the clinical applications of exosomal circRNAs, offering a foundation for future studies aimed at improving breast cancer management through non-invasive diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Lijuan Fang
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Zehua Zhu
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Mingyue Han
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Shaojie Li
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lusen Yang
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China.
| |
Collapse
|
6
|
Jiang M, Bai H, Fang S, Zhou C, Shen W, Gong Z. CircLIFRSA/miR-1305/PTEN axis attenuates malignant cellular processes in non-small cell lung cancer by regulating AKT phosphorylation. Mol Cancer 2024; 23:208. [PMID: 39342185 PMCID: PMC11438201 DOI: 10.1186/s12943-024-02120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is typically diagnosed at advanced stages, which limits the effectiveness of therapeutic interventions. The present study aimed to explore the role of the newly identified circLIFRSA in the PTEN/AKT signaling pathway and its involvement in the malignant processes of NSCLC. METHODS CircLIFRSA expression was identified through microarray analysis, and its levels in NSCLC samples were quantified by RT-qPCR. The impact of circLIFRSA on cell growth, proliferation, apoptosis, and cell cycle were evaluated by MTT assay, colony formation assay, and flow cytometry. Additionally, Western blotting was employed to analyze the expression of PTEN and phosphorylated AKT (pAKT) in NSCLC cells. RESULTS The expression of circLIFRSA was found to be significantly reduced in NSCLC cells and tissues. This downregulation correlated with various clinicopathological characteristics and indicated its potential as an early diagnostic biomarker for NSCLC. Importantly, circLIFRSA was shown to inhibit cell growth and proliferation while promoting apoptosis in NSCLC cells. Mechanically, circLIFRSA was found to attenuate the malignant processes of NSCLC cells via the miR-1305/PTEN axis and the suppression of AKT phosphorylation. CONCLUSIONS These findings indicate that circLIFRSA/miR-1305/PTEN axis attenuates malignant processes by regulating AKT phosphorylation, and provide new insights into the potential of circLIFRSA as a biomarker for early diagnosis and as a promising therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Meina Jiang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Huihui Bai
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chengwei Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Weiyu Shen
- Department of Thoracic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Zhaohui Gong
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China.
| |
Collapse
|
7
|
Khorasani ABS, Hafezi N, Sanaei MJ, Jafari-Raddani F, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/AKT/mTOR signaling pathway in breast cancer: Review of clinical trials and latest advances. Cell Biochem Funct 2024; 42:e3998. [PMID: 38561964 DOI: 10.1002/cbf.3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer mortality in women. As the phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a wide range of physiological functions of cells including growth, proliferation, motility, and angiogenesis, any alteration in this axis could induce oncogenic features; therefore, numerous preclinical and clinical studies assessed agents able to inhibit the components of this pathway in BC patients. To the best of our knowledge, this is the first study that analyzed all the registered clinical trials investigating safety and efficacy of the PI3K/AKT/mTOR axis inhibitors in BC. Of note, we found that the trends of PI3K inhibitors in recent years were superior as compared with the inhibitors of either AKT or mTOR. However, most of the trials entering phase III and IV used mTOR inhibitors (majorly Everolimus) followed by PI3K inhibitors (majorly Alpelisib) leading to the FDA approval of these drugs in the BC context. Despite favorable efficacies, our analysis shows that the majority of trials are utilizing PI3K pathway inhibitors in combination with hormone therapy and chemotherapy; implying monotherapy cannot yield huge clinical benefits, at least partly, due to the activation of compensatory mechanisms. To emphasize the beneficial effects of these inhibitors in combined-modal strategies, we also reviewed recent studies which investigated the conjugation of nanocarriers with PI3K inhibitors to reduce harmful toxicities, increase the local concentration, and improve their efficacies in the context of BC therapy.
Collapse
Affiliation(s)
| | - Nasim Hafezi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Almalki WH, Almujri SS. The dual roles of circRNAs in Wnt/β-Catenin signaling and cancer progression. Pathol Res Pract 2024; 255:155132. [PMID: 38335783 DOI: 10.1016/j.prp.2024.155132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Cancer, a complex pathophysiological condition, arises from the abnormal proliferation and survival of cells due to genetic mutations. Dysregulation of cell cycle control, apoptosis, and genomic stability contribute to uncontrolled growth and metastasis. Tumor heterogeneity, microenvironmental influences, and immune evasion further complicate cancer dynamics. The intricate interplay between circular RNAs (circRNAs) and the Wnt/β-Catenin signalling pathway has emerged as a pivotal axis in the landscape of cancer biology. The Wnt/β-Catenin pathway, a critical regulator of cell fate and proliferation, is frequently dysregulated in various cancers. CircRNAs, a class of non-coding RNAs with closed-loop structures, have garnered increasing attention for their diverse regulatory functions. This review systematically explores the intricate crosstalk between circRNAs and the Wnt/β-Catenin pathway, shedding light on their collective impact on cancer initiation and progression. The review explores the diverse mechanisms through which circRNAs modulate the Wnt/β-Catenin pathway, including sponging microRNAs, interacting with RNA-binding proteins, and influencing the expression of key components in the pathway. Furthermore, the review highlights specific circRNAs implicated in various cancer types, elucidating their roles as either oncogenic or tumour-suppressive players in the context of Wnt/β-Catenin signaling. The intricate regulatory networks formed by circRNAs in conjunction with the Wnt/β-Catenin pathway are discussed, providing insights into potential therapeutic targets and diagnostic biomarkers. This comprehensive review delves into the multifaceted roles of circRNAs in orchestrating tumorigenesis through their regulatory influence on the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
9
|
Zhu J, Li Q, Wu Z, Xu W, Jiang R. Circular RNA-mediated miRNA sponge & RNA binding protein in biological modulation of breast cancer. Noncoding RNA Res 2024; 9:262-276. [PMID: 38282696 PMCID: PMC10818160 DOI: 10.1016/j.ncrna.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Circular RNAs (circRNAs) and small non-coding RNAs of the head-to-junction circle in the construct play critical roles in gene regulation and are significantly associated with breast cancer (BC). Numerous circRNAs are potential cancer biomarkers that may be used for diagnosis and prognosis. Widespread expression of circRNAs is regarded as a feature of gene expression in highly diverged eukaryotes. Recent studies show that circRNAs have two main biological modulation models: sponging and RNA-binding. This review explained the biogenesis of circRNAs and assessed emerging findings on their sponge function and role as RNA-binding proteins (RBPs) to better understand how their interaction alters cellular function in BC. We focused on how sponges significantly affect the phenotype and progression of BC. We described how circRNAs exercise the translation functions in ribosomes. Furthermore, we reviewed recent studies on RBPs, and post-protein modifications influencing BC and provided a perspective on future research directions for treating BC.
Collapse
Affiliation(s)
- Jing Zhu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qian Li
- Medical Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhongping Wu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rilei Jiang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
10
|
Sun Y, Liu Y, Chen H, Tan Y. Circular RNA circRHOBTB3 inhibits ovarian cancer progression through PI3K/AKT signaling pathway. Panminerva Med 2024; 66:36-46. [PMID: 32720791 DOI: 10.23736/s0031-0808.20.03957-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) have emerged as significant regulators in human cancers. We aimed to explore the functional role of circular RNA RHOBTB3 (circRHOBTB3) in ovarian cancer. METHODS The expression of circRHOBTB3 was detected by real-time quantitative PCR (RT-qPCR). Then, the localization of circRHOBTB3 in ovarian cancer cells was identified by cell fractionation assay. Cell proliferation, migration and invasion were measured by cell counting kit-8 (CCK-8), transwell migration and invasion assays, respectively. The protein expression of N-cadherin, vimentin and E-cadherin was measured by western blot. And the glucose consumption and lactate production were detected by a glucose colorimetric assay kit and a lactic acid production detection kit, respectively. The involvement mRNA and protein expression of glucose transporter 1 (GLUT1), hexokinase-2 (HK2) and lactate dehydrogenase A (LDHA) were determined by RT-qPCR and western blot, respectively. Besides, lentivectors for short hairpin RNA (shRNA) against circRHOBTB3 (sh-circRHOBTB3) or pcDNA-circRHOBTB3 were used to downregulate or upregulate circRHOBTB3 expression in an animal tumor model. The protein expression of phosphoinositide 3-kinase (PI3K), phospho-PI3K (p-PI3K), protein kinase B (AKT), phospho-AKT (p-AKT), mammalian target of rapamycin (mTOR) and phospho-mTOR (p-mTOR) was examined by western blot. The activator (740Y-P) and inhibitor (LY294002) of PI3K/AKT pathway were used to evaluate the contribution of PI3K/AKT. CircRHOBTB3 was downregulated in ovarian cancer tissues and cells. RESULTS Functionally, circRHOBTB3 overexpression could markedly suppress cell proliferation, metastasis, and glycolysis, whereas the opposite results could be observed in the deletion of circRHOBTB3. Additionally, xenograft experiment also identified the above results. Finally, we observed that circRHOBTB3 inhibited the progression of ovarian cancer via inactivating PI3K/AKT signaling pathway. CONCLUSIONS CircRHOBTB3 exerted a suppressor role and inhibited the tumorigenesis by inactivating PI3K/AKT pathway in ovarian cancer.
