1
|
Li S, Zhang J, Wang X, Wang X, Song Y, Song X, Wang X, Cao W, Zhao C, Qi J, Zheng X, Xing Y. Super-Enhancer Target Gene CBP/p300-Interacting Transactivator With Glu/Asp-Rich C-Terminal Domain, 2 Cooperates With Transcription Factor Forkhead Box J3 to Inhibit Pulmonary Vascular Remodeling. Cell Prolif 2025:e13817. [PMID: 39907030 DOI: 10.1111/cpr.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
The function of super-enhancers (SEs) in pulmonary hypertension (PH), especially in the proliferation of pulmonary artery smooth muscle cells (PASMCs), is currently unknown. We identified SEs-targeted genes in PASMCs with chromatin immunoprecipitation (ChIP)-sequence by H3K27ac antibody and proved that CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2 (CITED2) is an SEs-targeted gene through bioinformatics prediction, ChIP-PCR, dual-luciferase reporter gene assays and other experimental methods. We also found that the expression of CITED2 and the transcription factor Forkhead Box J3 (FOXJ3) was reduced in hypoxic mouse PASMCs. In addition, the expression of CITED2 and FOXJ3 also decreased in both the patients with idiopathic pulmonary arterial hypertension (iPAH) and the human PASMCs exposed to hypoxia. The decreased expression of CITED2 was reversed by co-transfection of FOXJ3 and SEs plasmids. Overexpressing of CITED2 attenuated the PASMCs proliferation induced by hypoxia. Lentiviral overexpression of CITED2 also reversed hypoxia-induced pulmonary hypertension mice model. Mechanically, the expression of CITED2 by affecting by FOXJ3, which binding with three SEs located in the about 2000 bp of TSS. In conclusion, we first identified that CITED2 is a kind of SEs-targeted gene, modulated by FOXJ3. The FOXJ3/SEs/CITED2 axis may become a new therapeutic target of PH.
Collapse
Affiliation(s)
- Songyue Li
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Jingya Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xu Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xinru Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Yuyu Song
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xinyue Song
- Central Laboratory, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xiuli Wang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Weiwei Cao
- Department of Pharmaceutical Analysis, Harbin Medical University-Daqing, Heilongjiang, People's Republic of China
| | - Chong Zhao
- Department of Literature Retrieval, Harbin Medical University-Daqing, Heilongjiang, People's Republic of China
| | - Jing Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Medical Genetics, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Yan Xing
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| |
Collapse
|
2
|
Zhang C, Wu S. ZNF197-AS1/miR-425/GABARAPL1 axis: a novel regulatory mechanism in uveal melanoma. Am J Physiol Cell Physiol 2024; 327:C1638-C1650. [PMID: 39308299 PMCID: PMC11774234 DOI: 10.1152/ajpcell.00457.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 12/10/2024]
Abstract
This study investigates the role of the long noncoding RNA (lncRNA) ZNF197-AS1 in uveal melanoma (UM), focusing on its function within a competing endogenous RNA (ceRNA) network. Using the UM-related TCGA (The Cancer Genome Atlas) dataset, we analyzed the expression levels of ZNF197-AS1 and its correlation with miR-425 and GABARAPL1, an essential autophagy-related gene. Our analysis revealed that ZNF197-AS1 acts as a ceRNA by competitively binding to miR-425, resulting in the upregulation of GABARAPL1. This interaction plays a crucial role in the growth and metastasis of UM. The expression of GABARAPL1 showed a strong correlation with the clinical outcomes of patients with UM. Furthermore, in vitro assays confirmed that ZNF197-AS1 impedes UM cell proliferation, migration, and invasion by modulating the miR-425/GABARAPL1 axis. These findings suggest that ZNF197-AS1 can effectively inhibit UM progression through this ceRNA regulatory network. This study provides valuable insights into the molecular mechanisms underlying UM and highlights the potential of targeting the ZNF197-AS1/miR-425/GABARAPL1 axis as a therapeutic strategy for UM.NEW & NOTEWORTHY This study identifies the ZNF197-AS1/miR-425/GABARAPL1 axis as a novel regulatory mechanism in uveal melanoma. ZNF197-AS1 upregulates GABARAPL1 by sponging miR-425, inhibiting UM cell proliferation, migration, and invasion. This discovery highlights a potential therapeutic target, providing new insights into UM progression and patient outcomes.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Strabismus and Pediatric Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Shuai Wu
- Department of Orbital Disease and Ocular Plastic Surgery, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
3
|
Sameti P, Amini M, Oroojalian F, Baghay Esfandyari Y, Tohidast M, Rahmani SA, Azarbarzin S, Mokhtarzadeh A, Baradaran B. MicroRNA-425: A Pivotal Regulator Participating in Tumorigenesis of Human Cancers. Mol Biotechnol 2024; 66:1537-1551. [PMID: 37332071 DOI: 10.1007/s12033-023-00756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded regulatory RNAs that are shown to be dysregulated in a wide array of human cancers. MiRNAs play critical roles in cancer progression and function as either oncogenes or tumor suppressors through modulating various target genes. Therefore, they possess great potential as diagnostic and therapeutic targets for cancer detection and treatment. In particular, recent studies have illustrated that miR-425 is also dysregulated in various human malignancies and plays a fundamental role in cancer initiation and progression. miR-425 has been reported to function as a dual-role miRNA participating in the regulation of cellular processes, including metastasis, invasion, and cell proliferation by modulating multiple signaling pathways, such as TGF-β, Wnt, and P13K/AKT pathways. Therefore, regarding recent researches showing the high therapeutic potential of miR-425, in this review, we have noted the impact of its dysregulation on signaling pathways and various aspects of tumorigenesis in a variety of human cancers.
