1
|
Wang Y, Tao H, Cao M, Cai K. Urinary AD7c-NTP is Associated With Cognitive Recovery After Ischemic Stroke. Alzheimer Dis Assoc Disord 2024; 38:292-294. [PMID: 39107927 DOI: 10.1097/wad.0000000000000634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Urinary Alzheimer-associated neuronal thread protein (AD7c-NTP) is regarded as a biomarker for β-amyloid protein deposition in Alzheimer disease (AD). The value of AD7c-NTP in predicting post-stroke cognitive recovery was worth exploring. In total, 224 patients with first-ever stroke were enrolled in this retrospective study. Cognitive assessment was evaluated by Mini-Mental State Examination (MMSE), and cognitive improvement was defined as MMSE scores ≥27 or 4-score elevation at 3-month follow-up after stroke. The AD7c-NTP level was 0.68±0.40 ng/mL in the 135 patients with cognitive improvement, while the AD7c-NTP level was 1.49±0.99 ng/mL in the 89 patients without improvement ( P <0.001). Those displaying better cognitive recovery also had younger ages, higher MMSE scores, and lower NIHSS scores on admission. In multivariable logistic regression analysis, AD7c-NTP concentration (OR=9.14, 95% CI: 4.52-18.49, P <0.001), age (OR=1.04, 95% CI: 1.01-1.08, P =0.012), and NIHSS score on admission (OR=1.17, 95% CI: 1.07-1.28, P <0.001) remained the independent risk factors affecting cognitive recovery. The area under the receiver operating characteristics curve for AD7c-NTP in predicting unfavorable cognitive function was 0.80 (sensitivity: 0.73 and specificity: 0.84). Urinary AD7c-NTP is a valuable biomarker associated with post-stroke cognitive recovery. It might be adopted to discriminate coexisting AD pathology from vascular cognitive impairment.
Collapse
Affiliation(s)
- Yuqin Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | | | | | | |
Collapse
|
2
|
Armenta-Castro A, Núñez-Soto MT, Rodriguez-Aguillón KO, Aguayo-Acosta A, Oyervides-Muñoz MA, Snyder SA, Barceló D, Saththasivam J, Lawler J, Sosa-Hernández JE, Parra-Saldívar R. Urine biomarkers for Alzheimer's disease: A new opportunity for wastewater-based epidemiology? ENVIRONMENT INTERNATIONAL 2024; 184:108462. [PMID: 38335627 DOI: 10.1016/j.envint.2024.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
While Alzheimer's disease (AD) diagnosis, management, and care have become priorities for healthcare providers and researcher's worldwide due to rapid population aging, epidemiologic surveillance efforts are currently limited by costly, invasive diagnostic procedures, particularly in low to middle income countries (LMIC). In recent years, wastewater-based epidemiology (WBE) has emerged as a promising tool for public health assessment through detection and quantification of specific biomarkers in wastewater, but applications for non-infectious diseases such as AD remain limited. This early review seeks to summarize AD-related biomarkers and urine and other peripheral biofluids and discuss their potential integration to WBE platforms to guide the first prospective efforts in the field. Promising results have been reported in clinical settings, indicating the potential of amyloid β, tau, neural thread protein, long non-coding RNAs, oxidative stress markers and other dysregulated metabolites for AD diagnosis, but questions regarding their concentration and stability in wastewater and the correlation between clinical levels and sewage circulation must be addressed in future studies before comprehensive WBE systems can be developed.
Collapse
Affiliation(s)
| | - Mónica T Núñez-Soto
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Kassandra O Rodriguez-Aguillón
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Shane A Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain; Sustainability Cluster, School of Engineering at the UPES, Dehradun, Uttarakhand, India
| | - Jayaprakash Saththasivam
- Water Center, Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Qatar
| | - Jenny Lawler
- Water Center, Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Qatar
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
3
|
Liu F, Shi Y, Wu Q, Chen H, Wang Y, Cai L, Zhang N. The value of FDG combined with PiB PET in the diagnosis of patients with cognitive impairment in a memory clinic. CNS Neurosci Ther 2024; 30:e14418. [PMID: 37602885 PMCID: PMC10848040 DOI: 10.1111/cns.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
AIMS To analyze the value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with amyloid PET in cognitive impairment diagnosis. METHODS A total of 187 patients with dementia or mild cognitive impairment (MCI) who underwent 11 C-Pittsburgh compound B (PiB) and FDG PET scans in a memory clinic were included in the final analysis. RESULTS Amyloid-positive and amyloid-negative dementia patient groups showed a significant difference in the proportion of individuals presenting temporoparietal cortex (p < 0.001) and posterior cingulate/precuneus cortex (p < 0.001) hypometabolism. The sensitivity and specificity of this hypometabolic pattern for identifying amyloid pathology were 72.61% and 77.97%, respectively, in patients clinically diagnosed with AD and 60.87% and 76.19%, respectively, in patients with MCI. The initial diagnosis was changed in 32.17% of patients with dementia after considering both PiB and FDG results. There was a significant difference in both the proportion of patients showing the hypometabolic pattern and PiB positivity between dementia conversion patients and patients with a stable diagnosis of MCI (p < 0.05). CONCLUSION Temporoparietal and posterior cingulate/precuneus cortex hypometabolism on FDG PET suggested amyloid pathology in patients with cognitive impairment and is helpful in diagnostic decision-making and predicting AD dementia conversion from MCI, particularly when combined with amyloid PET.
Collapse
Affiliation(s)
- Fang Liu
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Yudi Shi
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
- Health Management CenterTianjin Medical University General Hospital Airport SiteTianjinChina
| | - Qiuyan Wu
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Huifeng Chen
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
- Department of NeurologyTianjin Medical University General Hospital Airport SiteTianjinChina
| | - Ying Wang
- PET/CT CenterTianjin Medical University General HospitalTianjinChina
| | - Li Cai
- PET/CT CenterTianjin Medical University General HospitalTianjinChina
| | - Nan Zhang
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
- Department of NeurologyTianjin Medical University General Hospital Airport SiteTianjinChina
| |
Collapse
|
4
|
Huang L, Li Q, Lu Y, Pan F, Cui L, Wang Y, Miao Y, Chen T, Li Y, Wu J, Chen X, Jia J, Guo Q. Consensus on rapid screening for prodromal Alzheimer's disease in China. Gen Psychiatr 2024; 37:e101310. [PMID: 38313393 PMCID: PMC10836380 DOI: 10.1136/gpsych-2023-101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) is a common cause of dementia, characterised by cerebral amyloid-β deposition, pathological tau and neurodegeneration. The prodromal stage of AD (pAD) refers to patients with mild cognitive impairment (MCI) and evidence of AD's pathology. At this stage, disease-modifying interventions should be used to prevent the progression to dementia. Given the inherent heterogeneity of MCI, more specific biomarkers are needed to elucidate the underlying AD's pathology. Although the uses of cerebrospinal fluid and positron emission tomography are widely accepted methods for detecting AD's pathology, their clinical applications are limited by their high costs and invasiveness, particularly in low-income areas in China. Therefore, to improve the early detection of Alzheimer's disease (AD) pathology through cost-effective screening methods, a panel of 45 neurologists, psychiatrists and gerontologists was invited to establish a formal consensus on the screening of pAD in China. The supportive evidence and grades of recommendations are based on a systematic literature review and focus group discussion. National meetings were held to allow participants to review, vote and provide their expert opinions to reach a consensus. A majority (two-thirds) decision was used for questions for which consensus could not be reached. Recommended screening methods are presented in this publication, including neuropsychological assessment, peripheral biomarkers and brain imaging. In addition, a general workflow for screening pAD in China is established, which will help clinicians identify individuals at high risk and determine therapeutic targets.
