1
|
Rizi ZS, Shams L, Rad FR, Zamani M. Drug Response of Iranian Alzheimer's Patients to Rivastigmine Concerning Their Genotype for VDR rs11568820 and MTHFR C677T Variants: A Pharmacogenetic and Association Study. J Mol Neurosci 2024; 74:75. [PMID: 39112893 DOI: 10.1007/s12031-024-02253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/30/2024] [Indexed: 09/17/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder with polygenic etiology. Genetic risk variants for Alzheimer's disease differ among populations. Thus, discovering them in each population is clinically important. A total of 118 patients and 97 controls for VDR rs11568820 and 88 patients and 100 healthy controls for MTHFR C677T polymorphism were genotyped to evaluate the association of these polymorphisms with late-onset Alzheimer's disease in the Iranian population, along with their impacts on the response to Rivastigmine treatment. The VDR C allele was significantly associated with Alzheimer's disease and provided protection against it (P = 0.003, RR = 1.14, 95% CI 1.04-1.24), while the T allele increased susceptibility (P = 0.003, RR = 1.93, 95% CI 1.23-3.02). These results were also considerable upon excluding the effect of APOE ε4 allele. The Prevalence-corrected Positive Predictive Value was 1.71% for the VDR CC genotype and 4% for the VDR CT genotype, indicating lower and almost twofold higher chances of developing Alzheimer's disease, respectively. No significant correlation was observed between MTHFR C677T and Alzheimer's disease. Based on our pharmacogenetic study, MTHFR T allele carriers lacking APOE ε4 allele showed a better response to Rivastigmine treatment after a 2-year follow-up. Moreover, patients with VDR CC genotype displayed milder Alzheimer's disease, particularly when coincided with the APOE ε4 allele. The VDR rs11568820 polymorphism affects both Alzheimer's disease risk and the response to Rivastigmine in Iranian patients. Also, MTHFR C677T polymorphism may play a role in the response to Rivastigmine, through a pathway that needs to be elucidated in future studies.
Collapse
Affiliation(s)
- Zahra Salimian Rizi
- School of Medicine, Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Shams
- School of Medicine, Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Rezaei Rad
- School of Medicine, Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Zamani
- School of Medicine, Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Reagan AM, Christensen KE, Graham LC, Bedwell AA, Eldridge K, Speedy R, Figueiredo LL, Persohn SC, Bottiglieri T, Nho K, Sasner M, Territo PR, Rozen R, Howell GR. The 677C > T variant in methylenetetrahydrofolate reductase causes morphological and functional cerebrovascular deficits in mice. J Cereb Blood Flow Metab 2022; 42:2333-2350. [PMID: 36050860 PMCID: PMC9670012 DOI: 10.1177/0271678x221122644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 02/03/2023]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) particularly Alzheimer's disease and related dementias (ADRDs) are increasing; however, mechanisms driving cerebrovascular decline are poorly understood. Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in the folate and methionine cycles. Variants in MTHFR, notably 677 C > T, are associated with dementias, but no mouse model existed to identify mechanisms by which MTHFR677C > T increases risk. Therefore, MODEL-AD created a novel knock-in (KI) strain carrying the Mthfr677C > T allele on the C57BL/6J background (Mthfr677C > T) to characterize morphology and function perturbed by the variant. Consistent with human clinical data, Mthfr677C > T mice have reduced enzyme activity in the liver and elevated plasma homocysteine levels. MTHFR enzyme activity is also reduced in the Mthfr677C > T brain. Mice showed reduced tissue perfusion in numerous brain regions by PET/CT as well as significantly reduced vascular density, pericyte number and increased GFAP-expressing astrocytes in frontal cortex. Electron microscopy revealed cerebrovascular damage including endothelial and pericyte apoptosis, reduced luminal size, and increased astrocyte and microglial presence in the microenvironment. Collectively, these data support a mechanism by which variations in MTHFR perturb cerebrovascular health laying the foundation to incorporate our new Mthfr677C > T mouse model in studies examining genetic susceptibility for cerebrovascular dysfunction in ADRDs.
