1
|
Rey-Bretal D, García-Varela L, Gómez-Lado N, Moscoso A, Piñeiro-Fiel M, Díaz-Platas L, Medin S, Fernández-Ferreiro A, Ruibal Á, Sobrino T, Silva-Rodríguez J, Aguiar P. Quantitative brain [ 18F]FDG PET beyond normal blood glucose levels. Neuroimage 2024; 300:120873. [PMID: 39341474 DOI: 10.1016/j.neuroimage.2024.120873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction SUV measurements from static brain [18F]FDG PET acquisitions are a commonly used tool in preclinical research, providing a simple alternative for kinetic modelling, which requires complex and time-consuming dynamic acquisitions. However, SUV can be severely affected by the animal handling and preconditioning protocols, primarily by those that may induce changes in blood glucose levels (BGL). Here, we aimed at developing and investigating the feasibility of SUV-based approaches for a wide range of BGL far beyond normal values, and consequently, to develop and validate a new model to generate standardized and reproducible SUV measurements for any BGL. Material and methods We performed dynamic and static brain [18F]FDG PET acquisitions in 52 male Sprague-Dawley rats sorted into control (n = 10), non-fasting (n = 14), insulin-induced hypoglycemia (n = 12) and glucagon-induced hyperglycemia (n = 16) groups. Brain [18F]FDG PET images were cropped, aligned and co-registered to a standard template to calculate whole-brain and regional SUV. Cerebral Metabolic Rate of Glucose (CMRglc) was also estimated from 2-Tissue Compartment Model (2TCM) and Patlak plot for validation purposes. Results Our results showed that BGL=100±6 mg/dL can be considered a reproducible reference value for normoglycemia. Furthermore, we successfully established a 2nd-degree polynomial model (C1=0.66E-4, C2=-0.0408 and C3=7.298) relying exclusively on BGL measures at pre-[18F]FDG injection time, that characterizes more precisely the relationship between SUV and BGL for a wide range of BGL values (from 10 to 338 mg/dL). We confirmed the ability of this model to generate corrected SUV estimations that are highly correlated to CMRglc estimations (R2= 0.54 2TCM CMRgluc and R2= 0.49 Patlak CMRgluc). Besides, slight regional differences in SUV were found in animals from extreme BGL groups, showing that [18F]FDG uptake is mostly directed toward central regions of the brain when BGLs are significantly decreased. Conclusion Our study successfully established a non-linear model that relies exclusively on pre-scan BGL measurements to characterize the relationship between [18F]FDG SUV and BGL. The extensive validation confirmed its ability to generate SUV-based surrogates of CMRglu along a wide range of BGL and it holds the potential to be adopted as a standard protocol by the preclinical neuroimaging community using brain [18F]FDG PET imaging.
Collapse
Affiliation(s)
- David Rey-Bretal
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Lara García-Varela
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Noemí Gómez-Lado
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - Manuel Piñeiro-Fiel
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Lucía Díaz-Platas
- Galician PET Radiopharmacy Unit, GALARIA, University Clinical Hospital, Santiago de Compostela, Spain
| | - Santiago Medin
- Galician PET Radiopharmacy Unit, GALARIA, University Clinical Hospital, Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; FarmaCHUS Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Álvaro Ruibal
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Jesús Silva-Rodríguez
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain.
| | - Pablo Aguiar
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Solas M, Zamarbide M, Ardanaz CG, Ramírez MJ, Pérez-Mediavilla A. The Cognitive Improvement and Alleviation of Brain Hypermetabolism Caused by FFAR3 Ablation in Tg2576 Mice Is Persistent under Diet-Induced Obesity. Int J Mol Sci 2022; 23:13591. [PMID: 36362376 PMCID: PMC9654726 DOI: 10.3390/ijms232113591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Obesity and aging are becoming increasingly prevalent across the globe. It has been established that aging is the major risk factor for Alzheimer's disease (AD), and it is becoming increasingly evident that obesity and the associated insulin resistance are also notably relevant risk factors. The biological plausibility of the link between high adiposity, insulin resistance, and dementia is central for understanding AD etiology, and to form bases for prevention efforts to decrease the disease burden. Several studies have demonstrated a strong association between short chain fatty acid receptor FFAR3 and insulin sensitivity. Interestingly, it has been recently established that FFAR3 mRNA levels are increased in early stages of the AD pathology, indicating that FFAR3 could play a key role in AD onset and progression. Indeed, in the present study we demonstrate that the ablation of the Ffar3 gene in Tg2576 mice prevents the development of cognitive deficiencies in advanced stages of the disease. Notably, this cognitive improvement is also maintained upon a severe metabolic challenge such as the exposure to high-fat diet (HFD) feeding. Moreover, FFAR3 deletion restores the brain hypermetabolism displayed by Tg2576 mice. Collectively, these data postulate FFAR3 as a potential novel target for AD.