Collapse
Affiliation(s)
- Lin Huang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinjie Li
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Lu
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengfeng Pan
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Cui
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Miao
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yatian Li
- Shanghai BestCovered, Shanghai, China
| | | | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianping Jia
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Li Y, Yang Z, Zhang Y, Liu F, Xu J, Meng Y, Xing G, Ruan X, Sun J, Zhang N. Genetic Screening of Patients with Sporadic Alzheimer's Disease and Frontotemporal Lobar Degeneration in the Chinese Population. J Alzheimers Dis 2024; 99:577-593. [PMID: 38701145 DOI: 10.3233/jad-231361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) account for the vast majority of neurodegenerative dementias. AD and FTLD have different clinical phenotypes with a genetic overlap between them and other dementias. Objective This study aimed to identify the genetic spectrum of sporadic AD and FTLD in the Chinese population. Methods A total of 74 sporadic AD and 29 sporadic FTLD participants were recruited. All participants underwent whole-exome sequencing (WES) and testing for a hexanucleotide expansion in C9orf72 was additionally performed for participants with negative WES results. Results Four known pathogenic or likely pathogenic variants, including PSEN1 (p.G206D), MAPT (p.R5H), LRRK2 (p.W1434*), and CFAP43 (p.C934*), were identified in AD participants, and 1 novel pathogenic variant of ANXA11 (p.D40G) and two known likely pathogenic variants of MAPT (p.D177V) and TARDBP (p.I383V) were identified in FTLD participants. Twenty-four variants of uncertain significance as well as rare variants in risk genes for dementia, such as ABCA7, SORL1, TRPM7, NOS3, MPO, and DCTN1, were also found. Interestingly, several variants in participants with semantic variant primary progressive aphasia were detected. However, no participants with C9orf72 gene variants were found in the FTLD cohort. Conclusions There was a high frequency of genetic variants in Chinese participants with sporadic AD and FTLD and a complex genetic overlap between these two types of dementia and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yaoru Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping District, Tianjin, China
- Department Five of Neurology, Cangzhou Central Hospital, Yunhe District, Cangzhou, Hebei, China
| | - Ziying Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Yanxin Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Fang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Jing Xu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Yaping Meng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Gebeili Xing
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xuqin Ruan
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Jun Sun
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| |
Collapse
|
6
|
Meng M, Liu F, Ma Y, Qin W, Guo L, Peng S, Gordon ML, Wang Y, Zhang N. The identification and cognitive correlation of perfusion patterns measured with arterial spin labeling MRI in Alzheimer's disease. Alzheimers Res Ther 2023; 15:75. [PMID: 37038198 PMCID: PMC10088108 DOI: 10.1186/s13195-023-01222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Vascular dysfunction, including cerebral hypoperfusion, plays an important role in the pathogenesis and progression of Alzheimer's disease (AD), independent of amyloid and tau pathology. We established an AD-related perfusion pattern (ADRP) measured with arterial spin labeling (ASL) MRI using multivariate spatial covariance analysis. METHODS We obtained multimodal MRI including pseudo-continuous ASL and neurocognitive testing in a total of 55 patients with a diagnosis of mild to moderate AD supported by amyloid PET and 46 normal controls (NCs). An ADRP was established from an identification cohort of 32 patients with AD and 32 NCs using a multivariate analysis method based on scaled subprofile model/principal component analysis, and pattern expression in individual subjects was quantified for both the identification cohort and a validation cohort (23 patients with AD and 14 NCs). Subject expression score of the ADRP was then used to assess diagnostic accuracy and cognitive correlations in AD patients and compared with global and regional cerebral blood flow (CBF) in specific areas identified from voxel-based univariate analysis. RESULTS The ADRP featured negative loading in the bilateral middle and posterior cingulate and precuneus, inferior parietal lobule, and frontal areas, and positive loading in the right cerebellum and bilateral basal areas. Subject expression score of the ADRP was significantly elevated in AD patients compared with NCs (P < 0.001) and showed good diagnostic accuracy for AD with area under receiver-operator curve of 0.87 [95% CI (0.78-0.96)] in the identification cohort and 0.85 in the validation cohort. Moreover, there were negative correlations between subject expression score and global cognitive function and performance in various cognitive domains in patients with AD. The characteristics of the ADRP topography and subject expression scores were supported by analogous findings obtained with regional CBF. CONCLUSIONS We have reported a characteristic perfusion pattern associated with AD using ASL MRI. Subject expression score of this spatial covariance pattern is a promising MRI biomarker for the identification and monitoring of AD.
Collapse
Affiliation(s)
- Meng Meng
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Fang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154, Anshan Road, Tianjin, 300052, China
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hempstead, NY, USA
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Shichun Peng
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Marc L Gordon
- The Litwin-Zucker Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Departments of Neurology and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hempstead, NY, USA
| | - Yue Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154, Anshan Road, Tianjin, 300052, China
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China.