Collapse
Affiliation(s)
- Yalan Sun
- Department of Obstetrics, Luoyang Central Hospital, Zhengzhou University, Luoyang, China
| | - Yanfang Liu
- Department of Obstetrics, Luoyang Central Hospital, Zhengzhou University, Luoyang, China
| | - He Chen
- Department of Obstetrics, Luoyang Central Hospital, Zhengzhou University, Luoyang, China
| | - Yujie Tan
- Department of Obstetrics, Luoyang Central Hospital, Zhengzhou University, Luoyang, China -
| |
Collapse
|
11
|
Gao D, Cui C, Jiao Y, Zhang H, Li M, Wang J, Sheng X. Circular RNA and its potential diagnostic and therapeutic values in breast cancer. Mol Biol Rep 2024; 51:258. [PMID: 38302635 DOI: 10.1007/s11033-023-09172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women and still poses a significant threat to women worldwide. Recurrence of BC in situ, metastasis to distant organs, and resistance to chemotherapy are all attached to high mortality in patients with BC. Non-coding RNA (ncRNA) of the type known as "circRNA" links together from one end to another to create a covalently closed, single-stranded circular molecule. With characteristics including plurality, evolutionary conservation, stability, and particularity, they are extensively prevalent in various species and a range of human cells. CircRNAs are new and significant contributors to several kinds of disorders, including cardiovascular disease, multiple organ inflammatory responses and malignancies. Recent studies have shown that circRNAs play crucial roles in the occurrence of breast cancer by interacting with miRNAs to regulate gene expression at the transcriptional or post-transcriptional levels. CircRNAs offer the potential to be therapeutic targets for breast cancer treatment as well as prospective biomarkers for early diagnosis and prognosis of BC. Here, we are about to present an overview of the functions of circRNAs in the proliferation, invasion, migration, and resistance to medicines of breast cancer cells and serve as a promising resource for future investigations on the pathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Di Gao
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Can Cui
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yaoxuan Jiao
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Han Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Min Li
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Junjie Wang
- Department of Pathophysiology, Jiangsu University School of Medicine, Zhenjiang, 212013, Jiangsu, China
| | - Xiumei Sheng
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
12
|
Alimohammadi M, Gholinezhad Y, Mousavi V, Kahkesh S, Rezaee M, Yaghoobi A, Mafi A, Araghi M. Circular RNAs: novel actors of Wnt signaling pathway in lung cancer progression. EXCLI JOURNAL 2023; 22:645-669. [PMID: 37636026 PMCID: PMC10450211 DOI: 10.17179/excli2023-6209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 08/29/2023]
Abstract
Circular RNAs (CircRNAs) are a class of regulatory RNA transcripts, which are ubiquitously expressed in eukaryotes. CircRNA dysregulation has been shown to disrupt the interaction of the Wnt/β-catenin pathway, which regulates several biological processes involved in tumorigenesis, thereby contributing to the development and progression of cancer. Interactions of tumor-derived circRNAs with the Wnt/β-catenin signaling pathway provide both clinical diagnostic biomarkers and promising therapeutic targets. In this review, we outlined current evidence on the roles of circRNAs associated with the Wnt/β-catenin pathway in regulating lung cancer formation and development. We believe that our findings will assist in the advancement or establishment of circRNA-based lung cancer therapeutic approaches.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Araghi
- Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
13
|
Wang Z, Deng H, Jin Y, Luo M, Huang J, Wang J, Zhang K, Wang L, Zhou J. Circular RNAs: biology and clinical significance of breast cancer. RNA Biol 2023; 20:859-874. [PMID: 37882644 PMCID: PMC10730165 DOI: 10.1080/15476286.2023.2272468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Circular RNAs (circRNAs) are novel noncoding RNAs with covalently closed-loop structures that can regulate eukaryotic gene expression. Due to their stable structure, circRNAs are widely distributed in the cytoplasm and have important biological functions, including as microRNA sponges, RNA-binding protein conjugates, transcription regulators, and translation templates. Breast cancer is among the most common malignant cancers diagnosed in women worldwide. Despite the development of comprehensive treatments, breast cancer still has high mortality rates. Recent studies have unmasked critical roles for circRNAs in breast cancer as regulators of tumour initiation, progression, and metastasis. Further, research has revealed that some circRNAs have the potential for use as diagnostic and prognostic biomarkers in clinical practice. Herein, we review the biogenesis and biological functions of circRNAs, as well as their roles in different breast cancer subtypes. Moreover, we provide a comprehensive summary of the clinical significance of circRNAs in breast cancer. CircRNAs are believed to be a hot focus in basic and clinical research of breast cancer, and innovative future research directions of circRNAs could be used as biomarkers, therapeutic targets, or novel drugs.Abbreviations: CeRNA: Competitive endogenous RNA; ciRNA: Circular intronic RNA; circRNA: Circular RNA; EIciRNA: Exon-intron circRNA; EMT: Epithelial-mesenchymal transition; IRES: Internal ribosome entry site; lncRNA: Long non-coding RNA; miRNA: MicroRNA; MRE: MiRNA response element; ncRNA: Non-coding RNA; RBP: RNA-binding protein; RNA-seq: RNA sequencing; RT-PCR: Reverse transcription-polymerase chain reaction.