Collapse
Affiliation(s)
| | - Karen E Christensen
- Departments of Human Genetics and Pediatrics, McGill University,
Research Institute of the Health Center, Montreal, QC, Canada
| | | | - Amanda A Bedwell
- Department of Medicine, Division of Clinical Pharmacology,
Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kierra Eldridge
- Department of Medicine, Division of Clinical Pharmacology,
Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachael Speedy
- Department of Medicine, Division of Clinical Pharmacology,
Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lucas L Figueiredo
- Department of Medicine, Division of Clinical Pharmacology,
Indiana University School of Medicine, Indianapolis, IN, USA
| | - Scott C Persohn
- Department of Medicine, Division of Clinical Pharmacology,
Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor
Scott & White Research Institute, Dallas, TX, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Indiana Alzheimer’s Disease Research
Center, Department of Radiology and Imaging Sciences, Indiana University School
of Medicine, Indianapolis, IN, USA
| | | | - Paul R Territo
- Department of Medicine, Division of Clinical Pharmacology,
Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rima Rozen
- Departments of Human Genetics and Pediatrics, McGill University,
Research Institute of the Health Center, Montreal, QC, Canada
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences, Tufts University School
of Medicine, Boston, MA, USA
- Graduate School of Biomedical Sciences and Engineering,
University of Maine, Orono, ME, USA
| |
Collapse
|
3
|
Relationship between Nutrition, Lifestyle, and Neurodegenerative Disease: Lessons from ADH1B, CYP1A2 and MTHFR. Genes (Basel) 2022; 13:genes13081498. [PMID: 36011409 PMCID: PMC9408177 DOI: 10.3390/genes13081498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
In the present review, the main features involved in the susceptibility and progression of neurodegenerative disorders (NDDs) have been discussed, with the purpose of highlighting their potential application for promoting the management and treatment of patients with NDDs. In particular, the impact of genetic and epigenetic factors, nutrients, and lifestyle will be presented, with particular emphasis on Alzheimer’s disease (AD) and Parkinson’s disease (PD). Metabolism, dietary habits, physical exercise and microbiota are part of a complex network that is crucial for brain function and preservation. This complex equilibrium can be disrupted by genetic, epigenetic, and environmental factors causing perturbations in central nervous system homeostasis, contributing thereby to neuroinflammation and neurodegeneration. Diet and physical activity can directly act on epigenetic modifications, which, in turn, alter the expression of specific genes involved in NDDs onset and progression. On this subject, the introduction of nutrigenomics shed light on the main molecular players involved in the modulation of health and disease status. In particular, the review presents data concerning the impact of ADH1B, CYP1A2, and MTHFR on the susceptibility and progression of NDDs (especially AD and PD) and how they may be exploited for developing precision medicine strategies for the disease treatment and management.
Collapse
|
4
|
Reagan AM, Onos KD, Heuer SE, Sasner M, Howell GR. Improving mouse models for the study of Alzheimer's disease. Curr Top Dev Biol 2022; 148:79-113. [PMID: 35461569 DOI: 10.1016/bs.ctdb.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease whose risk is influenced by genetic and environmental factors. Although a number of pathological hallmarks have been extensively studied over the last several decades, a complete picture of disease initiation and progression remains unclear. We now understand that numerous cell types and systems are involved in AD pathogenesis, and that this cellular profile may present differently for each individual, making the creation of relevant mouse models challenging. However, with increasingly diverse data made available by genome-wide association studies, we can identify and examine new genes and pathways involved in genetic risk for AD, many of which involve vascular health and inflammation. When developing mouse models, it is critical to assess (1) an aging timeline that represents onset and progression in humans, (2) genetic variants and context, (3) environmental factors present in human populations that result in both neuropathological and functional changes-themes that we address in this chapter.
Collapse
Affiliation(s)
| | | | - Sarah E Heuer
- The Jackson Laboratory, Bar Harbor, ME, United States; Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, United States; Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States.
| |
Collapse
|
5
|
You M, Zhou X, Yin W, Wan K, Zhang W, Li C, Li M, Zhu W, Zhu X, Sun Z. The Influence of MTHFR Polymorphism on Gray Matter Volume in Patients With Amnestic Mild Cognitive Impairment. Front Neurosci 2021; 15:778123. [PMID: 34916904 PMCID: PMC8670096 DOI: 10.3389/fnins.2021.778123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
The methylenetetrahydrofolate reductase (MTHFR) gene has been associated with Alzheimer's disease (AD) pathogenesis. Amnestic mild cognitive impairment (aMCI) represents a prodromal stage of dementia and involves a high risk of progression into AD. Although the effects of the apolipoprotein E (APOE) gene on structural alterations in aMCI have been widely investigated, the effects of MTHFR C677T and interaction effects of MTHFR × APOE genotypes on gray matter atrophy in aMCI remain largely unknown. In the present study, 60 aMCI patients and 30 healthy controls were enrolled, and voxel-based morphometry analysis was performed to inspect the effects of diagnosis, different genotypes, and their interactions on gray matter atrophy. The results showed that aMCI patients had significant gray matter atrophy involving the bilateral hippocampus, the right parahippocampal gyrus, and the left superior temporal gyrus compared with healthy controls. Besides, a substantial reduction in gray matter volume was observed in the right hippocampus region in APOE ε4 carriers from the aMCI group, compared with APOE ε4 non-carriers. A significant interaction was found between diagnosis and MTHFR C677T genotype on the right precuneus in healthy controls and aMCI patients not carrying APOE ε4 allele. Our findings may provide new evidence substantiating the genetic effects of MTHFR C677T on brain structural alternation in patients with aMCI.