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154, Anshan Road, Tianjin, 300052, China.
| |
Collapse
|
7
|
Liang Y, Xue K, Shi Y, Zhan T, Lai W, Zhang C. Dry Chemistry-Based Bipolar Electrochemiluminescence Immunoassay Device for Point-of-Care Testing of Alzheimer-Associated Neuronal Thread Protein. Anal Chem 2023; 95:3434-3441. [PMID: 36719948 DOI: 10.1021/acs.analchem.2c05164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, we developed, for the first time, a novel dry chemistry-based bipolar electrochemiluminescence (ECL) immunoassay device for point-of-care testing (POCT) of Alzheimer-associated neuronal thread protein (AD7c-NTP), where the ECL signals were automatically collected and analyzed after the sample and buffer solutions were manually added onto the immunosensor. The proposed immunoassay device contains an automatic ECL analyzer and a dry chemistry-based ECL immunosensor fabricated with a screen-printed fiber material-based chip and a three-dimensional (3D)-printed shell. Each pad of the fiber material-based chip was premodified with certain reagents for immunoreaction and then assembled to form the ECL immunosensor. The self-enhanced ECL of the Ru(II)-poly-l-lysine complex and the lateral flow fiber material-based chip make the addition of coreactants and repeated flushing unnecessary. Only the sample and buffer solutions are added to the ECL immunosensor, and the process of ECL detection can be completed in about 6 min using the proposed automatic ECL analyzer. Under optimized conditions, the linear detection range for AD7c-NTP was 1 to 104 pg/mL, and the detection limit was 0.15 pg/mL. The proposed ECL immunoassay device had acceptable selectivity, stability, and reproducibility and had been successfully applied to detect AD7c-NTP levels in human urine. In addition, the accurate detection of AD7c-NTP and duplex detection of AD7c-NTP and apolipoprotein E ε4 gene were also validated. It is believed that the proposed ECL immunoassay device may be a candidate for future POCT applications.
Collapse
Affiliation(s)
- Yi Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Kaifa Xue
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yanyang Shi
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tingting Zhan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wei Lai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
8
|
Xu J, Xia Y, Meng M, Liu F, Che P, Zhang Y, Wang Y, Cai L, Qin W, Zhang N. Clinical features and biomarkers of semantic variant primary progressive aphasia with MAPT mutation. Alzheimers Res Ther 2023; 15:21. [PMID: 36707904 PMCID: PMC9881263 DOI: 10.1186/s13195-023-01176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND Semantic variant primary progressive aphasia (svPPA) is generally sporadic, with very few reports of tau pathology caused by MAPT mutations. METHODS A 64-year-old man was diagnosed with svPPA with MAPT P301L mutation. Clinical information, cognitive and language functions, multimodal magnetic resonance imaging (MRI), blood biomarkers, fluorodeoxyglucose (FDG) imaging and tau positron emission tomography (PET) were obtained. RESULTS Semantic memory impairment was the earliest and most prominent symptom in this family. Tau accumulation and hypometabolism were observed prior to brain atrophy in mutation carriers. Plasma NfL and GFAP concentrations were elevated in the two svPPA patients. Some relative decreases and some relative increases in regional cerebral blood flow (CBF) as measured by arterial spin labelling (ASL) were observed in mutation carriers compared to noncarriers. CONCLUSIONS This study describes a large svPPA-affected family with the MAPT P301L mutation and provides an ideal model for inferring underlying pathology and pathophysiological processes in svPPA caused by tauopathies.
Collapse
Affiliation(s)
- Jing Xu
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Yanmin Xia
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China ,grid.459324.dDepartment of Neurology, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei China
| | - Meng Meng
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Fang Liu
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Ping Che
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Yanxin Zhang
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Ying Wang
- grid.412645.00000 0004 1757 9434Department of PET-CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Li Cai
- grid.412645.00000 0004 1757 9434Department of PET-CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Wen Qin
- grid.412645.00000 0004 1757 9434Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Zhang
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| |
Collapse
|
9
|
Liu Z, Liu Y, Zhao X, Zhang H, Feng T, Pang J, Li H. Correlation between Aβ 1-42, Dnmt3a2, urinary AD7c-NTP and cognitive dysfunction in first-episode and recurrent MDD: A case-control study. Indian J Psychiatry 2022; 64:560-566. [PMID: 36714669 PMCID: PMC9881713 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_111_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/10/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Aim Major depressive disorder (MDD) is one of the most prevalent mental illnesses worldwide and involves cognitive dysfunction that may negatively impact clinical and social outcomes. Previous studies have suggested that beta-amyloid peptide (Aβ1-42), DNA methyltransferase (Dnmt3a2), and urinary Alzheimer-associated neuronal thread protein (AD7c-NTP) are associated with cognitive impairment. However, there are no relevant studies in MDD. The aim of this study was to assess the correlation between serum Aβ1-42, Dnmt3a2, and urinary AD7c-NTP and cognitive dysfunction in MDD. Materials and Methods A total of 59 eligible patients were included in the study, including 29 patients with first-episode MDD (FEDs) and 30 patients with recurrent MDD (RMDDs), and 30 matched healthy controls (HCs) were selected. Participants' cognitive functioning was evaluated using the MATRICS consensus cognitive battery (MCCB). The enzyme-linked immunosorbent assay (ELISA) method was used to measure the concentrations of the three proteins. Statistical analysis was completed using Statistical Package for the Social Sciences (SPSS) 20.0. The statistical significance was set as P < 0.05. Results Serum Dnmt3a2 and urinary AD7c-NTP showed significant differences among the three groups (both P < 0.001), but there were no significant differences in Aβ1-42 levels. Upon examining the results of cognitive testing, we found that serum Aβ1-42 was negatively associated with working memory scores in RMDDs (P = 0.020), but Dnmt3a2 was positively associated with working memory and verbal learning scores in the same cohort (P = 0.012 and P = 0.037, respectively). In contrast, urinary AD7c-NTP was negatively correlated with verbal learning scores in FEDs (P = 0.013). Conclusions Serum Dnmt3a2 and Aβ1-42 levels may be associated with cognitive impairment in RMDDs and may act as potential biomarkers of cognitive impairment. Although urinary AD7c-NTP was closely related to cognitive dysfunction in FEDs, this relationship did not hold in RMDDs.
Collapse
Affiliation(s)
- Zhigang Liu
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuxia Liu
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Zhao
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huijie Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingting Feng
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianyue Pang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hengfen Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Li P, Quan W, Wang Z, Liu Y, Cai H, Chen Y, Wang Y, Zhang M, Tian Z, Zhang H, Zhou Y. Early-stage differentiation between Alzheimer's disease and frontotemporal lobe degeneration: Clinical, neuropsychology, and neuroimaging features. Front Aging Neurosci 2022; 14:981451. [PMID: 36389060 PMCID: PMC9659748 DOI: 10.3389/fnagi.2022.981451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) are the two most common forms of neurodegenerative dementia. Although both of them have well-established diagnostic criteria, achieving early diagnosis remains challenging. Here, we aimed to make the differential diagnosis of AD and FTLD from clinical, neuropsychological, and neuroimaging features. MATERIALS AND METHODS In this retrospective study, we selected 95 patients with PET-CT defined AD and 106 patients with PET-CT/biomarker-defined FTLD. We performed structured chart examination to collect clinical data and ascertain clinical features. A series of neuropsychological scales were used to assess the neuropsychological characteristics of patients. Automatic tissue segmentation of brain by Dr. Brain tool was used to collect multi-parameter volumetric measurements from different brain areas. All patients' structural neuroimage data were analyzed to obtain brain structure and white matter hyperintensities (WMH) quantitative data. RESULTS The prevalence of vascular disease associated factors was higher in AD patients than that in FTLD group. 56.84% of patients with AD carried at least one APOE ε4 allele, which is much high than that in FTLD patients. The first symptoms of AD patients were mostly cognitive impairment rather than behavioral abnormalities. In contrast, behavioral abnormalities were the prominent early manifestations of FTLD, and few patients may be accompanied by memory impairment and motor symptoms. In direct comparison, patients with AD had slightly more posterior lesions and less frontal atrophy, whereas patients with FTLD had more frontotemporal atrophy and less posterior lesions. The WMH burden of AD was significantly higher, especially in cortical areas, while the WMH burden of FTLD was higher in periventricular areas. CONCLUSION These results indicate that dynamic evaluation of cognitive function, behavioral and psychological symptoms, and multimodal neuroimaging are helpful for the early diagnosis and differentiation between AD and FTLD.