Collapse
Affiliation(s)
- Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Carlos G. Ardanaz
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María J. Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Alberto Pérez-Mediavilla
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
3
|
Chen B, Marquez-Nostra B, Belitzky E, Toyonaga T, Tong J, Huang Y, Cai Z. PET Imaging in Animal Models of Alzheimer’s Disease. Front Neurosci 2022; 16:872509. [PMID: 35685772 PMCID: PMC9171374 DOI: 10.3389/fnins.2022.872509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The successful development and translation of PET imaging agents targeting β-amyloid plaques and hyperphosphorylated tau tangles have allowed for in vivo detection of these hallmarks of Alzheimer’s disease (AD) antemortem. Amyloid and tau PET have been incorporated into the A/T/N scheme for AD characterization and have become an integral part of ongoing clinical trials to screen patients for enrollment, prove drug action mechanisms, and monitor therapeutic effects. Meanwhile, preclinical PET imaging in animal models of AD can provide supportive information for mechanistic studies. With the recent advancement of gene editing technologies and AD animal model development, preclinical PET imaging in AD models will further facilitate our understanding of AD pathogenesis/progression and the development of novel treatments. In this study, we review the current state-of-the-art in preclinical PET imaging using animal models of AD and suggest future research directions.
Collapse
|
4
|
Syvänen S, Meier SR, Roshanbin S, Xiong M, Faresjö R, Gustavsson T, Bonvicini G, Schlein E, Aguilar X, Julku U, Eriksson J, Sehlin D. PET Imaging in Preclinical Anti-Aβ Drug Development. Pharm Res 2022; 39:1481-1496. [PMID: 35501533 PMCID: PMC9246809 DOI: 10.1007/s11095-022-03277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
Abstract
Positron emission tomography (PET), a medical imaging technique allowing for studies of the living human brain, has gained an important role in clinical trials of novel drugs against Alzheimer’s disease (AD). For example, PET data contributed to the conditional approval in 2021 of aducanumab, an antibody directed towards amyloid-beta (Aβ) aggregates, by showing a dose-dependent reduction in brain amyloid after treatment. In parallel to clinical studies, preclinical studies in animal models of Aβ pathology may also benefit from PET as a tool to detect target engagement and treatment effects of anti-Aβ drug candidates. PET is associated with a high level of translatability between species as similar, non-invasive protocols allow for longitudinal rather than cross-sectional studies and can be used both in a preclinical and clinical setting. This review focuses on the use of preclinical PET imaging in genetically modified animals that express human Aβ, and its present and potential future role in the development of drugs aimed at reducing brain Aβ levels as a therapeutic strategy to halt disease progression in AD.
Collapse
Affiliation(s)
- Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden.