Collapse
Affiliation(s)
- Zhanwei Wang
- Department of Breast Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Hao Deng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Jin
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Department of Emergency, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Hussen BM, Mohamadtahr S, Abdullah SR, Hidayat HJ, Rasul MF, Hama Faraj GS, Ghafouri-Fard S, Taheri M, Khayamzadeh M, Jamali E. Exosomal circular RNAs: New player in breast cancer progression and therapeutic targets. Front Genet 2023; 14:1126944. [PMID: 36926585 PMCID: PMC10011470 DOI: 10.3389/fgene.2023.1126944] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Breast cancer is the most prevalent type of malignancy among women. Exosomes are extracellular vesicles of cell membrane origin that are released via exocytosis. Their cargo contains lipids, proteins, DNA, and different forms of RNA, including circular RNAs. Circular RNAs are new class of non-coding RNAs with a closed-loop shape involved in several types of cancer, including breast cancer. Exosomes contained a lot of circRNAs which are called exosomal circRNAs. By interfering with several biological pathways, exosomal circRNAs can have either a proliferative or suppressive role in cancer. The involvement of exosomal circRNAs in breast cancer has been studied with consideration to tumor development and progression as well as its effects on therapeutic resistance. However, its exact mechanism is still unclear, and there have not been available clinical implications of exo-circRNAs in breast cancer. Here, we highlight the role of exosomal circRNAs in breast cancer progression and to highlight the most recent development and potential of circRNAas therapeutic targets and diagnostics for breast cancer.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Medical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Sayran Mohamadtahr
- Department of Medical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaimany, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Khayamzadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Academy of Medical Sciences, Tehran, Iran
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Hashemi M, Arani HZ, Orouei S, Fallah S, Ghorbani A, Khaledabadi M, Kakavand A, Tavakolpournegari A, Saebfar H, Heidari H, Salimimoghadam S, Entezari M, Taheriazam A, Hushmandi K. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed Pharmacother 2022; 155:113774. [DOI: 10.1016/j.biopha.2022.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
|
16
|
Almouh M, Razmara E, Bitaraf A, Ghazimoradi MH, Hassan ZM, Babashah S. Circular RNAs play roles in regulatory networks of cell signaling pathways in human cancers. Life Sci 2022; 309:120975. [PMID: 36126723 DOI: 10.1016/j.lfs.2022.120975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
AIMS Circular RNAs (circRNAs) are endogenous covalently closed non-coding RNAs produced by reverse splicing of linear RNA. These molecules are highly expressed in mammalian cells and show cell/tissue-specific expression patterns. They are also significantly dysregulated in various cancers and function as oncogenes or tumor suppressors. Emerging evidence reveals that circRNAs contribute to cancer progression via modulating different cell signaling pathways. Nevertheless, the functional significance of circRNAs in cell signaling pathways regulation is still largely elusive. Considering this, shedding light on the multi-pathway effects of circRNAs may improve our understanding of targeted cancer therapy. Here, we discuss how circRNAs regulate the major cell signaling pathways in human cancers. MATERIALS AND METHODS We adopted a systematic search in PubMed using the following MeSH terms: circRNAs, non-coding RNAs, lncRNAs, exosomal circRNAs, cancer, and cell signaling. KEY FINDINGS We discussed different roles of circRNAs during tumorigenesis in which circRNAs affect tumor development through activating or inactivating certain cell signaling pathways via molecular interactions using various signaling pathways. We also discussed how crosstalk between circRNAs and lncRNAs modulate tumorigenesis and provides a resource for the identification of cancer therapeutic targets. SIGNIFICANCE We here elucidated how circRNAs can modulate different cell signaling pathways and play roles in cancer. This can broaden our horizons toward introducing promising prognostic, diagnostic, and therapeutic targets.
Collapse
Affiliation(s)
- Mansour Almouh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
17
|
Wang S, Xiao F, Li J, Fan X, He Z, Yan T, Yang M, Yang D. Circular RNAs Involved in the Regulation of the Age-Related Pathways. Int J Mol Sci 2022; 23:ijms231810443. [PMID: 36142352 PMCID: PMC9500598 DOI: 10.3390/ijms231810443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently circular noncoding RNAs that have been extensively studied in recent years. Aging is a process related to functional decline that is regulated by signal transduction. An increasing number of studies suggest that circRNAs can regulate aging and multiple age-related diseases through their involvement in age-related signaling pathways. CircRNAs perform several biological functions, such as acting as miRNA sponges, directly interacting with proteins, and regulating transcription and translation to proteins or peptides. Herein, we summarize research progress on the biological functions of circRNAs in seven main age-related signaling pathways, namely, the insulin-insulin-like, PI3K-AKT, mTOR, AMPK, FOXO, p53, and NF-κB signaling pathways. In these pathways, circRNAs mainly function as miRNA sponges. In this review, we suggest that circRNAs are widely involved in the regulation of the main age-related pathways and are potential biomarkers for aging and age-related diseases.
Collapse
Affiliation(s)
- Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (M.Y.); (D.Y.); Tel.: +86-28-86290991 (M.Y.)
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (M.Y.); (D.Y.); Tel.: +86-28-86290991 (M.Y.)
| |
Collapse
|
18
|
Wang L, Tan Y, Chen J, Zhu Z, Zhu Y, Sun Q, Dong H, Ai C, He G, Liu Y. CircABCC1 promotes the development of glioma by sponging miR‐591 and modulating high‐mobility group A2. Ann N Y Acad Sci 2022; 1511:107-118. [PMID: 35000195 DOI: 10.1111/nyas.14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Lei Wang
- Department of Human Anatomy, Histology and Embryology, and Institute of Neurobiology Health Science Center, Xian Jiaotong University Xi'an Shanxi China
- Department of Neurology Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Ying Tan
- Department of Laboratory Medicine Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Jun Chen
- Department of Neurology Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Ziyu Zhu
- Department of Neurology Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Yuting Zhu
- Department of Neurology Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Qiang Sun
- Department of Neurology Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Hao Dong
- Department of Neurology Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Chunqi Ai
- Department of Mental Health Centre Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Guohou He
- Department of Neurology Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Yong Liu
- Department of Human Anatomy, Histology and Embryology, and Institute of Neurobiology Health Science Center, Xian Jiaotong University Xi'an Shanxi China
| |
Collapse
|
19
|
Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:122-134. [PMID: 34513299 PMCID: PMC8413675 DOI: 10.1016/j.omtn.2021.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/02/2021] [Indexed: 12/05/2022]
Abstract
Breast cancer (BC) is one of the most common malignancies among women worldwide with a high incidence of recurrence and metastasis. In this study, we demonstrate that hsa_circ_0068631, a circRNA generated from the transferrin receptor (TFRC), is upregulated in BC tissues and cell lines. Knockdown of hsa_circ_0068631 inhibited the proliferation and migration of BC cells in vitro and in vivo. Mechanistically, an RNA pull-down assay and RNA immunoprecipitation assay revealed that eukaryotic translation initiation factor 4A3 (EIF4A3) could bind to hsa_circ_0068631 and c-Myc mRNA. Additionally, the expression of hsa_circ_0068631 was positively correlated with c-Myc, and the upregulation of hsa_circ_0068631 was a crucial factor for the dysregulation of c-Myc. Through an actinomycin D assay, we confirmed that the mRNA stability of c-Myc was influenced by hsa_circ_0068631 and EIF4A3. Furthermore, hsa_circ_0068631 could recruit EIF4A3 to increase c-Myc mRNA stability. Rescue assays manifesting depletion of c-Myc rescued the promotive effect of hsa_circ_0068631 overexpression on biological activities in BC. In conclusion, to our knowledge, this study is the first to unveil the role of hsa_circ_0068631 and the hsa_circ_0068631/EIF4A3/c-Myc axis in BC, providing a new target for BC treatment.