Collapse
Affiliation(s)
- Pan Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Wei Quan
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Zengguang Wang
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Ying Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Cai
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yuan Chen
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Miao Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhiyan Tian
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Huihong Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
11
|
Guo Y, Kang M, Hui X, Fan X, Zhang L, Wang Y, Wang R, Nie X. The Association Between Cognition of Obstructive Sleep Apnea Patients and Urinary AD7c-NTP Level: Investigation and Application. J Alzheimers Dis 2022; 90:1215-1231. [DOI: 10.3233/jad-220451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Obstructive sleep apnea (OSA) is a multi-component disorder, which has many comorbidities, including cognitive impairment. Although its potential risk factors were unknown, they could affect the patient’s quality of life and long-term prognosis. Objective: The purpose of this study was to investigate the application of urinary Alzheimer’s disease-associated neurofilament protein (AD7c-NTP) levels in the assessment of cognitive impairment in OSA patients, and to analyze the predictive value of potential high-risk factors on cognitive impairment in OSA patients. Methods: 138 young and middle-aged adults were recruited and underwent overnight polysomnographic recording, Montreal Cognitive Assessment (MoCA), and urinary AD7c-NTP test. AD7c-NTP and other factors were further applied as biomarkers to develop a cognition risk prediction model. Results: Compared with the control, OSA patients showed significantly lower MoCA scores and higher urinary AD7c-NTP concentrations, while the severe OSA group appeared more significant. The urinary AD7c-NTP level of the OSA cognitive impairment group was higher than that of the non-cognitive impairment group. The results of regression analysis showed that urinary AD7c-NTP level was an independent predictor of cognitive impairment in OSA patients. Based on urinary AD7c-NTP levels and other selected factors, a multimodal prediction model for assessing the risk of cognitive impairment in OSA patients was initially established. Conclusion: The increased urinary AD7c-NTP level could be used as a relevant peripheral biomarker of cognitive impairment in OSA patients. A model using urinary AD7c-NTP combined with other factors was developed and could accurately assess the cognition risk of OSA patients.
Collapse
Affiliation(s)
- Yumiao Guo
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Meimei Kang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinjie Hui
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaojun Fan
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lianguo Zhang
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yejun Wang
- Department of Cell Biology and Genetics, School of Basic Medicine, Shenzhen University Health Science, Shenzhen, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Xiuhong Nie
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Han Y, Quan X, Chuang Y, Liang Q, Li Y, Yuan Z, Bian Y, Wei L, Wang J, Zhao Y. A multi-omics analysis for the prediction of neurocognitive disorders risk among the elderly in Macao. Clin Transl Med 2022; 12:e909. [PMID: 35696554 PMCID: PMC9191869 DOI: 10.1002/ctm2.909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Due to the increasing ageing population, neurocognitive disorders (NCDs) have been a global public health issue, and its prevention and early diagnosis are crucial. Our previous study demonstrated that there is a significant correlation between specific populations and NCDs, but the biological characteristics of the vulnerable group predispose to NCDs are unclear. The purpose of this study is to investigate the predictors for the vulnerable group by a multi-omics analysis. METHODS Multi-omics approaches, including metagenomics, metabolomic and proteomic, were used to detect gut microbiota, faecal metabolites and urine exosome of 8 normal controls and 13 vulnerable elders after a rigorous screening of 400 elders in Macao. The multi-omics data were analysed using R and Bioconductor. The two-sided Wilcoxon's rank-sum test, Kruskal-Wallis rank sum test and the linear discriminant analysis effective size were applied to investigate characterized features. Moreover, a 2-year follow-up was conducted to evaluate cognitive function change of the elderly. RESULTS Compared with the control elders, the metagenomics of gut microbiota showed that Ruminococcus gnavus, Lachnospira eligens, Escherichia coli and Desulfovibrio piger were increased significantly in the vulnerable group. Carboxylates, like alpha-ketoglutaric acid and d-saccharic acid, and levels of vitamins had obvious differences in the faecal metabolites. There was a distinct decrease in the expression of eukaryotic translation initiation factor 2 subunit 1 (eIF2α) and amine oxidase A (MAO-A) according to the proteomic results of the urine exosomes. Moreover, the compound annual growth rate of neurocognitive scores was notably decreased in vulnerable elders. CONCLUSIONS The multi-omics characteristics of disturbed glyoxylate and dicarboxylate metabolism (bacteria), vitamin digestion and absorption and tricarboxylic acid cycle in vulnerable elders can serve as predictors of NCDs risk among the elderly of Macao. Intervention with them may be effective therapeutic approaches for NCDs, and the underlying mechanisms merit further exploration.
Collapse
Affiliation(s)
- Yan Han
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| | - Xingping Quan
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| | | | - Qiaoxing Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yang Li
- Department of Gastrointestinal SurgerySecond Clinical Medical College of Jinan University, Shenzhen People's HospitalShenzhenChina
| | - Zhen Yuan
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaMacao SARChina
| | - Ying Bian
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Ji Wang
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| |
Collapse
|
13
|
Pomilio AB, Vitale AA, Lazarowski AJ. Uncommon Noninvasive Biomarkers for the Evaluation and Monitoring of the Etiopathogenesis of Alzheimer's Disease. Curr Pharm Des 2022; 28:1152-1169. [DOI: 10.2174/1381612828666220413101929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer´s disease (AD) is the most widespread dementia in the world, followed by vascular dementia. Since AD is a heterogeneous disease that shows several varied phenotypes, it is not easy to make an accurate diagnosis, so it arises when the symptoms are clear and the disease is already very advanced. Therefore, it is important to find out biomarkers for AD early diagnosis that facilitate treatment or slow down the disease. Classic biomarkers are obtained from cerebrospinal fluid and plasma, along with brain imaging by positron emission tomography. Attempts have been made to discover uncommon biomarkers from other body fluids, which are addressed in this update.