Collapse
Affiliation(s)
- Mengzhe You
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xia Zhou
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenwen Yin
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ke Wan
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenchen Li
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingxu Li
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenhao Zhu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoqun Zhu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongwu Sun
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Samieri C, Yassine HN, Melo van Lent D, Lefèvre-Arbogast S, van de Rest O, Bowman GL, Scarmeas N. Personalized nutrition for dementia prevention. Alzheimers Dement 2021; 18:1424-1437. [PMID: 34757699 DOI: 10.1002/alz.12486] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
The role of nutrition has been investigated for decades under the assumption of one-size-fits-all. Yet there is heterogeneity in metabolic and neurobiological responses to diet. Thus a more personalized approach may better fit biological reality and have increased efficacy to prevent dementia. Personalized nutrition builds on the food exposome, defined as the history of diet-related exposures over the lifetime, and on its interactions with the genome and other biological characteristics (eg, metabolism, the microbiome) to shape health. We review current advances of personalized nutrition in dementia research. We discuss key questions, success milestones, and future roadmap from observational epidemiology to clinical studies through basic science. A personalized nutrition approach based on the best prescription for the most appropriate target population in the most relevant time-window has the potential to strengthen dementia-prevention efforts.
Collapse
Affiliation(s)
- Cécilia Samieri
- Univ. Bordeaux, ISPED, Inserm, Bordeaux Population Health Research Center, Bordeaux, France
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Neurology, Keck School of Medicine USC, Los Angeles, California, USA
| | - Debora Melo van Lent
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas, USA.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Ondine van de Rest
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
| | - Gene L Bowman
- Department of Neurology and Layton Aging and Alzheimer's Disease Center, Oregon Health and Science University, Portland, Oregon, USA.,Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, USA
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, New York, USA
| |
Collapse
|
7
|
G N S HS, Marise VLP, Satish KS, Yergolkar AV, Krishnamurthy M, Ganesan Rajalekshmi S, Radhika K, Burri RR. Untangling huge literature to disinter genetic underpinnings of Alzheimer's Disease: A systematic review and meta-analysis. Ageing Res Rev 2021; 71:101421. [PMID: 34371203 DOI: 10.1016/j.arr.2021.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Drug discovery for Alzheimer's Disease (AD) is channeled towards unravelling key disease specific drug targets/genes to predict promising therapeutic candidates. Though enormous literature on AD genetics is available, there exists dearth in data pertinent to drug targets and crucial pathological pathways intertwined in disease progression. Further, the research findings revealing genetic associations failed to demonstrate consistency across different studies. This scenario prompted us to initiate a systematic review and meta-analysis with an aim of unearthing significant genetic hallmarks of AD. Initially, a Boolean search strategy was developed to retrieve case-control studies from PubMed, Cochrane, ProQuest, Europe PMC, grey literature and HuGE navigator. Subsequently, certain inclusion and exclusion criteria were framed to shortlist the relevant studies. These studies were later critically appraised using New Castle Ottawa Scale and Q-Genie followed by data extraction. Later, meta-analysis was performed only for those Single Nucleotide Polymorphisms (SNPs) which were evaluated in at least two different ethnicities from two different reports. Among, 204,351 studies retrieved, 820 met our eligibility criteria and 117 were processed for systematic review after critical appraisal. Ultimately, meta-analysis was performed for 23 SNPs associated with 15 genes which revealed significant associations of rs3865444 (CD33), rs7561528 (BIN1) and rs1801133 (MTHFR) with AD risk.