| | - Silvio R Meier
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Sahar Roshanbin
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Mengfei Xiong
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Rebecca Faresjö
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Tobias Gustavsson
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Gillian Bonvicini
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden.,BioArctic AB, Stockholm, Sweden
| | - Eva Schlein
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Ximena Aguilar
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Ulrika Julku
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.,PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| |
Collapse
|
5
|
Hugon G, Goutal S, Sarazin M, Bottlaender M, Caillé F, Droguerre M, Charvériat M, Winkeler A, Tournier N. Impact of Donepezil on Brain Glucose Metabolism Assessed Using [ 18F]2-Fluoro-2-deoxy-D-Glucose Positron Emission Tomography Imaging in a Mouse Model of Alzheimer's Disease Induced by Intracerebroventricular Injection of Amyloid-Beta Peptide. Front Neurosci 2022; 16:835577. [PMID: 35281502 PMCID: PMC8916213 DOI: 10.3389/fnins.2022.835577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/04/2022] [Indexed: 11/09/2022] Open
Abstract
Translational methods are needed to monitor the impact of the Alzheimer's disease (AD) and therapies on brain function in animal models and patients. The formation of amyloid plaques was investigated using [18F]florbetapir autoradiography in a mouse model of AD consisting in unilateral intracerebroventricular (i.c.v) injection of amyloid peptide Aβ25-35. Then, an optimized positron emission tomography (PET) imaging protocol using [18F]2-fluoro-2-deoxy-D-glucose ([18F]FDG) was performed to estimate brain glucose metabolism: [18F]FDG was injected in awake animals to allow for 40 min brain uptake in freely moving mice. Anesthesia was then induced for 30 min PET acquisition to capture the slow and poorly reversible brain uptake of [18F]FDG. Impact of donepezil (0.25 mg/kg daily, 7 days, orally) on brain function was investigated in AD mice (n = 6 mice/group). Formation of amyloid plaques could not be detected using autoradiography. Compared with sham controls (injection of scramble peptide), significant decrease in [18F]FDG uptake was observed in the AD group in the subcortical volume of the ipsilateral hemisphere. Donepezil restored normal glucose metabolism by selectively increasing glucose metabolism in the affected subcortical volume but not in other brain regions. In mice, [18F]FDG PET imaging can be optimized to monitor impaired brain function associated with i.c.v injection of Aβ25-35, even in the absence of detectable amyloid plaque. This model recapitulates the regional decrease in [18F]FDG uptake observed in AD patients. [18F]FDG PET imaging can be straightforwardly transferred to AD patients and may aid the development of certain therapies designed to restore the altered brain function in AD.
Collapse
Affiliation(s)
- Gaëlle Hugon
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| | - Sébastien Goutal
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| | - Marie Sarazin
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France,Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Paris, France,Faculté de Médicine, Université de Paris, Paris, France
| | - Michel Bottlaender
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France,NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| | | | | | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| | - Nicolas Tournier
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France,*Correspondence: Nicolas Tournier,
| |
Collapse
|
6
|
Ni R. Positron Emission Tomography in Animal Models of Alzheimer's Disease Amyloidosis: Translational Implications. Pharmaceuticals (Basel) 2021; 14:1179. [PMID: 34832961 PMCID: PMC8623863 DOI: 10.3390/ph14111179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Animal models of Alzheimer's disease amyloidosis that recapitulate cerebral amyloid-beta pathology have been widely used in preclinical research and have greatly enabled the mechanistic understanding of Alzheimer's disease and the development of therapeutics. Comprehensive deep phenotyping of the pathophysiological and biochemical features in these animal models is essential. Recent advances in positron emission tomography have allowed the non-invasive visualization of the alterations in the brain of animal models and in patients with Alzheimer's disease. These tools have facilitated our understanding of disease mechanisms and provided longitudinal monitoring of treatment effects in animal models of Alzheimer's disease amyloidosis. In this review, we focus on recent positron emission tomography studies of cerebral amyloid-beta accumulation, hypoglucose metabolism, synaptic and neurotransmitter receptor deficits (cholinergic and glutamatergic system), blood-brain barrier impairment, and neuroinflammation (microgliosis and astrocytosis) in animal models of Alzheimer's disease amyloidosis. We further propose the emerging targets and tracers for reflecting the pathophysiological changes and discuss outstanding challenges in disease animal models and future outlook in the on-chip characterization of imaging biomarkers towards clinical translation.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH & University of Zurich, 8093 Zurich, Switzerland;
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
7
|
Gao Y, Li Z, Song C, Li L, Li M, Schmall J, Liu H, Yuan J, Wang Z, Zeng T, Hu L, Chen Q, Zhang Y. Automatic rat brain image segmentation using triple cascaded convolutional neural networks in a clinical PET/MR. Phys Med Biol 2021; 66:04NT01. [PMID: 33527911 DOI: 10.1088/1361-6560/abd2c5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this work was to develop and evaluate a deep learning approach for automatic rat brain image segmentation of magnetic resonance imaging (MRI) images in a clinical PET/MR, providing a useful tool for analyzing studies of the pathology and progression of neurological disease and to validate new radiotracers and therapeutic agents. Rat brain PET/MR images (N = 56) were collected from a clinical PET/MR system using a dedicated small-animal imaging phased array coil. A segmentation method based on a triple cascaded convolutional neural network (CNN) was developed, where, for a rectangular region of interest covering the whole brain, the entire brain volume was outlined using a CNN, then the outlined brain was fed into the cascaded network to segment both the cerebellum and cerebrum, and finally the sub-cortical structures within the cerebrum including hippocampus, thalamus, striatum, lateral ventricles and prefrontal cortex were segmented out using the last cascaded CNN. The dice score coefficient (DSC) between manually drawn labels and predicted labels were used to quantitatively evaluate the segmentation accuracy. The proposed method achieved a mean DSC of 0.965, 0.927, 0.858, 0.594, 0.847, 0.674 and 0.838 for whole brain, cerebellum, hippocampus, lateral ventricles, striatum, prefrontal cortex and thalamus, respectively. Compared with the segmentation results reported in previous publications using atlas-based methods, the proposed method demonstrated improved performance in the whole brain and cerebellum segmentation. In conclusion, the proposed method achieved high accuracy for rat brain segmentation in MRI images from a clinical PET/MR and enabled the possibility of automatic rat brain image processing for small animal neurological research.