Objective:
This update aims to describe recent biomarkers from minimally invasive body fluids for the patients, such as saliva, urine, eye fluid or tears.
Methods:
Biomarkers were determined in patients versus controls by single tandem mass spectrometry, and immunoassays. Metabolites were identified by nuclear magnetic resonance, and microRNAs with genome-wide high-throughput real-time polymerase chain reaction-based platforms.
Results:
Biomarkers from urine, saliva, and eye fluid were described, including peptides/proteins, metabolites, and some microRNAs. The association with AD neuroinflammation and neurodegeneration was analyzed, highlighting the contribution of matrix metalloproteinases, the immune system and microglia, as well as the vascular system.
Conclusion:
Unusual biomarkers have been developed, which distinguish each stage and progression of the disease, and are suitable for the early AD diagnosis. An outstanding relationship of biomarkers with neuroinflammation and neurodegeneration was assessed, clearing up concerns of the etiopathogenesis of AD.
Collapse
Affiliation(s)
- Alicia B. Pomilio
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Arturo A. Vitale
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Alberto J. Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Córdoba 2351, C1120AAF Buenos Aires, Argentina
| |
Collapse
|
14
|
Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, Gurina O, Chekhonin V. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int J Mol Sci 2022; 23:1217. [PMID: 35163141 PMCID: PMC8835608 DOI: 10.3390/ijms23031217] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
This review is focused on several psychiatric disorders in which cognitive impairment is a major component of the disease, influencing life quality. There are plenty of data proving that cognitive impairment accompanies and even underlies some psychiatric disorders. In addition, sources provide information on the biological background of cognitive problems associated with mental illness. This scientific review aims to summarize the current knowledge about neurobiological mechanisms of cognitive impairment in people with schizophrenia, depression, mild cognitive impairment and dementia (including Alzheimer's disease).The review provides data about the prevalence of cognitive impairment in people with mental illness and associated biological markers.
Collapse
Affiliation(s)
- Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Maria Volkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Polina Alekseeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Alisa Andryshchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Georgiy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
15
|
Xu MR, Dai RF, Wei QQ, Wang J, Feng YY, Hu Y. Urinary AD7c-NTP Evaluates Cognition Impairment and Differentially Diagnoses AD and MCI. Am J Alzheimers Dis Other Demen 2022; 37:15333175221115247. [PMID: 35833655 PMCID: PMC10581138 DOI: 10.1177/15333175221115247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The AD7c-NTP is a promising biomarker for AD diagnosis. However, the exact urinary AD7c-NTP concentration to differentiate AD from the mild cognitive impairment (MCI) remains inconclusive. We enrolled 98 and 90 clinical defined AD and MCI patients, respectively, and access their cognition impairment with Neuropsychiatric Inventory (NPI) and Mental State Examination (MMSE) along with their urinary AD7c-NTP. We demonstrated that urinary AD7c-NTP level in sequence from high to low was AD, MCI, and healthy groups (P < .01), and the AD7c-NTP was positively and negatively correlated with the NPI and MMSE scores, respectively. Additionally, AD7c-NTP well-matched NPI subscale scores, including agitation, depression, and apathy (P < .05). Importantly, the optimal cut-off AD7c-NTP level to distinguish the AD and MCI was .94 ng/mL (sensitivity 85.71% & specificity 73.91%). Conclusively, urinary AD7c-NTP could be used for cognition impairment evaluation and differentiated diagnosis of AD and MCI.
Collapse
Affiliation(s)
- Ming-Ran Xu
- Department of Neurology, The Huangpu Branch of Shanghai No. 9 People’s Hospital, Shanghai Jiao Tong University Medical School, Shanghai, PR China
| | - Rong-Fang Dai
- Department of Gerontology, Shanghai No. 9 People’s Hospital, Shanghai Jiao Tong University Medical School, Shanghai, PR China
| | - Qing-Qi Wei
- Department of Neurology, The Huangpu Branch of Shanghai No. 9 People’s Hospital, Shanghai Jiao Tong University Medical School, Shanghai, PR China
| | - Jun Wang
- Department of Neurology, The Huangpu Branch of Shanghai No. 9 People’s Hospital, Shanghai Jiao Tong University Medical School, Shanghai, PR China
| | - Yue-Ying Feng
- Department of Gerontology, Shanghai No. 9 People’s Hospital, Shanghai Jiao Tong University Medical School, Shanghai, PR China
| | - Ying Hu
- Department of Neurology, The Huangpu Branch of Shanghai No. 9 People’s Hospital, Shanghai Jiao Tong University Medical School, Shanghai, PR China
| |
Collapse
|
16
|
Wang Y, Lou F, Li Y, Liu F, Wang Y, Cai L, Gordon ML, Zhang Y, Zhang N. Clinical, Neuropsychological, and Neuroimaging Characteristics of Amyloid- positive vs. Amyloid-negative Patients with Clinically Diagnosed Alzheimer's Disease and Amnestic Mild Cognitive Impairment. Curr Alzheimer Res 2021; 18:523-532. [PMID: 34598664 DOI: 10.2174/1567205018666211001113349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/14/2021] [Accepted: 07/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND A significant proportion of patients with clinically diagnosed Alzheimer's Disease (AD) and an even higher proportion of patients with amnestic mild cognitive impairment (aMCI) do not show evidence of amyloid deposition on Positron Emission Tomography (PET) with amyloid-binding tracers such as 11C-labeled Pittsburgh Compound B (PiB). OBJECTIVE This study aimed to identify clinical, neuropsychological and neuroimaging factors that might suggest amyloid neuropathology in patients with clinically suspected AD or aMCI. METHODS Forty patients with mild to moderate AD and 23 patients with aMCI who were clinically diagnosed in our memory clinic and had PiB PET scans were included. Clinical, neuropsychological, and imaging characteristics, such as Medial Temporal lobe Atrophy (MTA) and White Matter Hyperintensities (WMH) on MRI and metabolic pattern on 18F-labeled fluorodeoxyglucose (FDG) PET, were compared between patients with PiB positive and negative PET results for AD, aMCI, and all subjects combined, respectively. RESULTS Compared with PiB positive patients, PiB negative patients had a higher prevalence of hypertension history, better performance on the Mini-Mental State Examination, the Rey Auditory Verbal Learning Test, and the Judgement of Line Orientation, lower score of MTA, and were less likely to have temporoparietal-predominant hypometabolism on FDG PET. Affective symptoms were less common in PiB negative patients diagnosed with AD, and the Animal Fluency Test score was higher in PiB negative patients diagnosed with aMCI. CONCLUSION In patients with clinically diagnosed AD or aMCI, absence of a history of hypertension, deficits in verbal learning and memory, visuospatial function, semantic verbal fluency, presence of affective symptoms, MTA on MRI, and temporoparietal hypometabolism on FDG PET suggested amyloid deposition in the brain.