Collapse
|
8
|
Sutovsky S, Petrovic R, Fischerova M, Haverlikova V, Ukropcova B, Ukropec J, Turcani P. Allelic Distribution of Genes for Apolipoprotein E and MTHFR in Patients with Alzheimer's Disease and Their Epistatic Interaction. J Alzheimers Dis 2021; 77:1095-1105. [PMID: 32804129 PMCID: PMC7683064 DOI: 10.3233/jad-200321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Genetic risk factors play an important role in the pathogenesis of Alzheimer’s disease (AD). However, the gene-gene interaction (epistasis) between specific allelic variants is only partially understood. Objective: In our study, we examined the presence of the ɛ4 allele of apolipoprotein E (APOE) and the presence of C677T and A1298C (rs1801133 and rs1801131) polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene in patients with AD and controls. We also evaluated the epistatic interaction between MTHFR and the APOE variants. Methods: A total of 564 patients with AD and 534 cognitively unimpaired age-matched controls were involved in the study. Results: The presence of the ɛ4 allele of APOE increases the risk of developing AD in a dose-dependent manner (OR 32.7: homozygotes, 15.6: homozygotes + heterozygotes, 14.3: heterozygotes). The combination of genotypes also increases the risk of developing AD in a dose-dependent manner: OR 18.3 (APOE 4/X and 4/4 + CT rs1801133), OR 19.4 (APOE 4/X and 4/4 + CT rs1801133 + AC rs1801131), OR 22.4 (APOE 4/X and 4/4 + TT rs1801133), and OR 21.2 (APOE 4/X and 4/4 + CC rs1801131). Homozygotes for variant alleles of MTHFR as well as patients with AD had significantly higher levels of homocysteine than homozygotes for standard alleles or controls. Conclusion: Homozygotes for APOE4 and carriers of APOE4 with TT genotype of rs1801133 were found to be at the highest risk of developing AD. These findings suggest that the epistatic interaction of specific gene variants can have a significant effect on the development of AD.
Collapse
Affiliation(s)
- Stanislav Sutovsky
- 1st Department of Neurology, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Robert Petrovic
- Department of Genetics and Clinical Genetics, Institute of Medical Biology, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Maria Fischerova
- Department of Genetics and Clinical Genetics, Institute of Medical Biology, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Viera Haverlikova
- Department of Didactics in Mathematics, Physics and Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - Barbara Ukropcova
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Faculty of Physical Education and Sports, Comenius University, Bratislava, Slovakia
| | - Jozef Ukropec
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Turcani
- 1st Department of Neurology, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| |
Collapse
|
9
|
Guo S, Liu J, Li W, Yang Y, Lv L, Xiao X, Li M, Guan F, Luo XJ. Genome wide association study identifies four loci for early onset schizophrenia. Transl Psychiatry 2021; 11:248. [PMID: 33907183 PMCID: PMC8079394 DOI: 10.1038/s41398-021-01360-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Early onset schizophrenia (EOS, defined as first onset of schizophrenia before age 18) is a rare form of schizophrenia (SCZ). Though genome-wide association studies (GWASs) have identified multiple risk variants for SCZ, most of the cases included in these GWASs were not stratified according to their first age at onset. To date, the genetic architecture of EOS remains largely unknown. To identify the risk variants and to uncover the genetic basis of EOS, we conducted a two-stage GWAS of EOS in populations of Han Chinese ancestry in this study. We first performed a GWAS using 1,256 EOS cases and 2,661 healthy controls (referred as discovery stage). The genetic variants with a P < 1.0 × 10-04 in discovery stage were replicated in an independent sample (903 EOS cases and 3,900 controls). We identified four genome-wide significant risk loci for EOS in the combined samples (2,159 EOS cases and 6,561 controls), including 1p36.22 (rs1801133, Pmeta = 4.03 × 10-15), 1p31.1 (rs1281571, Pmeta = 4.14 × 10-08), 3p21.31 (rs7626288, Pmeta = 1.57 × 10-09), and 9q33.3 (rs592927, Pmeta = 4.01 × 10-11). Polygenic risk scoring (PRS) analysis revealed substantial genetic overlap between EOS and SCZ. These discoveries shed light on the genetic basis of EOS. Further functional characterization of the identified risk variants and genes will help provide potential targets for therapeutics and diagnostics.