Collapse
Affiliation(s)
- Pouriya Sameti
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ali Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Jian S, Kong D, Tian J. Expression of miR-425-5p in Pancreatic Carcinoma and Its Correlation with Tumor Immune Microenvironment. J INVEST SURG 2023; 36:2216756. [PMID: 37455016 DOI: 10.1080/08941939.2023.2216756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/17/2023] [Indexed: 07/18/2023]
Abstract
Background: Pancreatic carcinoma (PC) is a global health threat with a high death rate. miRNAs are implicated in tumor initiation and progression. This study explored the expression of miR-425-5p in PC patients and its correlation with tumor immune microenvironment (TIME).Method: miR-425-5p expression in cancer tissues and adjacent non-tumor tissues of PC patients was examined by RT-qPCR. The levels of immune cells and cytokines were measured by flow cytometry and ELISA. The correlation of miR-425-5p with TNM stage and TIME was assessed by Spearman method. The death of PC patients was recorded through 36-month follow-ups. The prognosis of patients was assessed by Kaplan-Meier curves.Results: miR-425-5p expression was upregulated in PC tissues and elevated with increasing TNM stage. miR-425-5p expression was positively correlated with TNM stage. The PC tissues had decreased levels of CD3+, CD4+, CD8+, and natural killer (NK) cells, CD4+/CD8+ ratio, IL-2, and INF-γ, but increased levels of Tregs, IL-4, IL-10, and TGF-β. miR-425-5p level in cancer tissues was positively correlated with Tregs/IL-10/TGF-β, but negatively related to CD3+/CD4+/CD8+/NK cells and IL-2/INF-γ. Moreover, high miR-425-5p expression predicted a poor prognosis in PC patients.Conclusion: miR-425-5p is upregulated in PC patients and is prominently associated with the TIME, and high miR-425-5p predicts a poor prognosis in PC patients.
Collapse
Affiliation(s)
- Shuo Jian
- Department of Oncology, Suining Central Hospital, Suining, Sichuan Province, China
| | - Dehua Kong
- Department of Oncology, Suining Central Hospital, Suining, Sichuan Province, China
| | - Jieli Tian
- Department of Oncology, Suining Central Hospital, Suining, Sichuan Province, China
| |
Collapse
|
5
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
6
|
Makler A, Asghar W. Exosomal miRNA Biomarker Panel for Pancreatic Ductal Adenocarcinoma Detection in Patient Plasma: A Pilot Study. Int J Mol Sci 2023; 24:ijms24065081. [PMID: 36982154 PMCID: PMC10049393 DOI: 10.3390/ijms24065081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is rapidly becoming one of the leading causes of cancer-related deaths in the United States, and with its high mortality rate, there is a pressing need to develop sensitive and robust methods for detection. Exosomal biomarker panels provide a promising avenue for PDAC screening since exosomes are highly stable and easily harvested from body fluids. PDAC-associated miRNAs packaged within these exosomes could be used as diagnostic markers. We analyzed a series of 18 candidate miRNAs via RT-qPCR to identify the differentially expressed miRNAs (p < 0.05, t-test) between plasma exosomes harvested from PDAC patients and control patients. From this analysis, we propose a four-marker panel consisting of miR-93-5p, miR-339-3p, miR-425-5p, and miR-425-3p with an area under the curve (AUC) of the receiver operator characteristic curve (ROC) of 0.885 with a sensitivity of 80% and a specificity of 94.7%, which is comparable to the CA19-9 standard PDAC marker diagnostic.