Collapse
Affiliation(s)
- Yue Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, China
| | - Fanghua Lou
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, China
| | - Yonggang Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154, Anshan Road, Tianjin 300052, China
| | - Fang Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, China
| | - Ying Wang
- PET/CT Center, Tianjin Medical University General Hospital, 154, Anshan Road, Tianjin, China
| | - Li Cai
- PET/CT Center, Tianjin Medical University General Hospital, 154, Anshan Road, Tianjin, China
| | - Marc L Gordon
- The Litwin-Zucker Research Center, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, United States
| | - Yuanyuan Zhang
- Department of Radiology, Tianjin Medical University General Hospital, 154, Anshan Road, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, China
| |
Collapse
|
17
|
Jin H, Wang R. Alzheimer-Associated Neuronal Thread Protein: Research Course and Prospects for the Future. J Alzheimers Dis 2021; 80:963-971. [PMID: 33612543 DOI: 10.3233/jad-201273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. With aging societies, the prevalence of AD is increasing dramatically worldwide. The onset of AD is often not identified, and currently no available treatments are capable of stopping the disease process and its effect on cognitive decline. Thus, well-validated biomarkers of the preclinical stages of AD are needed. Alzheimer-associated neuronal thread protein (AD7c-NTP) is a member of the neuronal thread protein family and has a molecular weight of approximately 41 kD. AD7c-NTP has been identified as a biomarker for its specifically elevated levels in putative brain domains, cerebrospinal fluid (CSF), and the urine of AD and mild cognitive impairment (MCI) patients. Since the urine test is non-invasive, easy to perform, and patients accept it more easily than other methods, the urinary AD7c-NTP concentration has been recommended as a practical diagnostic tool for diagnosing AD and MCI. AD7c-NTP has undergone nearly 25 years of research course from its initial discovery to pathological verification, multi-center clinical evaluation, improvement of detection methods, epidemiological investigation, and combined application with other biomarkers. However, as a fluid biomarker, AD7c-NTP can be detected in urine instead of the traditional biomarker sources-CSF or blood, which has made the use of AD7c-NTP as a biomarker controversial. In this article, we review the research course of AD7c-NTP and suggest directions for future research.
Collapse
Affiliation(s)
- He Jin
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
18
|
Seol W, Kim H, Son I. Urinary Biomarkers for Neurodegenerative Diseases. Exp Neurobiol 2020; 29:325-333. [PMID: 33154195 PMCID: PMC7649089 DOI: 10.5607/en20042] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Global incidence of neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD) is rapidly increasing, but the diagnosis of these diseases at their early stage is challenging. Therefore, the availability of reproducible and reliable biomarkers to diagnose such diseases is more critical than ever. In addition, biomarkers could be used not only to diagnose diseases but also to monitor the development of disease therapeutics. Urine is an excellent biofluid that can be utilized as a source of biomarker to diagnose not only several renal diseases but also other diseases because of its abundance in invasive sampling. However, urine was conventionally regarded as inappropriate as a source of biomarker for neurodegenerative diseases because it is anatomically distant from the central nervous system (CNS), a major pathologic site of NDD, in comparison to other biofluids such as cerebrospinal fluid (CSF) and plasma. However, recent studies have suggested that urine could be utilized as a source of NDD biomarker if an appropriate marker is predetermined by metabolomic and proteomic approaches in urine and other samples. In this review, we summarize such studies related to NDD.
Collapse
Affiliation(s)
- Wongi Seol
- InAm Neuroscience Research Center, Gunpo 15865, Korea
| | - Hyejung Kim
- InAm Neuroscience Research Center, Gunpo 15865, Korea
| | - Ilhong Son
- InAm Neuroscience Research Center, Gunpo 15865, Korea
- Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea
| |
Collapse
|
19
|
Ausó E, Gómez-Vicente V, Esquiva G. Biomarkers for Alzheimer's Disease Early Diagnosis. J Pers Med 2020; 10:E114. [PMID: 32899797 PMCID: PMC7563965 DOI: 10.3390/jpm10030114] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting the central nervous system (CNS) through the accumulation of intraneuronal neurofibrillary tau tangles (NFTs) and β-amyloid plaques. By the time AD is clinically diagnosed, neuronal loss has already occurred in many brain and retinal regions. Therefore, the availability of early and reliable diagnosis markers of the disease would allow its detection and taking preventive measures to avoid neuronal loss. Current diagnostic tools in the brain, such as magnetic resonance imaging (MRI), positron emission tomography (PET) imaging, and cerebrospinal fluid (CSF) biomarkers (Aβ and tau) detection are invasive and expensive. Brain-secreted extracellular vesicles (BEVs) isolated from peripheral blood have emerged as novel strategies in the study of AD, with enormous potential as a diagnostic evaluation of therapeutics and treatment tools. In addition; similar mechanisms of neurodegeneration have been demonstrated in the brain and the eyes of AD patients. Since the eyes are more accessible than the brain, several eye tests that detect cellular and vascular changes in the retina have also been proposed as potential screening biomarkers. The aim of this study is to summarize and discuss several potential markers in the brain, eye, blood, and other accessible biofluids like saliva and urine, and correlate them with earlier diagnosis and prognosis to identify individuals with mild symptoms prior to dementia.
Collapse
Affiliation(s)
| | | | - Gema Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain; (E.A.); (V.G.-V.)
| |
Collapse
|
20
|
Gu D, Liu F, Meng M, Zhang L, Gordon ML, Wang Y, Cai L, Zhang N. Elevated matrix metalloproteinase-9 levels in neuronal extracellular vesicles in Alzheimer's disease. Ann Clin Transl Neurol 2020; 7:1681-1691. [PMID: 32790155 PMCID: PMC7480907 DOI: 10.1002/acn3.51155] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE This study aimed to investigate plasma neuronally derived extracellular vesicle (NDEV) levels of core pathological markers [amyloid-β (Aβ) and phosphorylated tau] and inflammatory biomarkers, including interleukin 6 (IL-6) and matrix metalloproteinase-9 (MMP-9) in patients with Alzheimer's disease (AD). METHODS Thirty-one patients with AD and 15 cognitively normal controls (NCs) were recruited. The diagnosis of AD was supported by fluorodeoxyglucose and Pittsburgh Compound-B PET scans. Plasma extracellular vesicles were extracted, precipitated, and enriched for neuronal source by anti-L1CAM antibody absorption. Levels of Aβ42, P-T181-tau, P-S396-tau, IL-6, and MMP-9 in plasma NDEVs were quantified by enzyme-linked immunosorbent assay (ELISA). RESULTS Aβ42, P-T181-tau, and MMP-9 levels in plasma NDEVs were significantly higher in patients with AD than NCs. However, P-S396-tau and IL-6 levels in plasma NDEVs did not differ between AD patients and NCs. Moreover, there was no correlation between any of these biomarker levels and cognitive function as measured with Mini-Mental State Examination in patients with AD. CONCLUSIONS These findings provide further support that levels of core pathological markers, including Aβ42 and P-T181-tau, are elevated in plasma NDEVs of patients with AD. Furthermore, MMP-9 might play an important role in the pathogenesis of AD, and is a promising inflammatory biomarker for AD.