Collapse
Affiliation(s)
- Suqin Guo
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002 China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002 China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Wenqiang Li
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002 China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002 China
| | - Yongfeng Yang
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002 China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002 China
| | - Luxian Lv
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002 China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002 China
| | - Xiao Xiao
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 China
| | - Ming Li
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 China
| | - Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
10
|
Bruni AC, Bernardi L, Gabelli C. From beta amyloid to altered proteostasis in Alzheimer's disease. Ageing Res Rev 2020; 64:101126. [PMID: 32683041 DOI: 10.1016/j.arr.2020.101126] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age related neurodegenerative disorder causing severe disability and important socio-economic burden, but with no cure available to date. To disentangle this puzzling disease genetic studies represented an important way for the comprehension of pathogenic mechanisms. Abnormal processing and accumulation of amyloid-β peptide (Aβ) has been considered the main cause and trigger factor of the disease. The amyloid cascade theory has fallen into crisis because the failure of several anti-amyloid drugs trials and because of the simple equation AD = abnormal Aβ deposition is not always the case. We now know that multiple neurodegenerative diseases share common pathogenic mechanisms leading to accumulation of misfolded protein species. Genome Wide Association studies (GWAS) led to the identification of large numbers of DNA common variants (SNPs) distributed on different chromosomes and modulating the Alzheimer's risk. GWAS genes fall into several common pathways such as immune system and neuroinflammation, lipid metabolism, synaptic dysfunction and endocytosis, all of them addressing to novel routes for different pathogenic mechanisms. Other hints could be derived from epidemiological and experimental studies showing some lifestyles may have a major role in the pathogenesis of many age-associated diseases by modifying cell metabolism, proteostasis and microglia mediated neuroinflammation.
Collapse
Affiliation(s)
- Amalia C Bruni
- Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme (CZ), Italy.
| | - Livia Bernardi
- Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme (CZ), Italy
| | - Carlo Gabelli
- Regional Brain Aging Centre, Azienda Ospedale Università Di Padova, Padova Italy
| |
Collapse
|
11
|
Scassellati C, Ciani M, Maj C, Geroldi C, Zanetti O, Gennarelli M, Bonvicini C. Behavioral and Psychological Symptoms of Dementia (BPSD): Clinical Characterization and Genetic Correlates in an Italian Alzheimer's Disease Cohort. J Pers Med 2020; 10:jpm10030090. [PMID: 32823921 PMCID: PMC7563608 DOI: 10.3390/jpm10030090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The occurrence of Behavioral and Psychological Symptoms of Dementia (BPSD) in Alzheimer's Disease (AD) patients hampers the clinical management and exacerbates the burden for caregivers. The definition of the clinical distribution of BPSD symptoms, and the extent to which symptoms are genetically determined, are still open to debate. Moreover, genetic factors that underline BPSD symptoms still need to be identified. PURPOSE To characterize our Italian AD cohort according to specific BPSD symptoms as well as to endophenotypes. To evaluate the associations between the considered BPSD traits and COMT, MTHFR, and APOE genetic variants. METHODS AD patients (n = 362) underwent neuropsychological examination and genotyping. BPSD were assessed with the Neuropsychiatric Inventory scale. RESULTS APOE and MTHFR variants were significantly associated with specific single BPSD symptoms. Furthermore, "Psychosis" and "Hyperactivity" resulted in the most severe endophenotypes, with APOE and MTHFR implicated as both single risk factors and "genexgene" interactions. CONCLUSIONS We strongly suggest the combined use of both BPSD single symptoms/endophenotypes and the "genexgene" interactions as valid strategies for expanding the knowledge about the BPSD aetiopathogenetic mechanisms.
Collapse
Affiliation(s)
- Catia Scassellati
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy; (C.S.); (C.M.); (M.G.)
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Carlo Maj
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy; (C.S.); (C.M.); (M.G.)
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, 53127 Bonn, Germany
| | - Cristina Geroldi
- Alzheimer’s Research Unit-Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy; (C.G.); (O.Z.)
| | - Orazio Zanetti
- Alzheimer’s Research Unit-Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy; (C.G.); (O.Z.)
| | - Massimo Gennarelli
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy; (C.S.); (C.M.); (M.G.)