Collapse
Affiliation(s)
- Amy Makler
- Micro and Nanotechnology in Medicine, Department of Electrical Engineering and Computer Science, College of Engineering and Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, Department of Electrical Engineering and Computer Science, College of Engineering and Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Correspondence:
| |
Collapse
|
7
|
Abstract
miRNAs are a type of small endogenous noncoding RNA composed of 20-22 nucleotides that can regulate gene expression by targeting the 3' untranslated region of mRNA. Many investigations have discovered that miRNAs have a role in the development and progression of human cancer. Several aspects of tumor development are affected by miR-425, including growth, apoptosis, invasion, migration, epithelial-mesenchymal transition, and drug resistance. In this article, we discuss the properties and research development of miR-425, focusing on the regulation and function of miR-425 in various cancers. Furthermore, we discuss the clinical implications of miR-425. This review may broaden our horizon for better understanding the role of miR-425 as biomarkers and therapeutic targets in human cancer.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjie Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongzai Guan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Zhu Y, Dou H, Liu Y, Yu P, Li F, Wang Y, Xiao M. Breast Cancer Exosome-Derived miR-425-5p Induces Cancer-Associated Fibroblast-Like Properties in Human Mammary Fibroblasts by TGF β1/ROS Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5266627. [PMID: 36506936 PMCID: PMC9729028 DOI: 10.1155/2022/5266627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022]
Abstract
The connection between the cellular microenvironment and tumor cells is crucial for tumor progression. However, the process by which normal fibroblasts (NFs) become cancer-associated fibroblasts (CAFs) is unknown, and mounting evidence suggests that some microRNAs (miRNAs) have an important role in converting NFs into CAFs. Breast cancer (BC) has been proven to have enhanced miR-425-5p expression in order to support progression. We discovered that human mammary fibroblasts (HMFs) could uptake BC cell line-derived exosomes to change their properties, promoting the switch to the CAF phenotype and increasing cell motility, as evidenced by an increase in CAF activation-related marker protein expression and cell proliferation, invasion, and migration. Transfection of exosomes is obtained from BC cells, and miR-425-5p inhibitors suppressed the aforementioned effects as well as lowered chemokine levels and gene expression related with proliferation and metastasis. By suppressing the expression of its target gene TGFβRII (TGFβ1 receptor), miR-425-5p enhanced the transition of HMFs to the CAF phenotype. MDA-MB-231 cells and CAFs stimulated by HMF absorption of MDA-MB-23-derived exosomes showed similar proliferation, invasion, migration, and expression of -SMA, FAP, CXCL1, IL-6, TGFβ1, P21, P27, Ki67, vimentin, E-cadherin, N-cadherin, α-catenin, fibronectin, and MMP-2. TGFβ1 overexpression enhanced ROS production. Finally, we found that HMFs transiently transfected with miR-425-5p can promote tumor growth in vivo. Finally, these findings provide fresh insight on miR-425-5p as an important mediator of the interaction between BC cells and stroma.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081 Heilongjiang, China
| | - He Dou
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081 Heilongjiang, China
| | - Yuqi Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081 Heilongjiang, China
| | - Pingyang Yu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081 Heilongjiang, China
| | - Fucheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081 Heilongjiang, China
| | - Youyu Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081 Heilongjiang, China
| | - Min Xiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081 Heilongjiang, China
| |
Collapse
|
9
|
Wu Z, Guo J, Zhang Y, Liu J, Ma H, Tang Y. MiR-425-5p accelerated the proliferation, migration, and invasion of ovarian cancer cells via targeting AFF4. J Ovarian Res 2021; 14:138. [PMID: 34686190 PMCID: PMC8539801 DOI: 10.1186/s13048-021-00894-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Accumulating data have established that microRNAs (miRNAs) play significant regulatory roles in the carcinogenesis and progression of ovarian cancer (OC). MiR-425-5p was reported to function in various tumors. However, the roles and underlying mechanism of miR-425-5p involvement in OC development and progression are unclear. Methods A comprehensive strategy of data mining, computational biology, and real-time polymerase chain reaction was employed to identify the involvement of miR-425-5p in OC progression. The effect of miR-425-5p on the proliferation, migration, and invasion of OC cells was determined using Cell Counting Kit-8, wound-healing, and Matrigel invasion assays, respectively. Luciferase assay was performed to evaluate the interactions between miR-425-5p and MAGI2-AS3 or AFF4. Results miR-425-5p was significantly up-regulated in OC tissues and cells. The luciferase reporter assay revealed that miR-425-5p was negatively regulated by MAGI2-AS3. Silencing miR-425-5p inhibited the proliferation, migration, and invasion of OC cells in vitro. Bioinformatics analysis and luciferase reporter assay revealed that AFF4 was the target gene of miR-425-5p. Moreover, AFF4 expression was significantly decreased in OC and was closely related to the good prognosis of patients with OC. AFF4 overexpression inhibited the proliferation, migration, and invasion of OC cells in vitro. By contrast, silencing AFF4 promoted the proliferation, migration, and invasion of OC cells in vitro. Finally, AFF4 suppression rescued the inhibitory effect of silencing miR-425-5p on the proliferation, migration, and invasion of OC cells. Conclusion To the best our knowledge, this is the first study to demonstrate that miR-425-5p overexpression in OC is negatively regulated by MAGI2-AS3. Moreover, miR-425-5p promotes the proliferation, migration, and invasion of OC cells by targeting AFF4, suggesting that miR-425-5p/AFF4 signaling pathway represented a novel therapeutic target for patients with OC. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00894-x.