Collapse
Affiliation(s)
- Dongmei Gu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, China.,Department of Clinical Laboratory, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Fang Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Meng
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Liling Zhang
- Department of Neurology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Marc L Gordon
- The Litwin-Zucker Research Center, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, New York.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, New York
| | - Ying Wang
- Department of PET-CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Cai
- Department of PET-CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| |
Collapse
|
21
|
Li Y, Guan S, Jin H, Liu H, Kang M, Wang X, Sheng C, Sun Y, Li X, Fang X, Wang R. The relationship between urinary Alzheimer-associated neuronal thread protein and blood biochemical indicators in the general population. Aging (Albany NY) 2020; 12:15260-15280. [PMID: 32735555 PMCID: PMC7467383 DOI: 10.18632/aging.103356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Urinary Alzheimer-associated neuronal thread protein (AD7c-NTP) is elevated in early Alzheimer's disease (AD) and mild cognitive impairment, and is considered a biomarker for the early diagnosis of AD. However, it has not yet been investigated whether urinary AD7c-NTP is elevated with increases in blood biochemical indicators related to AD risk factors. We recruited 2180 participants, aged 35-93 years, from communities of four districts in Beijing. Blood biochemical indicators, including blood glucose, blood lipids, renal function, and high-sensitivity C-reactive protein, were measured using routine methods. Urinary AD7c-NTP was detected using an enzyme-linked immunosorbent assay AD7c-NTP kit. In the general population, there were no significant differences in urinary AD7c-NTP levels in subjects with different Mini-Mental State Examination levels or C-reactive protein values. After adjusting for age and sex, there were significant differences in urinary AD7c-NTP levels between different education levels, marital statuses, blood glucose, blood lipids, and kidney function. There was a negative correlation between urinary AD7c-NTP levels and serum creatinine (r = -0.128). There was a positive correlation between urinary AD7c-NTP levels and HbA1c (r = 0.104), insulin (r = 0.101), and triglycerides (r = 0.093). Urinary AD7c-NTP might be useful as a potential indicator to predict AD risk.
Collapse
Affiliation(s)
- Yuxia Li
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shaochen Guan
- Evidence-Based Medical Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - He Jin
- Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Hongjun Liu
- Evidence-Based Medical Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Meimei Kang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaozhen Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Can Sheng
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yu Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Xuanyu Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Xianghua Fang
- Evidence-Based Medical Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Beijing Geriatric Medical Research Center, Beijing 100053, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China
| |
Collapse
|
22
|
Relationship between Urinary Alzheimer-Associated Neuronal Thread Protein and Apolipoprotein Epsilon 4 Allele in the Cognitively Normal Population. Neural Plast 2020; 2020:9742138. [PMID: 32587611 PMCID: PMC7294364 DOI: 10.1155/2020/9742138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/18/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
We investigated the relationship between urinary Alzheimer-associated neuronal thread protein (AD7c-NTP) levels and apolipoprotein epsilon 4 (ApoE ɛ4) alleles, as well as other factors that cause cognitive decline, in the cognitively normal population. We recruited 329 cognitively normal right-handed Han Chinese subjects who completed ApoE gene testing and urinary AD7c-NTP testing. There was no significant difference in urinary AD7c-NTP levels between the normal control and subjective cognitive decline groups. Urinary AD7c-NTP levels were significantly higher in subjects with ApoE ɛ3/4 and 4/4 [0.6074 (0.6541) ng/mL] than in subjects without ApoE ɛ4 [0.4368 (0.3392) ng/mL and 0.5287 (0.3656) ng/mL], and urinary AD7c-NTP levels positively correlated with ApoE genotype grade (r = 0.165, p = 0.003). There were significant differences in urinary AD7c-NTP levels between subjects with and without a history of coronary heart disease or diabetes. Urinary AD7c-NTP levels were not related to years of education, nature of work, family history of dementia, a history of hypertension, stroke, anemia, or thyroid dysfunction. Urinary AD7c-NTP levels were positively correlated with ApoE grade in the cognitively normal population. The relationship between risk factors of cognitive decline and urinary AD7c-NTP levels provides a new way for us to understand AD and urinary AD7c-NTP.
Collapse
|
23
|
Zhang Y, Li Y, Wang R, Sha G, Jin H, Ma L. Elevated Urinary AD7c-NTP Levels in Older Adults with Hypertension and Cognitive Impairment. J Alzheimers Dis 2020; 74:237-244. [PMID: 32007954 DOI: 10.3233/jad-190944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yaxin Zhang
- Department of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yun Li
- Department of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Guiming Sha
- Department of Geriatrics, Beijing Geriatric Hospital, Beijing, China
| | - He Jin
- Central Laboratory, Xuanwu Hospital Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
24
|
Ku BD, Kim H, Kim YK, Ryu HU. Comparison of Urinary Alzheimer-Associated Neural Thread Protein (AD7c-NTP) Levels Between Patients With Amnestic and Nonamnestic Mild Cognitive Impairment. Am J Alzheimers Dis Other Demen 2020; 35:1533317519880369. [PMID: 31735060 PMCID: PMC10623931 DOI: 10.1177/1533317519880369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Urinary Alzheimer-associated neural thread protein (AD7c-NTP) is a potential biomarker of Alzheimer disease (AD) or mild cognitive impairment (MCI). It is still unclear whether the urinary levels of AD7c-NTP are different between patients with amnestic MCI (aMCI) and nonamnestic MCI (naMCI). The present study aimed to explore the differences in urinary levels of AD7c-NTP between patients with aMCI and naMCI. Forty-six patients with MCI were divided into aMCI group (n = 23) and naMCI group (n = 23). The mean level of urinary AD7c-NTP in the aMCI group (32.75 ± 10.0 µg/mL) was significantly higher than that in the naMCI group (25.34 ± 9.0 µg/mL; P = .011). As far as we know, the present study is the first to show that individuals with aMCI have higher levels of urinary AD7c-NTP than those with naMCI, suggesting that urinary AD7c-NTP may be a potential biomarker to help identify patients with aMCI and naMCI.