- Section of Biology and Genetic, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
- Correspondence:
| |
Collapse
|
12
|
Zuin M, Cervellati C, Trentini A, Roncon L, Guasti P, Zuliani G. Methylenetetrahydrofolate reductase C667T polymorphism and susceptibility to late-onset Alzheimer's disease in the Italian population. Minerva Med 2020; 112:365-371. [PMID: 32700867 DOI: 10.23736/s0026-4806.20.06801-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION This study is a meta-analysis of the published studies on the relationship between methylenetetrahydrofolate reductase (MTHFR) C667T polymorphism and the risk of late- onset Alzheimer 's disease (LOAD) in Italian cohorts. EVIDENCE ACQUISITION We conducted a search on the electronic databases PubMed/Medline, Web of Science and Scopus. All cohort and case-control studies investigating the association between MTHFR 677T polymorphism and LOAD in Italian population published any time to May 8, 2020 were included in the analysis. EVIDENCE SYNTHESIS From an initial screening of 136 articles, 4 were included into the systemic review. The pooled analysis based on the co-dominant model revealed that the MTHFR C677T polymorphism was associated with a significant risk of LOAD among Italian cohorts (TC vs. CC: OR=1.20, 95% CI=1.06-1.36, P=0.004, I2=0%). Conversely, the pooled analysis based on the allelic model demonstrated a non-significant relationship between the MTHFR C677T polymorphism and susceptibility to LOAD in Italians (OR: 1.25, 95% CI: 0.99-1.59, P=0.060, I2=14.6%). Moreover, Italian subjects with MTHFR 677TT genotype resulted to have a significantly increased susceptibility to LOAD (OR=1.75, 95% CI=1.23-2.50, P=0.002, I2=0%). CONCLUSIONS The present meta-analysis showed only trend of association between MTHFR C677T polymorphism and LOAD in Italian population; however, it also demonstrated an increased susceptibility of LOAD in patients having MTHFR 677TT genotype. Further studies are needed to establish whether MTHFR polymorphisms can be used as non-invasive biomarker for LOAD.
Collapse
Affiliation(s)
- Marco Zuin
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Department of Cardiology, Santa Maria delle Misericordia Hospital, Rovigo, Italy
| | - Carlo Cervellati
- Department of Cardiology, Santa Maria delle Misericordia Hospital, Rovigo, Italy - crvcrl@unife
| | - Alessandro Trentini
- Department of Cardiology, Santa Maria delle Misericordia Hospital, Rovigo, Italy
| | - Loris Roncon
- Department of Cardiology, Santa Maria delle Misericordia Hospital, Rovigo, Italy
| | - Patrizia Guasti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giovanni Zuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Stoccoro A, Tannorella P, Migliore L, Coppedè F. Polymorphisms of genes required for methionine synthesis and DNA methylation influence mitochondrial DNA methylation. Epigenomics 2020; 12:1003-1012. [PMID: 32393056 DOI: 10.2217/epi-2020-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Impaired methylation of the mitochondrial DNA and particularly in the regulatory displacement loop (D-loop) region, is increasingly observed in patients with neurodegenerative disorders. The present study aims to investigate if common polymorphisms of genes required for one-carbon metabolism (MTHFR, MTRR, MTR and RFC-1) and DNA methylation reactions (DNMT1, DNMT3A and DNMT3B) influence D-loop methylation levels. Materials & methods: D-loop methylation data were available from 133 late-onset Alzheimer's disease patients and 130 matched controls. Genotyping was performed with PCR-RFLP or high resolution melting techniques. Results: Both MTRR 66A > G and DNMT3A -448A > G polymorphisms were significantly associated with D-loop methylation levels. Conclusion: This exploratory study suggests that MTRR and DNMT3A polymorphisms influence mitochondrial DNA methylation; further research is required to better address this issue.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Pierpaola Tannorella
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, 56126, Pisa, Italy
- Current address: Unit of Genetics of Neurodegenerative & Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lucia Migliore
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| |
Collapse
|
14
|
Coppedè F, Stoccoro A, Tannorella P, Gallo R, Nicolì V, Migliore L. Association of Polymorphisms in Genes Involved in One-Carbon Metabolism with MTHFR Methylation Levels. Int J Mol Sci 2019; 20:E3754. [PMID: 31370354 PMCID: PMC6696388 DOI: 10.3390/ijms20153754] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is a pivotal enzyme in the one-carbon metabolism, a metabolic pathway required for DNA synthesis and methylation reactions. MTHFR hypermethylation, resulting in reduced gene expression, can contribute to several human disorders, but little is still known about the factors that regulate MTHFR methylation levels. We performed the present study to investigate if common polymorphisms in one-carbon metabolism genes contribute to MTHFR methylation levels. MTHFR methylation was assessed in peripheral blood DNA samples from 206 healthy subjects with methylation-sensitive high-resolution melting (MS-HRM); genotyping was performed for MTHFR 677C>T (rs1801133) and 1298A>C (rs1801131), MTRR 66A>G (rs1801394), MTR 2756A>G (rs1805087), SLC19A1 (RFC1) 80G>A (rs1051266), TYMS 28-bp tandem repeats (rs34743033) and 1494 6-bp ins/del (rs34489327), DNMT3A -448A>G (rs1550117), and DNMT3B -149C>T (rs2424913) polymorphisms. We observed a statistically significant effect of the DNMT3B -149C>T polymorphism on mean MTHFR methylation levels, and particularly CT and TT carriers showed increased methylation levels than CC carriers. The present study revealed an association between a functional polymorphism of DNMT3B and MTHFR methylation levels that could be of relevance in those disorders, such as inborn defects, metabolic disorders and cancer, that have been linked to impaired DNA methylation.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Pierpaola Tannorella