Collapse
Affiliation(s)
- Xuehui Wang
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Clinical Medical College of Shanghai Tenth People’s Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Minghui Chen
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lin Fang
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Clinical Medical College of Shanghai Tenth People’s Hospital, Nanjing Medical University, Nanjing 211166, China
- Corresponding author: Lin Fang, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
20
|
Xue C, Li G, Lu J, Li L. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduct Target Ther 2021; 6:400. [PMID: 34815385 PMCID: PMC8611092 DOI: 10.1038/s41392-021-00788-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs), covalently closed noncoding RNAs, are widely expressed in eukaryotes and viruses. They can function by regulating target gene expression, linear RNA transcription and protein generation. The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays key roles in many biological and cellular processes, such as cell proliferation, growth, invasion, migration, and angiogenesis. It also plays a pivotal role in cancer progression. Emerging data suggest that the circRNA/PI3K/AKT axis modulates the expression of cancer-associated genes and thus regulates tumor progression. Aberrant regulation of the expression of circRNAs in the circRNA/PI3K/AKT axis is significantly associated with clinicopathological characteristics and plays an important role in the regulation of biological functions. In this review, we summarized the expression and biological functions of PI3K-AKT-related circRNAs in vitro and in vivo and assessed their associations with clinicopathological characteristics. We also further discussed the important role of circRNAs in the diagnosis, prognostication, and treatment of cancers.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
21
|
Huang Q, He Y, Zhang X, Guo L. Circular RNA hsa_circ_0103552 Promotes Proliferation, Migration, and Invasion of Breast Cancer Cells through Upregulating Cysteine-Rich Angiogenic Inducer 61 (CYR61) Expression via Sponging MicroRNA-515-5p. TOHOKU J EXP MED 2021; 255:171-181. [PMID: 34707022 DOI: 10.1620/tjem.255.171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Circular RNAs (circRNAs) exert a significant regulatory function on tumor progression. This work intends to probe into the biological function and regulatory mechanism of circRNA_0103552 (circ_0103552) in breast cancer carcinogenesis. In this study, circ_0103552, microRNA-515-5p (miR-515-5p), and cysteine-rich angiogenic inducer 61 (CYR61) mRNA expressions in breast cancer cells and tissues were determined by quantitative real-time polymerase chain reaction, followed by cell counting kit 8 and Transwell experiments to examine the multiplication, migration, and invasion of breast cancer cells. Circular RNA Interactome database and StarBase database were searched, and dual-luciferase reporter gene experiments were applied to verify the targeting relationship between circ_0103552 and miR-515-5p, and between miR-515-5p and CYR61, and Western blot was adopted to the regulatory function of circ_0103552 and miR-515-5p on CYR61 protein expression. Circ_0103552 expression was found to be remarkably up-modulated in breast cancer tissues and cells, and circ_0103552 overexpression facilitated the multiplication, migration, and invasion of breast cancer cells, while knocking down circ_0103552 induced the opposite effects. Mechanistically, circ_0103552 could sponge miR-515-5p and restrained its expression in breast cancer cells. MiR-515-5p could counteract the functions of circ_0103552 in breast cancer cells. Additionally, CYR61 was revealed to be a downstream target of miR-515-5p in breast cancer cells. In summary, this study shows that circ_0103552 up-modulates CYR61 expression by targeting miR-515-5p and thus facilitates the multiplication, migration, and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Qi Huang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University
| | - Yujun He
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University
| | - Xiaohua Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University
| | - Lingji Guo
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University
| |
Collapse
|
22
|
Hu X, Wang P, Qu C, Zhang H, Li L. Circular RNA Circ_0000677 promotes cell proliferation by regulating microRNA-106b-5p/CCND1 in non-small cell lung cancer. Bioengineered 2021; 12:6229-6239. [PMID: 34519258 PMCID: PMC8806897 DOI: 10.1080/21655979.2021.1965697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recently, circular RNAs (circRNAs) have become an intense focus of research and large numbers of circRNAs have been identified, awaiting functional elucidation. Thus, the present study aims to examine the regulation of circRNAs and its molecular mechanism in lung cancer growth. Here, we show that circular RNA circ_0000677 was overexpressed and correlated with poor prognosis in non‐small cell lung cancer (NSCLC) patients. Functionally, circ_0000677 knockdown markedly inhibited proliferation of NSCLC cells by observing of immunofluorescence staining of Ki67, clone formation assay, and xenograft experiments. In mechanism, circ_0000677 acted as a sponge of microRNA-106b and further regulated CCDND1 gene expression in NSCLC cells by dual luciferase activity assay and their expression examination. Taken together, these findings suggest a role for circ_0000677/miR-106b/CCND1 regulation axis in promoting NSCLC growth and progression.
Collapse
Affiliation(s)
- Xin Hu
- Department Of Internal Medicine, Nantong Maternity And Child Health Hospital, Nantong, China
| | - Ping Wang
- Department Of Internal Medicine, Nantong Maternity And Child Health Hospital, Nantong, China
| | - Chen Qu
- Department Of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haibo Zhang
- Department Of Internal Medicine, Nantong Maternity And Child Health Hospital, Nantong, China
| | - Liang Li
- Department Of Emergency Medicine, Shanghai Seventh People's Hospital, Shanghai, China
| |
Collapse
|
23
|
Liu Z, Li M. Circular RNAs and their role in renal cell carcinoma: a current perspective. Cancer Cell Int 2021; 21:469. [PMID: 34488780 PMCID: PMC8422676 DOI: 10.1186/s12935-021-02181-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a new class of long non-coding RNAs, that results from a special type of alternative splicing referred to as back-splicing. They are widely distributed in eukaryotic cells and demonstrate tissue-specific expression patterns in humans. CircRNAs actively participate in various important biological activities like gene transcription, pre-mRNA splicing, translation, sponging miRNA and proteins, etc. With such diverse biological functions, circRNAs not only play a crucial role in normal human physiology, as well as in multiple diseases, including cancer. In this review, we summarized our current understanding of circRNAs and their role in renal cell carcinoma (RCC), the most common cancer of kidneys. Studies have shown that the expression level of several circRNAs are considerably varied in RCC samples and RCC cell lines suggesting the potential role of these circRNAs in RCC progression. Several circRNAs promote RCC development and progression mostly via the miRNA/target gene axis making them ideal candidates for novel anti-cancer therapy. Apart from these, there are a few circRNAs that are significantly downregulated in RCC and overexpression of these circRNAs leads to suppression of RCC growth. Differential expression patterns and novel functions of circRNAs in RCC suggest that circRNAs can be utilized as potential biomarkers and therapeutic targets for RCC therapy. However, our current understanding of the role of circRNA in RCC is still in its infancy and much comprehensive research is needed to achieve clinical translation of circRNAs as biomarkers and therapeutic targets in developing effective treatment options for RCC.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
24
|
Non-Coding RNAs in Pancreatic Cancer Diagnostics and Therapy: Focus on lncRNAs, circRNAs, and piRNAs. Cancers (Basel) 2021; 13:cancers13164161. [PMID: 34439315 PMCID: PMC8392713 DOI: 10.3390/cancers13164161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Pancreatic cancer is the seventh leading cause of cancer related death worldwide. In the United States, pancreatic cancer remains the fourth leading cause of cancer related death. The lack of early diagnosis and effective therapy contributes to the high mortality of pancreatic cancer. Therefore, there is an urgent need to find novel and effective biomarkers for the diagnosis and treatment of pancreatic cancer. Long noncoding RNA, circular RNAs and piwi-interacting RNA are non-coding RNAs and could become new biomarkers for the diagnosis, prognosis, and treatment of pancreatic cancer. We summarize the new findings on the roles of these non-coding RNAs in pancreatic cancer diagnosis, prognosis and targeted therapy. Abstract Pancreatic cancer is an aggressive malignance with high mortality. The lack of early diagnosis and effective therapy contributes to the high mortality of this deadly disease. For a long time being, the alterations in coding RNAs have been considered as major targets for diagnosis and treatment of pancreatic cancer. However, with the advances in high-throughput next generation of sequencing more alterations in non-coding RNAs (ncRNAs) have been discovered in different cancers. Further mechanistic studies have demonstrated that ncRNAs such as long noncoding RNAs (lncRNA), circular RNAs (circRNA) and piwi-interacting RNA (piRNA) play vital roles in the regulation of tumorigenesis, tumor progression and prognosis. In recent years, increasing studies have focused on the roles of ncRNAs in the development and progression of pancreatic cancer. Novel findings have demonstrated that lncRNA, circRNA, and piRNA are critically involved in the regulation of gene expression and cellular signal transduction in pancreatic cancer. In this review, we summarize the current knowledge of roles of lncRNA, circRNA, and piRNA in the diagnosis and prognosis of pancreatic cancer, and molecular mechanisms underlying the regulation of these ncRNAs and related signaling in pancreatic cancer therapy. The information provided here will help to find new strategies for better treatment of pancreatic cancer.
Collapse
|
25
|
Xu J, Chen X, Sun Y, Shi Y, Teng F, Lv M, Liu C, Jia X. The Regulation Network and Clinical Significance of Circular RNAs in Breast Cancer. Front Oncol 2021; 11:691317. [PMID: 34307155 PMCID: PMC8299466 DOI: 10.3389/fonc.2021.691317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide. Circular RNA (circRNA) is a class of structurally stable non-coding RNA with a covalently closed circular structure. In recent years, with the development of high-throughput RNA sequencing, many circRNAs have been discovered and have proven to be clinically significant in the development and progression of breast cancer. Importantly, several regulators of circRNA biogenesis have been discovered. Here, we systematically summarize recent progress regarding the network of regulation governing the biogenesis, degradation, and distribution of circRNAs, and we comprehensively analyze the functions, mechanisms, and clinical significance of circRNA in breast cancer.