Collapse
Affiliation(s)
- Ya Gao
- First Affiliated Hospital of Dalian Medical University, Dalian 116044, People's Republic of China
| | - Zaisheng Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People's Republic of China.,School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cheng Song
- First Affiliated Hospital of Dalian Medical University, Dalian 116044, People's Republic of China
| | - Lei Li
- First Affiliated Hospital of Dalian Medical University, Dalian 116044, People's Republic of China
| | - Mengmeng Li
- First Affiliated Hospital of Dalian Medical University, Dalian 116044, People's Republic of China
| | | | - Hui Liu
- Shanghai United Imaging Healthcare Co., Ltd, Shanghai 201807, People's Republic of China
| | - Jianmin Yuan
- Shanghai United Imaging Healthcare Co., Ltd, Shanghai 201807, People's Republic of China
| | - Zhe Wang
- Shanghai United Imaging Healthcare Co., Ltd, Shanghai 201807, People's Republic of China
| | - Tianyi Zeng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Shanghai United Imaging Healthcare Co., Ltd, Shanghai 201807, People's Republic of China
| | - Lingzhi Hu
- UIH America Inc., Houston 77054, United States of America.,Shanghai United Imaging Healthcare Co., Ltd, Shanghai 201807, People's Republic of China
| | - Qun Chen
- Shanghai United Imaging Healthcare Co., Ltd, Shanghai 201807, People's Republic of China
| | - Yanjun Zhang
- First Affiliated Hospital of Dalian Medical University, Dalian 116044, People's Republic of China
| |
Collapse
|
8
|
Franke TN, Irwin C, Bayer TA, Brenner W, Beindorff N, Bouter C, Bouter Y. In vivo Imaging With 18F-FDG- and 18F-Florbetaben-PET/MRI Detects Pathological Changes in the Brain of the Commonly Used 5XFAD Mouse Model of Alzheimer's Disease. Front Med (Lausanne) 2020; 7:529. [PMID: 33043029 PMCID: PMC7522218 DOI: 10.3389/fmed.2020.00529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Imaging biomarkers of Alzheimer's disease (AD) that are able to detect molecular changes in vivo and transgenic animal models mimicking AD pathologies are essential for the evaluation of new therapeutic strategies. Positron-emission tomography (PET) using either 18F-Fluorodeoxyglucose (18F-FDG) or amyloid-tracers is a well-established, non-invasive tool in the clinical diagnostics of AD assessing two major pathological hallmarks. 18F-FDG-PET is able to detect early changes in cerebral glucose metabolism and amyloid-PET shows cerebral amyloid load. However, the suitability of 18F-FDG- and amyloid-PET in the widely used 5XFAD mouse model of AD is unclear as only a few studies on the use of PET biomarkers are available showing some conflicting results. The aim of this study was the evaluation of 18F-FDG-PET and amyloid-PET in 5XFAD mice in comparison to neurological deficits and neuropathological changes. Seven- and 12-month-old male 5XFAD mice showed a significant reduction in brain glucose metabolism in 18F-FDG-PET and amyloid-PET with 18F-Florbetaben demonstrated an increased cerebral amyloid deposition (n = 4-6 per group). Deficits in spatial reference memory were detected in 12-month-old 5XFAD mice in the Morris Water Maze (n = 10-12 per group). Furthermore, an increased plaque load and gliosis could be proven immunohistochemically in 5XFAD mice (n = 4-6 per group). PET biomarkers 18F-FDG and 18F-Florbetaben detected cerebral hypometabolism and increased plaque load even before the onset of severe memory deficits. Therefore, the 5XFAD mouse model of AD is well-suited for in vivo monitoring of AD pathologies and longitudinal testing of new therapeutic approaches.