Collapse
Affiliation(s)
- Zhihui Wu
- Department of Clinical Laboratory, Fujian Provincial Maternity and Children Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jianlin Guo
- Department of Laboratory, Second People's Hospital, Kashgar Area, Xinjiang, 844000, China
| | - Ying Zhang
- Department of Clinical Laboratory, Tuoli County People's Hospital, Tacheng, Xinjiang, 834500, Uygur Autonomous Region, China
| | - Jianhua Liu
- Department of Clinical Laboratory, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China.
| | - Hongping Ma
- Department of Clinical Laboratory, Children's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830054, Uygur Autonomous Region, China.
| | - Yurong Tang
- Laboratory Department of Shengli Oilfield Central Hospital, Dongying, 257100, China.
| |
Collapse
|
10
|
Rode MP, Silva AH, Cisilotto J, Rosolen D, Creczynski-Pasa TB. miR-425-5p as an exosomal biomarker for metastatic prostate cancer. Cell Signal 2021; 87:110113. [PMID: 34371055 DOI: 10.1016/j.cellsig.2021.110113] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Prostate cancer-related deaths are mostly caused by metastasis, which indicates the importance of identifying clinical prognostic biomarkers. In this study, we evaluated the expression profile of exosomal microRNAs (miRNAs) derived from metastatic prostate cancer (mPCa) cell lines (LNCaP and PC-3). miRNA signatures in exosomes and cells were evaluated by miRNA microarray analysis. Fourteen miRNAs were identified as candidates for specific noninvasive biomarkers. The expression of five miRNAs was validated using RT-qPCR, which confirmed that miR-205-5p, miR-148a-3p, miR-125b-5p, miR-183-5p, and miR-425-5p were differentially expressed in mPCa exosomes. Bioinformatic analyses showed that miR-425-5p was associated with residual tumor, pathologic T and N stages, and TP53 status in PCa samples. Gene ontology analysis of negatively correlated and predicted targeted genes showed enrichment of genes related to bone development pathways. The LinkedOmics database indicated that the potential target HSPB8 has a significant negative correlation with miR-425-5p. In conclusion, this study identified a panel of exosomal miRNAs with potential value as prognostic biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Michele Patrícia Rode
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Adny Henrique Silva
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Júlia Cisilotto
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Daiane Rosolen
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | |
Collapse
|
11
|
Xu L, Long H, Zhou B, Jiang H, Cai M. CircMKLN1 Suppresses the Progression of Human Retinoblastoma by Modulation of miR-425-5p/PDCD4 Axis. Curr Eye Res 2021; 46:1751-1761. [PMID: 33988065 DOI: 10.1080/02713683.2021.1927110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Purpose: Circular RNAs (circRNAs) are essential regulators in tumorigenesis and development. In this study, we focused on the functions of circRNA muskelin 1 (circMKLN1) in retinoblastoma (RB) progression.Materials and Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) assay was conducted to determine the levels of circMKLN1, microRNA-425-5p (miR-425-5p) and programmed cell death 4 (PDCD4). The characteristic of circMKLN1 was analyzed using RNase R assay. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were employed to explore cell proliferation ability. The transwell assay was utilized for cell migration and invasion. A Western blot assay was performed for protein levels. The dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to demonstrate the relationships among circMKLN1, miR-425-5p and PDCD4. Murine xenograft model assay was adopted to investigate the role of circMKLN1 in vivo.Results: CircMKLN1 was downregulated in RB tissues and cells. High levels of circMKLN1 were related to a favorable outcome of RB patients. CircMKLN1 was resistant to RNase R digestion and circMKLN1 overexpression repressed RB cell proliferation, migration and invasion in vitro. MiR-425-5p was identified as the target of circMKLN1 and miR-425-5p elevation reversed the effects of circMKLN1 overexpression on RB cell malignant behaviors. Furthermore, as the target gene of miR-425-5p, PDCD4 silencing could ameliorate the suppressive roles of circMKLN1 in RB cell growth and metastasis. Additionally, circMKLN1 overexpression hampered tumor growth in vivo.Conclusions: CircMKLN1 overexpression decelerated the progression of RB through sponging miR-425-5p and elevating PDCD4.