Collapse
Affiliation(s)
- Juan Xu
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyi Chen
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yaqian Shi
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Teng
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Mingming Lv
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Liu
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Xuemei Jia
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Papatsirou M, Artemaki PI, Karousi P, Scorilas A, Kontos CK. Circular RNAs: Emerging Regulators of the Major Signaling Pathways Involved in Cancer Progression. Cancers (Basel) 2021; 13:cancers13112744. [PMID: 34205978 PMCID: PMC8198587 DOI: 10.3390/cancers13112744] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
Signal transduction is an essential process that regulates and coordinates fundamental cellular processes, such as development, immunity, energy metabolism, and apoptosis. Through signaling, cells are capable of perceiving their environment and adjusting to changes, and most signaling cascades ultimately lead to alterations in gene expression. Circular RNAs (circRNAs) constitute an emerging type of endogenous transcripts with regulatory roles and unique properties. They are stable and expressed in a tissue-, cell-, and developmental stage-specific manner, while they are involved in the pathogenesis of several diseases, including cancer. Aberrantly expressed circRNAs can mediate cancer progression through regulation of the activity of major signaling cascades, such as the VEGF, WNT/β-catenin, MAPK, PI3K/AKT, and Notch signaling pathways, as well as by interfering with signaling crosstalk. Deregulated signaling can then function to induce angiogenesis, promote invasion, migration, and metastasis, and, generally, modulate the hallmarks of cancer. In this review article, we summarize the most recently described and intriguing cases of circRNA-mediated signaling regulation that are involved in cancer progression, and discuss the biomarker potential of circRNAs, as well as future therapeutic applications.
Collapse
|
27
|
Liu D, Fang L. Current research on circular RNAs and their potential clinical implications in breast cancer. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0275. [PMID: 34018386 PMCID: PMC8330541 DOI: 10.20892/j.issn.2095-3941.2020.0275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is one of the most common cancers and the leading causes of death among women worldwide, and its morbidity rate is growing. Discovery of novel biomarkers is necessary for early BC detection, treatment, and prognostication. Circular RNAs (circRNAs), a novel type of endogenous non-coding RNAs with covalently closed continuous loops, have been found to have a crucial role in tumorigenesis. Studies have demonstrated that circRNAs are aberrantly expressed in the tumor tissues and plasma of patients with BC, and they modulate gene expression affecting the proliferation, metastasis, and chemoresistance of BC by specifically binding and regulating the expression of microRNAs (miRNAs). Therefore, circRNAs can be used as novel potential diagnostic and prognostic markers, and therapeutic targets for BC. This article summarizes the properties, functions, and regulatory mechanisms of circRNAs, particularly current research on their association with BC proliferation, metastasis, and chemoresistance.
Collapse
Affiliation(s)
- Diya Liu
- Department of Thyroid and Breast Diseases, Shanghai Tenth People’s Hospital, Shanghai 200070, China
| | - Lin Fang
- Department of Thyroid and Breast Diseases, Shanghai Tenth People’s Hospital, Shanghai 200070, China
| |
Collapse
|
28
|
He X, Xu T, Hu W, Tan Y, Wang D, Wang Y, Zhao C, Yi Y, Xiong M, Lv W, Wu M, Li X, Wu Y, Zhang Q. Circular RNAs: Their Role in the Pathogenesis and Orchestration of Breast Cancer. Front Cell Dev Biol 2021; 9:647736. [PMID: 33777954 PMCID: PMC7991790 DOI: 10.3389/fcell.2021.647736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the most frequently occurring malignancies in women, breast cancer (BC) is still an enormous threat to women all over the world. The high mortality rates in BC patients are associated with BC recurrence, metastatic progression to distant organs, and therapeutic resistance. Circular RNAs (circRNAs), belonging to the non-coding RNAs (ncRNAs), are connected end to end to form covalently closed single-chain circular molecules. CircRNAs are widely found in different species and a variety of human cells, with the features of diversity, evolutionary conservation, stability, and specificity. CircRNAs are emerging important participators in multiple diseases, including cardiovascular disease, inflammation, and cancer. Recent studies have shown that circRNAs are involved in BC progress by regulating gene expression at the transcriptional or post-transcriptional level via binding to miRNAs then inhibiting their function, suggesting that circRNAs may be potential targets for early diagnosis, treatment, and prognosis of BC. Herein, in this article, we have reviewed and summarized the current studies about the biogenesis, features, and functions of circRNAs. More importantly, we emphatically elucidate the pivotal functions and mechanisms of circRNAs in BC growth, metastasis, diagnosis, and drug resistance. Deciphering the complex networks, especially the circRNA-miRNA target gene axis, will endow huge potentials in developing therapeutic strategies for combating BC.
Collapse
Affiliation(s)
- Xiao He
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Tan
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichen Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Tang L, Jiang B, Zhu H, Gao T, Zhou Y, Gong F, He R, Xie L, Li Y. The Biogenesis and Functions of circRNAs and Their Roles in Breast Cancer. Front Oncol 2021; 11:605988. [PMID: 33718157 PMCID: PMC7947672 DOI: 10.3389/fonc.2021.605988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Recent statistics show that breast cancer is among the most frequent cancers in clinical practice. It is also the second-leading cause of cancer-related deaths among women worldwide. CircRNAs are a new class of endogenous regulatory RNA molecules whose 5’ end and 3’ end are connected together to form a covalently closed single-stranded loop by back-splicing. CircRNAs present the advantages of disease-specific expression and excellent expression stability, and they can modulate gene expression at posttranscriptional and transcriptional levels. CircRNAs are abnormally expressed in multiple cancers, such as breast cancer, and drive the initiation and progression of cancer. In this review, we describe current knowledge about the functions of circRNAs and generalize their roles in various aspects of breast cancer, including cell proliferation, cell cycle, apoptosis, invasion and metastasis, autophagy, angiogenesis, drug resistance, and tumor immunity, and their prognostic and diagnostic value. This may add to a better understanding of the functions and roles of circRNAs in breast cancer, which may become new diagnostic and predictive biomarkers of breast cancer.
Collapse
Affiliation(s)
- Liting Tang
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Baohong Jiang
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Hongbo Zhu
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Ting Gao
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yu Zhou
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Fuqiang Gong
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Rongfang He
- Department of Pathology The First Affiliated Hospital, University of South China, Hengyang, China
| | - Liming Xie
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yuehua Li
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, China.,Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
30
|
Zhang T, Li M, Lu H, Peng T. Up-Regulation of circEIF6 Contributes to Pancreatic Cancer Development Through Targeting miR-557/ SLC7A11/PI3K/AKT Signaling. Cancer Manag Res 2021; 13:247-258. [PMID: 33469368 PMCID: PMC7811442 DOI: 10.2147/cmar.s280307] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Accruing evidences have pointed out that abnormal expression of circular RNAs (circRNAs) was closely related to the development of many malignancies. The present study intended to disclose the role of circRNA eukaryotic translation initiation factor 6 (circEIF6; hsa_circ_0060055) in pancreatic cancer progression. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the expression of circEIF6, EIF6 messenger RNA (mRNA), microRNA-557 (miR-557) and solute carrier family 7 member 11 (SLC7A11) mRNA. Cell proliferation ability, migration and invasion abilities and apoptosis were evaluated by Cell Counting Kit 8 (CCK8) assay, transwell migration and invasion assays and flow cytometry. Western blot assay was performed for the expression determination of all proteins. The predicted interaction between miR-557 and circEIF6 or SLC7A11 was confirmed by dual-luciferase reporter assay. Xenograft tumor model was used for exploring the biological function of circEIF6 in vivo. RESULTS CircEIF6 abundance was aberrantly up-regulated in pancreatic tumor tissues and cell lines. Cell proliferation, migration and invasion were significantly restrained while cell apoptosis was induced with the silencing of circEIF6 in pancreatic cancer cells. CircEIF6 silencing also hampered the activation of phosphatidylinositol 3-kinase (PI3K)/AKT serine/threonine kinase (AKT) pathway. CircEIF6 bound to miR-557, and circEIF6 silencing elevated the expression of miR-557 in pancreatic cancer cells. MiR-557 knockdown partly overturned circEIF6 silencing-induced effects in pancreatic cancer cells. SLC7A11 was a target of miR-557, and miR-557 overexpression suppressed malignant potential of pancreatic cancer cells partly through reducing the expression of SLC7A11. CircEIF6 knockdown blocked xenograft tumor growth in vivo. CONCLUSION CircEIF6 aggravated pancreatic cancer development through promoting cell proliferation, migration and invasion and suppressing cell apoptosis through targeting miR-557/SLC7A11/PI3K/AKT signaling.