Collapse
Affiliation(s)
- Timon N Franke
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Caroline Irwin
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Thomas A Bayer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
9
|
Bertoglio D, Verhaeghe J, Miranda A, Kertesz I, Cybulska K, Korat Š, Wyffels L, Stroobants S, Mrzljak L, Dominguez C, Liu L, Skinbjerg M, Munoz-Sanjuan I, Staelens S. Validation and noninvasive kinetic modeling of [ 11C]UCB-J PET imaging in mice. J Cereb Blood Flow Metab 2020; 40:1351-1362. [PMID: 31307287 PMCID: PMC7232782 DOI: 10.1177/0271678x19864081] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Synaptic pathology is associated with several brain disorders, thus positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) using the radioligand [11C]UCB-J may provide a tool to measure synaptic alterations. Given the pivotal role of mouse models in understanding neuropsychiatric and neurodegenerative disorders, this study aims to validate and characterize [11C]UCB-J in mice. We performed a blocking study to verify the specificity of the radiotracer to SV2A, examined kinetic models using an image-derived input function (IDIF) for quantification of the radiotracer, and investigated the in vivo metabolism. Regional TACs during baseline showed rapid uptake of [11C]UCB-J into the brain. Pretreatment with levetiracetam confirmed target engagement in a dose-dependent manner. VT (IDIF) values estimated with one- and two-tissue compartmental models (1TCM and 2TCM) were highly comparable (r=0.999, p < 0.0001), with 1TCM performing better than 2TCM for K1 (IDIF). A scan duration of 60 min was sufficient for reliable VT (IDIF) and K1 (IDIF) estimations. In vivo metabolism of [11C]UCB-J was relatively rapid, with a parent fraction of 22.5 ± 4.2% at 15 min p.i. In conclusion, our findings show that [11C]UCB-J selectively binds to SV2A with optimal kinetics in the mouse representing a promising tool to noninvasively quantify synaptic density in comparative or therapeutic studies in neuropsychiatric and neurodegenerative disorder models.
Collapse
Affiliation(s)
- Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Alan Miranda
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Istvan Kertesz
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Klaudia Cybulska
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Špela Korat
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | | | | | - Longbin Liu
- CHDI Management/CHDI Foundation, Los Angeles, CA, USA
| | | | | | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
10
|
Wagner JM, Sichler ME, Schleicher EM, Franke TN, Irwin C, Löw MJ, Beindorff N, Bouter C, Bayer TA, Bouter Y. Analysis of Motor Function in the Tg4-42 Mouse Model of Alzheimer's Disease. Front Behav Neurosci 2019; 13:107. [PMID: 31156407 PMCID: PMC6533559 DOI: 10.3389/fnbeh.2019.00107] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common form of dementia. Hallmarks of AD are memory impairments and cognitive deficits, but non-cognitive impairments, especially motor dysfunctions are also associated with the disease and may even precede classic clinical symptoms. With an aging society and increasing hospitalization of the elderly, motor deficits are of major interest to improve independent activities in daily living. Consistent with clinical findings, a variety of AD mouse models develop motor deficits as well. We investigated the motor function of 3- and 7-month-old Tg4-42 mice in comparison to wild-type controls and 5XFAD mice and discuss the results in context with several other AD mouse model. Our study shows impaired balance and motor coordination in aged Tg4-42 mice in the balance beam and rotarod test, while general locomotor activity and muscle strength is not impaired at 7 months. The cerebellum is a major player in the regulation and coordination of balance and locomotion through practice. Particularly, the rotarod test is able to detect cerebellar deficits. Furthermore, supposed cerebellar impairment was verified by 18F-FDG PET/MRI. Aged Tg4-42 mice showed reduced cerebellar glucose metabolism in the 18F-FDG PET. Suggesting that, deficits in coordination and balance are most likely due to cerebellar impairment. In conclusion, Tg4-42 mice develop motor deficits before memory deficits, without confounding memory test. Thus, making the Tg4-42 mouse model a good model to study the effects on cognitive decline of therapies targeting motor impairments.