Collapse
Affiliation(s)
- Bon D. Ku
- Department of Neurology, International St Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, South Korea
| | - Hyeyun Kim
- Department of Neurology, International St Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, South Korea
| | - Yong Kyun Kim
- Department of Rehabilitation Medicine, Myongji Hospital, Hanyang University Medical Center Goyang, South Korea
| | - Han Uk Ryu
- Department of Neurology, Chonbuk National University Hospital, Chonbuk National University School of Medicine, Jeonju, South Korea
| |
Collapse
|
25
|
Li Y, Kang M, Wang H, Jin H, Wang X, Gan W, Zhao M, Zhao X, Wang R, Han Y. Urinary Alzheimer-Associated Neuronal Thread Protein is not Elevated in Patients with Subjective Cognitive Decline and Patients with Depressive State. J Alzheimers Dis 2019; 71:1115-1123. [PMID: 31524164 DOI: 10.3233/jad-190401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yuxia Li
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Meimei Kang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongxing Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - He Jin
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaozhen Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjing Gan
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mingyan Zhao
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xing Zhao
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
26
|
Sancesario G, Bernardini S. AD biomarker discovery in CSF and in alternative matrices. Clin Biochem 2019; 72:52-57. [DOI: 10.1016/j.clinbiochem.2019.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022]
|
27
|
Veronese N, Solmi M, Basso C, Smith L, Soysal P. Role of physical activity in ameliorating neuropsychiatric symptoms in Alzheimer disease: A narrative review. Int J Geriatr Psychiatry 2019; 34:1316-1325. [PMID: 30156330 DOI: 10.1002/gps.4962] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Neuropsychiatric symptoms (NPs) affect almost all patients with Alzheimer disease (AD). Because of the complications associated with the pharmacological treatment, nonpharmacological treatment (such as physical activity) can be considered as an additional complementary treatment option for NPs. The aim of this review is to evaluate the impact of physical activity on NPs in patients with AD. METHODS We searched Pubmed and Google Scholar for potential eligible articles until March 1, 2018. RESULTS Although there are contradictory results showing the impact of physical exercise on NPs, most of them reported that it had a significant effect on depression and sleep disturbances in patients with AD. The beneficial effects could be explained through several mechanisms, including modulated production of neurotransmitters; increasing neurotrophins, such as brain-derived neurotrophic factor; reduction of oxidative stress and inflammation; elevation of cerebral blood flow; hypothalamic pituitary adrenal axis regulation; and support of neurogenesis and synaptogenesis. Physical activity can also improve cardiovascular risk factors, which may exaggerate NPs. There is limited evidence for other NPs such as agitation, disinhibition, apathy, hallucinations, and anxiety. CONCLUSION Physical activity may ameliorate depression and sleep disturbances in patients with AD. Therefore, physical activity can be a "potential" add-on treatment to drugs to reduce or prevent these symptoms onset and recurrence in patients with AD. However, further studies are needed to focus on relationship between physical activity and other NPs.
Collapse
Affiliation(s)
- Nicola Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy.,Geriatrics Unit, Department of Geriatric Care, Ortho Geriatrics and Rehabilitation, E.O. Galliera Hospital, National Relevance and High Specialization Hospital, Genoa, Italy
| | - Marco Solmi
- Department of Neurosciences, University of Padova, Padova, Italy.,Centro Neuroscienze Cognitive, University of Padua, Padua, Italy
| | | | - Lee Smith
- The Cambridge Centre for Sport and Exercise Sciences, Department of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Pinar Soysal
- Department of Geriatric Medicine, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
28
|
Jin H, Guan S, Wang R, Fang X, Liu H, Wu Y, Zhang Y, Liu C. The Distribution of Urinary Alzheimer-Associated Neuronal Thread Protein and Its Association with Common Chronic Diseases in the General Population. J Alzheimers Dis 2018; 65:433-442. [PMID: 30040733 DOI: 10.3233/jad-180441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- He Jin
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Shaochen Guan
- Evidence-based Medical Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Xianghua Fang
- Evidence-based Medical Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Hongjun Liu
- Evidence-based Medical Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Yanchuan Wu
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Yanlei Zhang
- Evidence-based Medical Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Chunxiao Liu
- Evidence-based Medical Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| |
Collapse
|
29
|
Zhang QE, Ling S, Li P, Zhang S, Ng CH, Ungvari GS, Wang LJ, Lee SY, Wang G, Xiang YT. The association between urinary Alzheimer-associated neuronal thread protein and cognitive impairment in late-life depression: a controlled pilot study. Int J Biol Sci 2018; 14:1497-1502. [PMID: 30263001 PMCID: PMC6158723 DOI: 10.7150/ijbs.25000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/21/2018] [Indexed: 12/22/2022] Open
Abstract
Accumulation of tau protein is associated with both Alzheimer's disease (AD) and late-life depression (LLD). Alzheimer-associated neuronal thread protein (AD7c-NTP), which is closely linked with the tau protein, is elevated in the cerebrospinal fluid and urine of AD patients. This study examined the association between urinary AD7c-NTP and late-life depression with cognitive impairment. One hundred and thirty-eight subjects were recruited into late-life depression with cognitive impairment (LLD-CI, n=52), late-life depression without cognitive impairment (LLD-NCI, n=29), AD (n=27), and healthy control (HC, n=30) groups. The level of urinary AD7c-NTP was measured using the enzyme-linked immunosorbent assay method. The Montreal Cognitive Assessment scale (MoCA), Hamilton Rating Scale for Depression (HRSD) and Hamilton Anxiety Rating Scale (HAMA) were used to assess cognitive functions and depressive and anxiety symptoms in the AD and LLD groups. Urinary levels of AD7c-NTP in the LLD-CI group (1.0±0.7ng/ml) were significantly higher than both the LLD-NCI (0.5±0.3ng/ml) and HC groups (0.5±0.3ng/ml), but lower than in the AD group (1.6±1.7 ng/ml). No significant associations were found in the level of urinary AD7c-NTP in relation to age, gender, education and MoCA in the LLD-CI group. The level of urinary AD7c-NTP appears to be associated with cognitive impairment in late-life depression and may be a potential biomarker for early identification of cognitive impairment in LLD.
Collapse
Affiliation(s)
- Qing-E Zhang
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Sihai Ling
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Peng Li
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Saina Zhang
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Chee H Ng
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Gabor S Ungvari
- The University of Notre Dame Australia / Graylands Hospital, Perth, Australia
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Yu Lee
- Unit of Psychiatry, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Gang Wang
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yu-Tao Xiang
- Unit of Psychiatry, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|