Collapse
Affiliation(s)
- Tiequan Zhang
- Department of Hepatobiliary Surgery, The First People’s Hospital of Jingzhou, Jingzhou434000, People’s Republic of China
- Correspondence: Tiequan Zhang Department of Hepatobiliary Surgery, The First People’s Hospital of Jingzhou, No. 8 Hangkong Road, Shashi District, Jingzhou, Hubei434000, People’s Republic of ChinaTel +86-716-8115036 Email
| | - Mi Li
- Department of Hepatobiliary Surgery, The First People’s Hospital of Jingzhou, Jingzhou434000, People’s Republic of China
| | - Haofeng Lu
- Department of Hepatobiliary Surgery, The First People’s Hospital of Jingzhou, Jingzhou434000, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First People’s Hospital of Jingzhou, Jingzhou434000, People’s Republic of China
| |
Collapse
|
31
|
Shen X, Chen Y, Li J, Huang H, Liu C, Zhou N. Identification of Circ_001569 as a Potential Biomarker in the Diagnosis and Prognosis of Pancreatic Cancer. Technol Cancer Res Treat 2021; 20:1533033820983302. [PMID: 33413045 PMCID: PMC7797582 DOI: 10.1177/1533033820983302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/28/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence has shown that circular RNAs (circRNAs) serve as a promising biomarker in different malignancies. Specifically, circ_001569 has been found to be upregulated in some types of human gastrointestinal cancer. In this study, we aimed to investigate clinical significances, diagnostic and prognostic values of circ_001569 in pancreatic cancer (PC), and identify its effects on the malignant behaviors of PC cells. The expression of circ_001569 was determined in 26 tissues samples and 97 plasma samples from PC patients by qRT-PCR. Relationship between circ_001569 expression and clinicopathological parameters was analyzed by Chi-square test. Diagnostic and prognostic values of circ_001569 were evaluated by ROC curves, Kaplan-Meier curves, and Cox regression analysis. The effects of circ_001569 on the proliferation, migration, invasion, and apoptosis of PC cells were assessed by MTT, wound healing, Transwell invasion assays, and flow cytometric analysis, respectively. Results showed that the expression of circ_001569 was upregulated in tissues and plasma of PC patients. High circ_001569 level was positively correlated with lymphatic metastasis, clinical stage, and venous invasion. Circ_001569 level was an independent prognostic indicator for overall survival rates of PC patients, and patients with high circ_001569 level had a poor prognosis. The AUC of circ_001569 was 0.716 (95% CI: 0.642-0.790) with a sensitivity and specificity of 62.76% and 74.29%, respectively. In vitro, circ_001569 silencing decreased cell proliferation, migration, and invasion, but promoted cell apoptosis of PC cells. Our data demonstrate that high circ_001569 level associates with tumor malignant behaviors, and may serve as a potential biomarker in the diagnosis and prognosis of PC.
Collapse
Affiliation(s)
- Xianbo Shen
- The Intractable Diseases Diagnosis and Treatment Center for Liver, Gallbladder, Pancreas & Intestine, Department of Hepatopancreatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People’s Republic of China
| | - Yun Chen
- The Intractable Diseases Diagnosis and Treatment Center for Liver, Gallbladder, Pancreas & Intestine, Department of Hepatopancreatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People’s Republic of China
| | - Jibin Li
- The Intractable Diseases Diagnosis and Treatment Center for Liver, Gallbladder, Pancreas & Intestine, Department of Hepatopancreatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People’s Republic of China
| | - Huaiyin Huang
- The Intractable Diseases Diagnosis and Treatment Center for Liver, Gallbladder, Pancreas & Intestine, Department of Hepatopancreatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People’s Republic of China
| | - Chuping Liu
- The Intractable Diseases Diagnosis and Treatment Center for Liver, Gallbladder, Pancreas & Intestine, Department of Hepatopancreatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People’s Republic of China
| | - Ning Zhou
- The Intractable Diseases Diagnosis and Treatment Center for Liver, Gallbladder, Pancreas & Intestine, Department of Hepatopancreatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People’s Republic of China
| |
Collapse
|
32
|
Zeng X, Liu C, Yao J, Wan H, Wan G, Li Y, Chen N. Breast cancer stem cells, heterogeneity, targeting therapies and therapeutic implications. Pharmacol Res 2020; 163:105320. [PMID: 33271295 DOI: 10.1016/j.phrs.2020.105320] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Both hereditary and sporadic breast cancer are suggested to develop from a stem cell subcomponent retaining most key stem cell properties but with dysregulation of self-renewal pathways, which drives tumorigenic differentiation and cellular heterogeneity. Cancer stem cells (CSCs), characterized by their self-renewal and differentiation potential, have been reported to contribute to chemo-/radio-resistance and tumor initiation and to be the main reason for the failure of current therapies in breast cancer and other CSC-bearing cancers. Thus, CSC-targeted therapies, such as those inducing CSC apoptosis and differentiation, inhibiting CSC self-renewal and division, and targeting the CSC niche to combat CSC activity, are needed and may become an important component of multimodal treatment. To date, the understanding of breast cancer has been extended by advances in CSC biology, providing more accurate prognostic and predictive information upon diagnosis. Recent improvements have enhanced the prospect of targeting breast cancer stem cells (BCSCs), which has shown promise for increasing the breast cancer remission rate. However, targeted therapy for breast cancer remains challenging due to tumor heterogeneity. One major challenge is determining the CSC properties that can be exploited as therapeutic targets. Another challenge is identifying suitable BCSC biomarkers to assess the efficacy of novel BCSC-targeted therapies. This review focuses mainly on the characteristics of BCSCs and the roles of BCSCs in the formation, maintenance and recurrence of breast cancer; self-renewal signaling pathways in BCSCs; the BCSC microenvironment; potential therapeutic targets related to BCSCs; and current therapies and clinical trials targeting BCSCs.
Collapse
Affiliation(s)
- Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, PR China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, Guangdong Province, 518037, PR China
| | - Chengxiao Liu
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, PR China
| | - Jie Yao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, PR China
| | - Haoqiang Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, PR China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, Guangdong Province, 518037, PR China; Department of Gastroenterology, (Longhua Branch), Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, 518120, PR China
| | - Guoqing Wan
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, PR China
| | - Yingpeng Li
- Department of Gastroenterology, (Longhua Branch), Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, 518120, PR China.
| | - Nianhong Chen
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, PR China; Department of Cell Biology & University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, PA, 15261, USA; Laboratory of Signal Transduction, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, 10065, USA.