Collapse
Affiliation(s)
- Jannek M. Wagner
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Marius E. Sichler
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Eva M. Schleicher
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Timon N. Franke
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Caroline Irwin
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Maximilian Johannes Löw
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center, Charité – University Medicine Berlin, Berlin, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Thomas A. Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| |
Collapse
|
11
|
Bouter C, Bouter Y. 18F-FDG-PET in Mouse Models of Alzheimer's Disease. Front Med (Lausanne) 2019; 6:71. [PMID: 31058151 PMCID: PMC6482246 DOI: 10.3389/fmed.2019.00071] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/21/2019] [Indexed: 01/08/2023] Open
Abstract
Suitable animal models and in vivo biomarkers are essential for development and evaluation of new therapeutic strategies in Alzheimer's disease (AD). 18F-Fluorodeoxyglucose (18F-FDG)-positron-emission tomography (PET) is an imaging biomarker that allows the assessment of cerebral glucose metabolism in vivo. While 18F-FDG-PET/CT is an established tool in the evaluation of AD patients, its role in preclinical studies with AD mouse models remains unclear. Here, we want to review available studies on 18F-FDG-PET/CT in AD mouse models in order to evaluate the method and its impact in preclinical AD research. Only a limited number of studies using 18F-FDG-PET in AD mice were carried out so far showing contradictory findings in cerebral FDG uptake. Methodological differences as well as underlying pathological features of used mouse models seem to be accountable for those varying results. However, 18F-FDG-PET can be a valuable tool in longitudinal in vivo therapy monitoring with a lot of potential for future studies.
Collapse
Affiliation(s)
- Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| |
Collapse
|
12
|
Effect of genotype and age on cerebral [ 18F]FDG uptake varies between transgenic APP Swe-PS1 dE9 and Tg2576 mouse models of Alzheimer's disease. Sci Rep 2019; 9:5700. [PMID: 30952945 PMCID: PMC6450965 DOI: 10.1038/s41598-019-42074-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
Back-translation of clinical imaging biomarkers of Alzheimer’s disease (AD), such as alterations in cerebral glucose metabolism detected by [18F]FDG positron emission tomography (PET), would be valuable for preclinical studies evaluating new disease-modifying drugs for AD. However, previous confounding results have been difficult to interpret due to differences in mouse models and imaging protocols between studies. We used an equivalent study design and [18F]FDG µPET imaging protocol to compare changes in cerebral glucose metabolism in commercial transgenic APPSwe-PS1dE9 (n = 12), Tg2576 (n = 15), and wild-type mice (n = 15 and 9). Dynamic [18F]FDG scans were performed in young (6 months) and aged (12 or 17 months) mice and the results verified by ex vivo methods (i.e., tissue counting, digital autoradiography, and beta-amyloid and Iba-1 immunohistochemistry). [18F]FDG uptake exhibited significant regional differences between genotypes (TG < WT) and ages (6 months <12 months) in the APPSwe-PS1dE9 model, whereas similar differences were not present in Tg2576 mice. In both models, only weak correlations were detected between regional beta-amyloid deposition or microgliosis and [18F]FDG uptake. By using equivalent methodology, this study demonstrated differences in cerebral glucose metabolism dysfunction detected with [18F]FDG PET between two widely used commercial AD mouse models.
Collapse
|
13
|
Bouter C, Henniges P, Franke TN, Irwin C, Sahlmann CO, Sichler ME, Beindorff N, Bayer TA, Bouter Y. 18F-FDG-PET Detects Drastic Changes in Brain Metabolism in the Tg4-42 Model of Alzheimer's Disease. Front Aging Neurosci 2019; 10:425. [PMID: 30670962 PMCID: PMC6333025 DOI: 10.3389/fnagi.2018.00425] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022] Open
Abstract
The evaluation of new therapeutic strategies in Alzheimer’s disease (AD) relies heavily on in vivo imaging and suitable animal models that mimic the pathological changes seen in patients. 18F-Fluorodeoxyglucose (18F-FDG)-positron-emission tomography (PET) is a well-established non-invasive imaging tool for monitoring changes in cerebral brain glucose metabolism in vivo. 18F-FDG-PET is used as a functional biomarker for AD as patients show an early and progressive reduction of cerebral glucose metabolism. However, earlier studies in preclinical models of AD showed conflicting results. The aim of this study was the evaluation of cerebral glucose metabolism in the Tg4–42 mouse model of AD using 18F-FDG-PET/magnetic resonance imaging (MRI). Tg4–42 mice show an age-dependent reduction in glucose metabolism together with severe neuron loss and memory deficits. Similar to AD patients early decrease in 18F-FDG uptake was already detected in young (3 months) Tg4–42 mice. The altered glucose metabolism coupled with age- and disease related cognitive decline of Tg4–42 mice make it a well-suited model for preclinical testing of AD-relevant therapeutics.