Collapse
Affiliation(s)
- Le Xu
- Department of Ophthalmology, Suizhou Hospital, Hubei University of Medicine, Suizhou City, Hubei Province, China
| | - Hua Long
- Department of Ophthalmology, Suizhou Hospital, Hubei University of Medicine, Suizhou City, Hubei Province, China
| | - Bo Zhou
- Department of Ophthalmology, Suizhou Hospital, Hubei University of Medicine, Suizhou City, Hubei Province, China
| | - Haibo Jiang
- Department of Ophthalmology, Suizhou Hospital, Hubei University of Medicine, Suizhou City, Hubei Province, China
| | - Mingfang Cai
- Department of Ophthalmology, Suizhou Hospital, Hubei University of Medicine, Suizhou City, Hubei Province, China
| |
Collapse
|
12
|
Huang S, Luo S, Gong C, Liang L, Xiao Y, Li M, He J. MTTL3 upregulates microRNA-1246 to promote occurrence and progression of NSCLC via targeting paternally expressed gene 3. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:542-553. [PMID: 33898106 PMCID: PMC8059086 DOI: 10.1016/j.omtn.2021.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the major causes of morbidity and mortality worldwide. We aimed to investigate the role of N6-methyladenosine (m6A) methyltransferase-like 3 (METTL3) regulating microRNA-1246 (miR-1246) in the progression of NSCLC by targeting paternally expressed gene 3 (PEG3). METTL3, miR-1246, and PEG3 expression in tissues was assessed, and the predictive role of METTL3 in prognosis of patients with NSCLC was detected. NSCLC cells were relatively treated with altered expression of METTL3, miR-1246, or PEG3 to measure their roles in the proliferation, migration, invasion, apoptosis, and in vivo growth of the NSCLC cells. The RNA m6A level was determined, and the targeting relationship between miR-1246 and PEG3 was confirmed. Our results revealed that METTL3 and miR-1246 were upregulated, whereas PEG3 was downregulated in NSCLC tissues. METTL3 knockdown or PEG3 overexpression in NSCLC cells suppressed malignant behaviors of NSCLC cells. METTL3 affected the m6A modification of miR-1246, thus upregulating miR-1246 and miR-1246-targeted PEG3. The elevation of PEG3 reversed the effects of miR-1246 upregulation on NSCLC cells. This study revealed that m6A methyltransferase METTL3 affects the m6A modification of miR-1246, thus upregulating miR-1246 to promote NSCLC progression by inhibiting PEG3.
Collapse
Affiliation(s)
- Shaohong Huang
- Department of Thoracocardiac Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Shaoning Luo
- Department of Emergency Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Chulian Gong
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Limin Liang
- Department of Thoracocardiac Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Yi Xiao
- Department of Thoracocardiac Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Mingan Li
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Jinyuan He
- Department of Thoracocardiac Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| |
Collapse
|
13
|
Sima M, Rossnerova A, Simova Z, Rossner P. The Impact of Air Pollution Exposure on the MicroRNA Machinery and Lung Cancer Development. J Pers Med 2021; 11:60. [PMID: 33477935 PMCID: PMC7833364 DOI: 10.3390/jpm11010060] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Small non-coding RNA molecules (miRNAs) play an important role in the epigenetic regulation of gene expression. As these molecules have been repeatedly implicated in human cancers, they have been suggested as biomarkers of the disease. Additionally, miRNA levels have been shown to be affected by environmental pollutants, including airborne contaminants. In this review, we searched the current literature for miRNAs involved in lung cancer, as well as miRNAs deregulated as a result of exposure to air pollutants. We then performed a synthesis of the data and identified those molecules commonly deregulated under both conditions. We detected a total of 25 miRNAs meeting the criteria, among them, miR-222, miR-21, miR-126-3p, miR-155 and miR-425 being the most prominent. We propose these miRNAs as biomarkers of choice for the identification of human populations exposed to air pollution with a significant risk of developing lung cancer.
Collapse
Affiliation(s)
- Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Zuzana Simova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| |
Collapse
|