| |
Collapse
|
33
|
Ma Y, Niu X, Yan S, Liu Y, Dong R, Li Y. Circular RNA profiling facilitates the diagnosis and prognostic monitoring of breast cancer: A pair-wise meta-analysis. J Clin Lab Anal 2020; 35:e23575. [PMID: 33159705 PMCID: PMC7843259 DOI: 10.1002/jcla.23575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background As circular RNAs (circRNAs) have been found to significantly involve in the onset and progression of multiple malignant tumors including breast cancer (BC), this study aims at evaluating the diagnostic and prognostic values of circRNAs in this malady. Methods Available databases were thoroughly searched to collect studies on the diagnosis and/or prognosis of BC using circRNA profiling. The updated Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS‐2) tool and the Newcastle Ottawa Scale (NOS) were used to assess the underlying bias of included studies. Clinical characteristics of the studies were merged by the quantitative‐weighted integral method to obtain the combined effects. Results Sixteen studies were included, comprising 2438 BC cases and 271 noncancerous controls. The expression signature covered 24 circRNAs (down‐regulated: circ‐VRK1, hsa_circ_0068033, hsa_circ_103110, hsa_circ_104689, and hsa_circ_104821; up‐regulated: circAGFG1, hsa_circ_0001785, hsa_circ_0108942, hsa_circ_0001785, hsa_circ_006054, hsa_circ_100219, hsa_circ_406697, circEPSTI1, circANKS1B, circGFRA1, circ_0103552, CDR1‐AS, has_circ_001569, hsa_circ_001783, circFBXL5, circ_0005230, circAGFG1, circ‐UBAP2, and circ_0006528). The sensitivity and specificity of circRNAs in distinguishing BC patients from noncancerous controls were 0.65 and 0.68, and the corresponding area under the curve was 0.66. Survival analysis revealed that patients showing highly expressed oncogenic circRNAs were associated with increased mortality risks of BC in overall survival (univariate analysis: hazard ratio [HR] = 3.30, P = .000; multivariate analysis: HR = 3.07, P = .000), and disease‐free survival (HR = 8.26, P = .000). Stratified analysis based on circRNA expression status and control type also showed robust results. Conclusions Circular RNA profiling presents prominent diagnostic and prognostic values in BC, and can be rated as a promising tool facilitating its early diagnosis and survival.
Collapse
Affiliation(s)
- Yanqing Ma
- The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaobin Niu
- The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Sha Yan
- The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yuchun Liu
- The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Ruihua Dong
- The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yongwei Li
- The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
34
|
Yuan C, Luo X, Zhan X, Zeng H, Duan S. EMT related circular RNA expression profiles identify circSCYL2 as a novel molecule in breast tumor metastasis. Int J Mol Med 2020; 45:1697-1710. [PMID: 32236616 PMCID: PMC7169655 DOI: 10.3892/ijmm.2020.4550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Substantial evidence indicates that circular RNAs (circRNAs) play vital roles in several diseases, especially in cancer development. However, the functions of circRNAs in breast cancer metastasis remain to be investigated. This study aimed to identify the key circRNAs involved in epithelial mesenchymal transition (EMT) of breast cancer and evaluated their molecular function and roles in pathways that may be associated with tumor metastasis. An EMT model was constructed by treating breast cancer cells MCF‑7 and MDA‑MB‑231 with transforming growth factor‑β1. High‑throughput RNA sequencing was used to identify the differentially expressed circRNAs in EMT and blank groups of two cells, and reverse transcription‑quantitative PCR was used to validate the expression of circSCYL2 in human breast cancer tissues and cells. The effects of circSCYL2 on breast cancer cells were explored by transfecting with plasmids and the biological roles were assessed using transwell assays. EMT groups of breast cancer cells exhibited the characteristics of mesenchymal cells. Furthermore, the present study found that 7 circRNAs were significantly upregulated in both the MCF‑7 EMT and MDA‑MB‑231 EMT groups, while 16 circRNAs were significantly downregulated. The current study identified that circSCYL2 was downregulated in breast cancer tissues and cell lines, and that circSCYL2 overexpression inhibited cell migration and invasion. This study provides expression profiles of circRNAs in EMT groups of breast cancer cells. circSCYL2, which is downregulated in breast cancer tissues and cells, may play an important role in breast cancer EMT progression.
Collapse
Affiliation(s)
- Chunlei Yuan
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University
| | - Xuliang Luo
- Medical College of Nanchang University, Nanchang, Jiangxi 330000
| | - Xiang Zhan
- Department of General Surgery, The People's Hospital of Le 'An County, Fuzhou, Jiangxi 344000, P.R. China
| | - Huihui Zeng
- Department of General Surgery, The People's Hospital of Le 'An County, Fuzhou, Jiangxi 344000, P.R. China
| | - Sijia Duan
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University
| |
Collapse
|
35
|
Tu C, He J, Qi L, Ren X, Zhang C, Duan Z, Yang K, Wang W, Lu Q, Li Z. Emerging landscape of circular RNAs as biomarkers and pivotal regulators in osteosarcoma. J Cell Physiol 2020; 235:9037-9058. [PMID: 32452026 DOI: 10.1002/jcp.29754] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
Osteosarcoma represents the most prevailing primary bone tumor and the third most common cancer in children and adolescents worldwide. Among noncoding RNAs, circular RNAs (circRNAs) refer to a unique class in the shape of a covalently closed continuous loop with neither 5' caps nor 3'-polyadenylated tails, which are generated through back-splicing. Recently, with the development of whole-genome and transcriptome sequencing technologies, a growing number of circRNAs have been found aberrantly expressed in multiple diseases, including osteosarcoma. circRNA are capable of various biological functions including miRNA sponge, mediating alternatives, regulating genes at posttranscriptional levels, and interacting with proteins, indicating a pivotal role of circRNA in cancer initiation, progression, chemoresistance, and immune response. Moreover, circRNAs have been thrust into the spotlight as potential biomarkers and therapeutic targets in osteosarcoma. Herein, we briefly summarize the origin and biogenesis of circRNA with current knowledge of circRNA in tumorigenesis of osteosarcoma, aiming to elucidate the specific role and clinical implication of circRNAs in osteosarcoma.
Collapse
Affiliation(s)
- Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenghao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixi Duan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kexin Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
36
|
Tang Q, Hann SS. Biological Roles and Mechanisms of Circular RNA in Human Cancers. Onco Targets Ther 2020; 13:2067-2092. [PMID: 32210574 PMCID: PMC7069569 DOI: 10.2147/ott.s233672] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Circular RNA (circRNA) is an intriguing class of RNA with covalently closed-loop structure and is highly stable and conservative. As new members of the ncRNAs, the function, mechanism, potential diagnostic biomarker, and therapeutic target have raised increased attention. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhibiting tissue/developmental-stage-specific manner. Over 30,000 circRNAs have been identified with their unique structures to maintain stability more easily than linear RNAs. An increased numbers of circRNAs are dysregulated and involved in several biological processes of malignance, such as tumorigenesis, growth, invasion, metastasis, apoptosis, and vascularization. Emerging evidence suggests that circRNAs play important roles by acting as miRNA sponge or protein scaffolding, autophagy regulators, and interacting with RNA-binding protein (RBP), which may potentially serve as a novel promising biomarker for prevention, diagnosis and therapeutic target for treatment of human cancer with great significance either in scientific research or clinic arena. This review introduces concept, major features of circRNAs, and mainly describes the major biological functions and clinical relevance of circRNAs, as well as expressions and regulatory mechanisms in various types of human cancer, including pathogenesis, mode of action, potential target, signaling regulatory pathways, drug resistance, and therapeutic biomarkers. All of which provide evidence for the potential utilities of circRNAs in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Qing Tang
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, People's Republic of China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, People's Republic of China
| |
Collapse
|
37
|
Liu Y, Xia L, Dong L, Wang J, Xiao Q, Yu X, Zhu H. CircHIPK3 Promotes Gemcitabine (GEM) Resistance in Pancreatic Cancer Cells by Sponging miR-330-5p and Targets RASSF1. Cancer Manag Res 2020; 12:921-929. [PMID: 32104074 PMCID: PMC7023912 DOI: 10.2147/cmar.s239326] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/06/2020] [Indexed: 12/26/2022] Open
Abstract
Background Pancreatic cancer is one of the most common malignant diseases in the world. Gemcitabine chemotherapy remains the most important clinical treatment. However, research found that pancreatic cancer cells have chemoresistance to gemcitabine and the effect is not satisfactory. Therefore, it is urgent to find an effective early diagnosis and treatment strategy. Circular RNA is one of the most popular prognostic biomarkers in GEM-resistant PC. Materials and Methods The present study was designed to evaluate the role of circHIPK3 in PC. The expression of circHIPK3 in PC tissues and cells and its effect on proliferation, migration, invasion, EMT, and apoptosis were investigated in vitro; its effect on tumor xenografts was assessed in vivo. Used bioinformation analysis to predict which miRNAs could potentially interact with circHIPK3, mRNA, and miR-330-5p. Results RT-PCR showed that the level of circHIPK3 was increased in PC tumor tissues; moreover, circHIPK3 was also increased in GEM-resistant PC tumors tissues and GEM-resistant PC cells. Sh-circHIPK3 could knockdown circHIPK3 in PANC-1-GEM and SW-1990-GEM and could significantly inhibit cell proliferation, invasion, migration, EMT and enhance cell apoptosis, compare with control group, the tumor xenografts of circHIPK3 knockdown group were significantly smaller. CircHIPK3 served as a sponge for miR-330-5p, and miR-330-5p directly bound to the 3′ UTR of RASSF1 were revealed by dual luciferase assay and RIP in PC cells. CircHIPK3 knockdown of RASSF1 expression could neutralize the cytological function of PC cells by miR-330-5p inhibitor mediated GEM-resistance. Conclusion CircHIPK3 promotes gemcitabine (GEM) resistance in pancreatic cancer cells by targeting RASSF1 via miR-330-5p and regulates proliferation, invasive, migration, EMT, and apoptosis. Our research revealed that circHIPK3 may be a novel biomarker in GEM-resistant PC and could be used as a prognostic target.