Collapse
Affiliation(s)
- Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Philipp Henniges
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Timon N Franke
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Caroline Irwin
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Carsten Oliver Sahlmann
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Marius E Sichler
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-University Medicine Berlin, Berlin, Germany
| | - Thomas A Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
14
|
Tolomeo D, Micotti E, Serra SC, Chappell M, Snellman A, Forloni G. Chemical exchange saturation transfer MRI shows low cerebral 2-deoxy-D-glucose uptake in a model of Alzheimer's Disease. Sci Rep 2018; 8:9576. [PMID: 29934551 PMCID: PMC6015016 DOI: 10.1038/s41598-018-27839-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Glucose is the central nervous system's only energy source. Imaging techniques capable to detect pathological alterations of the brain metabolism are useful in different diagnostic processes. Such techniques are also beneficial for assessing the evaluation efficacy of therapies in pre-clinical and clinical stages of diseases. Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is a possible alternative to positron emission tomography (PET) imaging that has been widely explored in cancer research in humans and animal models. We propose that pathological alterations in brain 2-deoxy-D-glucose (2DG) uptake, typical of neurodegenerative diseases, can be detected with CEST MRI. Transgenic mice overexpressing a mutated form of amyloid precusrsor protein (APP23), a model of Alzheimer's disease, analyzed with CEST MRI showed a clear reduction of 2DG uptake in different brain regions. This was reminiscent of the cerebral condition observed in Alzheimer's patients. The results indicate the feasibility of CEST for analyzing the brain metabolic state, with better image resolution than PET in experimental models.
Collapse
Affiliation(s)
- Daniele Tolomeo
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS, Mario Negri Institute for Pharmacological Research, Milan, (MI), Italy
| | - Edoardo Micotti
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS, Mario Negri Institute for Pharmacological Research, Milan, (MI), Italy
| | | | - Michael Chappell
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, 6396, Oxford, UK
| | - Anniina Snellman
- Medicity Research Laboratory, University of Turku, (Tykistökatu 6, FI-20510), Turku, Finland.,Turku PET Centre, University of Turku, (Kiinamyllynkatu 4-8, FI-20520,), Turku, Finland
| | - Gianluigi Forloni
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS, Mario Negri Institute for Pharmacological Research, Milan, (MI), Italy.
| |
Collapse
|
15
|
DeBay DR, Reid GA, Macdonald IR, Mawko G, Burrell S, Martin E, Bowen CV, Darvesh S. Butyrylcholinesterase-knockout reduces fibrillar β-amyloid and conserves 18FDG retention in 5XFAD mouse model of Alzheimer's disease. Brain Res 2017; 1671:102-110. [PMID: 28729192 DOI: 10.1016/j.brainres.2017.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder causing dementia. One hallmark of the AD brain is the deposition of β-amyloid (Aβ) plaques. AD is also a state of cholinergic dysfunction and butyrylcholinesterase (BChE) associates with Aβ pathology. A transgenic mouse (5XFAD) is an aggressive amyloidosis model, producing Aβ plaques with which BChE also associates. A derived strain (5XFAD/BChE-KO), with the BChE gene knocked out, has significantly lower fibrillar Aβ than 5XFAD mice at the same age. Therefore, BChE may have a role in Aβ pathogenesis. Furthermore, in AD, diminished glucose metabolism in the brain can be detected in vivo with positron emission tomography (PET) imaging following 2-deoxy-2-(18F)fluoro-D-glucose (18FDG) administration. To determine whether hypometabolism is related to BChE-induced changes in fibrillar Aβ burden, whole brain and regional uptake of 18FDG in 5XFAD and 5XFAD/BChE-KO mice was compared to corresponding wild-type (WT5XFAD and WTBChE-KO) strains at 5months. Diminished fibrillar Aβ burden was confirmed in 5XFAD/BChE-KO mice relative to 5XFAD. 5XFAD and 5XFAD/BChE-KO mice demonstrated reduction in whole brain 18FDG retention compared to respective wild-types. Regional analysis of relevant AD structures revealed reduction in 18FDG retention in 5XFAD mice in all brain regions analyzed (save cerebellum) compared to WT5XFAD. Alternatively, 5XFAD/BChE-KO mice demonstrated a more selective pattern of reduced retention in the cerebral cortex and thalamus compared to WTBChE-KO, while retention in hippocampal formation, amygdala and basal ganglia remained unchanged. This suggests that in knocking out BChE and reducing fibrillar Aβ, a possible protective effect on brain function may be conferred in a number of structures in 5XFAD/BChE-KO mice.