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Roberta Gallo
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy
- Doctoral School in Genetics, Oncology and Clinical Medicine, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy
- Doctoral School in Genetics, Oncology and Clinical Medicine, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
15
|
Liu Y, Zhang F, Dai L. C677T polymorphism increases the risk of early spontaneous abortion. J Assist Reprod Genet 2019; 36:1737-1741. [PMID: 31209737 PMCID: PMC6707973 DOI: 10.1007/s10815-019-01500-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose To investigate the relationship of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism in male population having spouses with early spontaneous abortion. Methods A total of 345 males whose spouses had at least one early spontaneous abortion were included in the study group, and 145 males who planned to have a second child were included in the control group. Semen was collected in a sterile cup by masturbation. After liquefaction, the sperm concentration and forward motility sperm rate (PR) were obtained. The genomic DNA was extracted from peripheral vein, followed by MTHFR C677T polymorphism detection through PCR-gold magnetic nanoparticle chromatography. Results The numbers of alleles and genotypes of MTHFR in the case group were 303 (C), 387 (T), 64 (CC), 175 (CT), and 106 (TT) cases, respectively. The numbers of allele and genotype of MTHFR in the control group were 167 (C), 123 (T), 145 (CC), 65 (CT), and 29 (TT) cases. There were significant differences in the distribution frequency of genotypes (χ2 = 17.005, P = 0.000) and alleles (χ2 = 15.295, P = 0.000) between the two groups. For cases with more spontaneous abortion, more cases had CT and TT phenotypes. Participants with genotype CT had the highest sperm concentration and PR in both groups (P < 0.05). Conclusions MTHFR could affect sperm DNA integrity through affecting DNA methylation, which led to an increase in the rate of early spontaneous abortion in spouses. Electronic supplementary material The online version of this article (10.1007/s10815-019-01500-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongjie Liu
- Department of Reproductive Center, Yinchuan Maternal and Child Health Hospital, No. 56, Culture West Street, Xingqing District, Yinchuan, 750001, Ningxia, China.
| | - Fan Zhang
- Department of Reproductive Center, Yinchuan Maternal and Child Health Hospital, No. 56, Culture West Street, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Liang Dai
- Department of Reproductive Center, Yinchuan Maternal and Child Health Hospital, No. 56, Culture West Street, Xingqing District, Yinchuan, 750001, Ningxia, China
| |
Collapse
|
16
|
Yi J, Xiao L, Zhou SQ, Zhang WJ, Liu BY. The C677T Polymorphism of the Methylenetetrahydrofolate Reductase Gene and Susceptibility to Late-onset Alzheimer's Disease. Open Med (Wars) 2019; 14:32-40. [PMID: 30631824 PMCID: PMC6325648 DOI: 10.1515/med-2019-0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Folate metabolism makes a crucial contribution towards late-onset Alzheimer's disease (LOAD). Moreover, methylenetetrahydrofolate reductase (MTHFR) constitutes the primary enzyme of the folate pathway. We hypothesize that there is an association of C677T polymorphism in the MTHFR gene with the susceptibility to LOAD. Previous published research has investigated the link between the MTHFR C677T polymorphisms and LOAD susceptibility; nevertheless, the findings have continued to be not only controversial, but also indecisive. Accordingly, we carried out the present meta-analysis for the assessment of the potential link that exists between the MTHFR C677T polymorphism and the susceptibility to LOAD. Furthermore, we carried out a literature search of the PubMed, EMBASE, Cochrane Library, and WanFang database up to August 10, 2018. The odds ratios (ORs) with the respective 95% confidence interval (95%CI) were put to use for the evaluation of the robustness of the link of the MTHFR C677T polymorphism with the vulnerability to LOAD. All statistical analyses were carried out using STATA 15.0. An aggregate of 14 case-control research works was retrieved, involving 2,467 LOAD patients as well as 2,877 controls. We found that a substantial link exists between C677T polymorphism and LOAD risk in a codominant framework (TC vs. CC: OR=1.22, 95%CI=1.00-1.49, P=0.049). In addition to the stratified analysis based on ethnicity, which suggested that C677T polymorphism was likely linked only to an augmented threat of LOAD in Asians, it did not exist among Caucasians. Furthermore, in the subgroup analysis carried out using APOE ɛ4 status, a substantial increase in the susceptibility to LOAD was detected in APOE ɛ4 carriers as well as non-APOE ɛ4 carriers. In sum, the current meta-analysis revealed that MTHFR C677T polymorphism was associated with susceptibility to LOAD. Further extensive case-control studies are required.