Collapse
Affiliation(s)
- Yunfei Liu
- Department of Hepatobiliary and Pancreatic Surgery‖, Third Xiangya Hospital, Central South University, Changsha 410006, People's Republic of China
| | - Li Xia
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 410006, People's Republic of China
| | - Luo Dong
- Department of Hepatobiliary and Pancreatic Surgery‖, Third Xiangya Hospital, Central South University, Changsha 410006, People's Republic of China
| | - Jiale Wang
- Department of Hepatobiliary and Pancreatic Surgery‖, Third Xiangya Hospital, Central South University, Changsha 410006, People's Republic of China
| | - Qiangsheng Xiao
- Department of Hepatobiliary and Pancreatic Surgery‖, Third Xiangya Hospital, Central South University, Changsha 410006, People's Republic of China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery‖, Third Xiangya Hospital, Central South University, Changsha 410006, People's Republic of China
| | - Hongwei Zhu
- Department of Gastroenterology and Hepatology, Third Xiangya Hospital, Central South University, Changsha, 410006, People's Republic of China
| |
Collapse
|
38
|
Ren C, Liu J, Zheng B, Yan P, Sun Y, Yue B. The circular RNA circ-ITCH acts as a tumour suppressor in osteosarcoma via regulating miR-22. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3359-3367. [PMID: 31387405 DOI: 10.1080/21691401.2019.1649273] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Osteosarcoma (OS) is the most prevailing primary bone tumour and the third prevalent tumour in children and adolescents. Despite advanced treatments, the survival rate of OS has not been effectively improved. Here, we intended to investigate the functional impacts of circ-ITCH on OS. Methods: Circ-ITCH expression in OS tissues and cells was evaluated utilizing qRT-PCR. Viability and proliferation of MG63 and Saos-2 cells were determined by utilizing CCK-8 assay and BrdU assay. Transwell assay was utilized to investigate migration and invasion. Western blot was utilized to distinguish apoptosis and metastasis-related proteins expression. Sequentially, the above-mentioned parameters were reassessed when up-regulating miR-22. Results: Circ-ITCH was low expressed in OS tissues and cells. Overexpressing circ-ITCH facilitated apoptosis and repressed viability, proliferation, migration and invasion in MG63 and Saos-2 cells. MiR-22 expression was reduced by overexpressing circ-ITCH. The decline of viability, proliferation, migration and invasion made by overexpressing circ-ITCH was alleviated by up-regulating miR-22. Conclusively, circ-ITCH suppressed PTEN/PI3K/AKT and SP-1 pathways via down-regulating miR-22. Conclusion: Circ-ITCH took effects on apoptosis, viability, proliferation, migration and invasion through restraining PTEN/PI3K/AKT and SP-1 pathways via down-regulating miR-22 in MG63 and Saos-2 cells. Highlights Low expression of circ-ITCH is observed in osteosarcoma tissues and cell lines; Overexpression circ-ITCH suppresses miR-22 expression; Circ-ITCH promotes proliferation and represses apoptosis by up-regulating miR-22; Circ-ITCH promotes migration and invasion by up-regulating miR-22; Circ-ITCH activates PTEN/PI3K/AKT and SP-1 pathways by up-regulating miR-22.
Collapse
Affiliation(s)
- Chongmin Ren
- a Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Jia Liu
- b Department of Pediatrics, The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Bingxin Zheng
- a Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Peng Yan
- a Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Yuerong Sun
- a Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Bin Yue
- a Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| |
Collapse
|
39
|
Zhao CH, Qu L, Zhang H, Qu R. Identification of breast cancer-related circRNAs by analysis of microarray and RNA-sequencing data: An observational study. Medicine (Baltimore) 2019; 98:e18042. [PMID: 31725681 PMCID: PMC6867785 DOI: 10.1097/md.0000000000018042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND An increasing number of studies indicate that circular RNAs (circRNAs) participate in tumorigenesis. The aim of this study was to elucidate the regulatory mechanisms of circRNAs in breast cancer based on the construction of the circRNA-related ceRNA network. METHODS The expression profiles of circRNAs, miRNAs, and mRNAs were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. A ceRNA network was constructed by Cytoscape. The interactions among proteins were analyzed using the STRING database, and hub genes were extracted using the cytoHubba application. The functions of the differentially expressed mRNAs (DEmRNAs) were analyzed by the Kyoto Encyclopedia of Gene and Genomes (KEGG) and the Gene Ontology (GO) database. RESULTS In total, 7 differentially expressed circRNAs (DEcircRNAs), 27 differentially expressed miRNAs (DEmiRNAs), and 102 DEmRNAs were selected for the construction of the ceRNA network of breast cancer. We established a protein-protein interaction network and identified 6 hub genes. Then, a circRNA-miRNA-hub gene regulatory module was established based on 2 DEcircRNAs, 2 DEmiRNAs, and 2 DEmRNAs. GO and KEGG pathway analyses indicated the possible association of DEmRNAs with breast cancer onset and progression. CONCLUSIONS The circRNA hsa_circ_0000519 is likely critical in the pathogenesis of breast cancer and may serve as a future therapeutic biomarker.
Collapse
Affiliation(s)
| | - Le Qu
- Clinical Laboratory, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hui Zhang
- Clinical Laboratory, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Rui Qu
- Clinical Laboratory, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
40
|
Long R, Liu Z, Li J, Yu H. COL6A6 interacted with P4HA3 to suppress the growth and metastasis of pituitary adenoma via blocking PI3K-Akt pathway. Aging (Albany NY) 2019; 11:8845-8859. [PMID: 31627190 PMCID: PMC6834431 DOI: 10.18632/aging.102300] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/15/2019] [Indexed: 12/31/2022]
Abstract
The role and mechanism of collagen type VI alpha 6 (COL6A6) on tumor growth and metastasis in pituitary adenoma (PA) was determined. COL6A6 was downregulated in PA tissues and cell lines, which was negatively associated with the expression of prolyl-4-hydroxylase alpha polypeptide III (P4HA3) in the progression of PA. Overexpression of COL6A6 significantly suppressed tumor growth and metastasis capacity in PA. In addition, P4HA3 worked as the upstream of the PI3K-Akt pathway to alleviate the antitumor activity of COL6A6 on the growth and metastasis of both AtT-20 and HP75 cells. Furthermore, the inhibitory effect of COL6A6 on cell proliferation, migration and invasion, and epithelial-mesenchymal transition (EMT) was reversed by P4HA3 overexpression or activation of the PI3K-Akt pathway induced by IGF-1 addition, which provided a new biomarker for clinical PA treatment.
Collapse
Affiliation(s)
- Ruiqing Long
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Zhuohui Liu
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Jinghui Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Hualin Yu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| |
Collapse
|