Collapse
Affiliation(s)
- Drew R DeBay
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Biomedical Translational Imaging Centre, Halifax, Nova Scotia, Canada
| | - George A Reid
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ian R Macdonald
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - George Mawko
- Department of Radiology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Steve Burrell
- Department of Radiology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Earl Martin
- Department of Chemistry and Physics, Mount St. Vincent University, Halifax, Nova Scotia B3M 2J6, Canada
| | - Chris V Bowen
- Biomedical Translational Imaging Centre, Halifax, Nova Scotia, Canada; Department of Radiology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Biomedical Translational Imaging Centre, Halifax, Nova Scotia, Canada; Department of Chemistry and Physics, Mount St. Vincent University, Halifax, Nova Scotia B3M 2J6, Canada; Department of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
16
|
Deleye S, Waldron AM, Verhaeghe J, Bottelbergs A, Wyffels L, Van Broeck B, Langlois X, Schmidt M, Stroobants S, Staelens S. Evaluation of Small-Animal PET Outcome Measures to Detect Disease Modification Induced by BACE Inhibition in a Transgenic Mouse Model of Alzheimer Disease. J Nucl Med 2017; 58:1977-1983. [PMID: 28611242 DOI: 10.2967/jnumed.116.187625] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/31/2017] [Indexed: 01/08/2023] Open
Abstract
In this study, we investigated the effects of chronic administration of an inhibitor of the β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) on Alzheimer-related pathology by multitracer PET imaging in transgenic APPPS1-21 (TG) mice. Methods: Wild-type (WT) and TG mice received vehicle or BACE inhibitor (60 mg/kg) starting at 7 wk of age. Outcome measures of brain metabolism, neuroinflammation, and amyloid-β pathology were obtained through small-animal PET imaging with 18F-FDG, 18F-peripheral benzodiazepine receptor (18F-PBR), and 18F-florbetapir (18F-AV45), respectively. Baseline scans were acquired at 6-7 wk of age and follow-up scans at 4, 7, and 12 mo. 18F-AV45 uptake was measured at 8 and 13 mo of age. After the final scans, histologic measures of amyloid-β (4G8), microglia (ionized calcium binding adaptor molecule 1), astrocytes (glial fibrillary acidic protein), and neuronal nuclei were performed. Results: TG mice demonstrated significant age-associated increases in 18F-AV45 uptake. An effect of treatment was observed in the cortex (P = 0.0014), hippocampus (P = 0.0005), and thalamus (P < 0.0001). Histology confirmed reduction of amyloid-β pathology in TG-BACE mice. Regardless of treatment, TG mice demonstrated significantly lower 18F-FDG uptake than WT mice in the thalamus (P = 0.0004) and hippocampus (P = 0.0332). Neuronal nucleus staining was lower in both TG groups in the thalamus and cortex. 18F-PBR111 detected a significant age-related increase in TG mice (P < 0.0001) but did not detect the treatment-induced reduction in activated microglia as demonstrated by histology. Conclusion: Although 18F-FDG, 18F-PBR111, and 18F-AV45 all detected pathologic alterations between TG and WT mice, only 18F-AV45 could detect an effect of BACE inhibitor treatment. However, changes in WT binding of 18F-AV45 undermine the specificity of this effect.
Collapse
Affiliation(s)
- Steven Deleye
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Ann-Marie Waldron
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | | | - Leonie Wyffels
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium.,Nuclear Medicine Department, University Hospital Antwerp, Antwerp, Belgium; and
| | | | - Xavier Langlois
- Foundational Neuroscience Center, Abbvie, Cambridge, Massachusetts
| | - Mark Schmidt
- Neuroscience Department, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Sigrid Stroobants
- Nuclear Medicine Department, University Hospital Antwerp, Antwerp, Belgium; and
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| |
Collapse
|