Collapse
Affiliation(s)
- Jian Yi
- Key Laboratory of Internal Medicine, The Frist Hospital Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, P.R. China
| | - Lan Xiao
- Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan Province, P.R. China
| | - Sheng-Qiang Zhou
- Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan Province, P.R. China
| | - Wen-Jiang Zhang
- Yiyang Medicine College, Yiyang 413000, Hunan Province, P.R. China
| | - Bai-Yan Liu
- Key Laboratory of Internal Medicine, The Frist Hospital Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, P.R. China.,Yiyang Medicine College, Yiyang 413000, Hunan Province, P.R. China
| |
Collapse
|
17
|
Hoffman A, Taleski G, Qian H, Wasek B, Arning E, Bottiglieri T, Sontag JM, Sontag E. Methylenetetrahydrofolate Reductase Deficiency Deregulates Regional Brain Amyloid-β Protein Precursor Expression and Phosphorylation Levels. J Alzheimers Dis 2018; 64:223-237. [DOI: 10.3233/jad-180032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander Hoffman
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Goce Taleski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Helena Qian
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
18
|
Maletta R, Smirne N, Bernardi L, Anfossi M, Gallo M, Conidi ME, Colao R, Puccio G, Curcio SA, Laganà V, Frangipane F, Cupidi C, Mirabelli M, Vasso F, Torchia G, Muraca MG, Di Lorenzo R, Rose G, Montesanto A, Passarino G, Bruni AC. Frequency of Cardiovascular Genetic Risk Factors in a Calabrian Population and Their Effects on Dementia. J Alzheimers Dis 2018; 61:1179-1187. [DOI: 10.3233/jad-170687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | | | - Livia Bernardi
- Regional Neurogenetic Centre ASP-CZ, Lamezia Terme (CZ), Italy
| | - Maria Anfossi
- Regional Neurogenetic Centre ASP-CZ, Lamezia Terme (CZ), Italy
| | - Maura Gallo
- Regional Neurogenetic Centre ASP-CZ, Lamezia Terme (CZ), Italy
| | | | - Rosanna Colao
- Regional Neurogenetic Centre ASP-CZ, Lamezia Terme (CZ), Italy
| | | | | | | | | | - Chiara Cupidi
- Regional Neurogenetic Centre ASP-CZ, Lamezia Terme (CZ), Italy
| | - Maria Mirabelli
- Regional Neurogenetic Centre ASP-CZ, Lamezia Terme (CZ), Italy
| | - Franca Vasso
- Regional Neurogenetic Centre ASP-CZ, Lamezia Terme (CZ), Italy
| | - Giusi Torchia
- Regional Neurogenetic Centre ASP-CZ, Lamezia Terme (CZ), Italy
| | - Maria G. Muraca
- Regional Neurogenetic Centre ASP-CZ, Lamezia Terme (CZ), Italy
| | | | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| | - Amalia C. Bruni
- Regional Neurogenetic Centre ASP-CZ, Lamezia Terme (CZ), Italy
| |
Collapse
|
19
|
Tian S, Han J, Huang R, Sun J, Cai R, Shen Y, Wang S. Increased Plasma Homocysteine Level is Associated with Executive Dysfunction in Type 2 Diabetic Patients with Mild Cognitive Impairment. J Alzheimers Dis 2017; 58:1163-1173. [PMID: 28550262 DOI: 10.3233/jad-170162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sai Tian
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, PR China
- Medical School of Southeast University, Nanjing, PR China
| | - Jing Han
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, PR China
| | - Rong Huang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, PR China
| | - Jie Sun
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, PR China
| | - Rongrong Cai
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, PR China
| | - Yanjue Shen
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, PR China
| | - Shaohua Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, PR China
| |
Collapse
|