1
|
Pascarella A, Manzo L, Ferlazzo E. Modern neurophysiological techniques indexing normal or abnormal brain aging. Seizure 2024:S1059-1311(24)00194-8. [PMID: 38972778 DOI: 10.1016/j.seizure.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Brain aging is associated with a decline in cognitive performance, motor function and sensory perception, even in the absence of neurodegeneration. The underlying pathophysiological mechanisms remain incompletely understood, though alterations in neurogenesis, neuronal senescence and synaptic plasticity are implicated. Recent years have seen advancements in neurophysiological techniques such as electroencephalography (EEG), magnetoencephalography (MEG), event-related potentials (ERP) and transcranial magnetic stimulation (TMS), offering insights into physiological and pathological brain aging. These methods provide real-time information on brain activity, connectivity and network dynamics. Integration of Artificial Intelligence (AI) techniques promise as a tool enhancing the diagnosis and prognosis of age-related cognitive decline. Our review highlights recent advances in these electrophysiological techniques (focusing on EEG, ERP, TMS and TMS-EEG methodologies) and their application in physiological and pathological brain aging. Physiological aging is characterized by changes in EEG spectral power and connectivity, ERP and TMS parameters, indicating alterations in neural activity and network function. Pathological aging, such as in Alzheimer's disease, is associated with further disruptions in EEG rhythms, ERP components and TMS measures, reflecting underlying neurodegenerative processes. Machine learning approaches show promise in classifying cognitive impairment and predicting disease progression. Standardization of neurophysiological methods and integration with other modalities are crucial for a comprehensive understanding of brain aging and neurodegenerative disorders. Advanced network analysis techniques and AI methods hold potential for enhancing diagnostic accuracy and deepening insights into age-related brain changes.
Collapse
Affiliation(s)
- Angelo Pascarella
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy.
| | - Lucia Manzo
- Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy
| |
Collapse
|
2
|
Oberman LM, Benussi A. Transcranial Magnetic Stimulation Across the Lifespan: Impact of Developmental and Degenerative Processes. Biol Psychiatry 2024; 95:581-591. [PMID: 37517703 PMCID: PMC10823041 DOI: 10.1016/j.biopsych.2023.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a pivotal noninvasive technique for investigating cortical excitability and plasticity across the lifespan, offering valuable insights into neurodevelopmental and neurodegenerative processes. In this review, we explore the impact of TMS applications on our understanding of normal development, healthy aging, neurodevelopmental disorders, and adult-onset neurodegenerative diseases. By presenting key developmental milestones and age-related changes in TMS measures, we provide a foundation for understanding the maturation of neurotransmitter systems and the trajectory of cognitive functions throughout the lifespan. Building on this foundation, the paper delves into the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, and adolescent depression. Highlighting recent findings on altered neurotransmitter circuits and dysfunctional cortical plasticity, we underscore the potential of TMS as a valuable tool for unraveling underlying mechanisms and informing future therapeutic interventions. We also review the emerging role of TMS in investigating and treating the most common adult-onset neurodegenerative disorders and late-onset depression. By outlining the therapeutic applications of noninvasive brain stimulation techniques in these disorders, we discuss the growing body of evidence supporting their use as therapeutic tools for symptom management and potentially slowing disease progression. The insights gained from TMS studies have advanced our understanding of the underlying mechanisms in both healthy and disease states, ultimately informing the development of more targeted diagnostic and therapeutic strategies for a wide range of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Lindsay M Oberman
- National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
3
|
Hahn L, Eickhoff SB, Mueller K, Schilbach L, Barthel H, Fassbender K, Fliessbach K, Kornhuber J, Prudlo J, Synofzik M, Wiltfang J, Diehl-Schmid J, Otto M, Dukart J, Schroeter ML. Resting-state alterations in behavioral variant frontotemporal dementia are related to the distribution of monoamine and GABA neurotransmitter systems. eLife 2024; 13:e86085. [PMID: 38224473 PMCID: PMC10789488 DOI: 10.7554/elife.86085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024] Open
Abstract
Background Aside to clinical changes, behavioral variant frontotemporal dementia (bvFTD) is characterized by progressive structural and functional alterations in frontal and temporal regions. We examined if there is a selective vulnerability of specific neurotransmitter systems in bvFTD by evaluating the link between disease-related functional alterations and the spatial distribution of specific neurotransmitter systems and their underlying gene expression levels. Methods Maps of fractional amplitude of low-frequency fluctuations (fALFF) were derived as a measure of local activity from resting-state functional magnetic resonance imaging for 52 bvFTD patients (mean age = 61.5 ± 10.0 years; 14 females) and 22 healthy controls (HC) (mean age = 63.6 ± 11.9 years; 13 females). We tested if alterations of fALFF in patients co-localize with the non-pathological distribution of specific neurotransmitter systems and their coding mRNA gene expression. Furthermore, we evaluated if the strength of co-localization is associated with the observed clinical symptoms. Results Patients displayed significantly reduced fALFF in frontotemporal and frontoparietal regions. These alterations co-localized with the distribution of serotonin (5-HT1b and 5-HT2a) and γ-aminobutyric acid type A (GABAa) receptors, the norepinephrine transporter (NET), and their encoding mRNA gene expression. The strength of co-localization with NET was associated with cognitive symptoms and disease severity of bvFTD. Conclusions Local brain functional activity reductions in bvFTD followed the distribution of specific neurotransmitter systems indicating a selective vulnerability. These findings provide novel insight into the disease mechanisms underlying functional alterations. Our data-driven method opens the road to generate new hypotheses for pharmacological interventions in neurodegenerative diseases even beyond bvFTD. Funding This study has been supported by the German Consortium for Frontotemporal Lobar Degeneration, funded by the German Federal Ministry of Education and Research (BMBF; grant no. FKZ01GI1007A).
Collapse
Affiliation(s)
- Lisa Hahn
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre JülichJülichGermany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre JülichJülichGermany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Leonhard Schilbach
- LVR-Klinikum DüsseldorfDüsseldorfGermany
- Medical Faculty, Ludwig-Maximilians-UniversitätMünchenGermany
| | - Henryk Barthel
- Department for Nuclear Medicine, University Hospital LeipzigLeipzigGermany
| | - Klaus Fassbender
- Department of Neurology, Saarland University HospitalHomburgGermany
| | - Klaus Fliessbach
- Department of Psychiatry and Psychotherapy, University Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-NurembergErlangenGermany
| | - Johannes Prudlo
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Department of Neurology, University Medicine RostockRostockGermany
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain ResearchTübingenGermany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Medical University GöttingenGöttingenGermany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of AveiroAveiroPortugal
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technical University of MunichMunichGermany
- kbo-Inn-Salzach-Klinikum, Clinical Center for Psychiatry, Psychotherapy, Psychosomatic Medicine, Geriatrics and NeurologyWasserburg/InnGermany
| | | | - Markus Otto
- Department of Neurology, Ulm UniversityUlmGermany
- Department of Neurology, Martin-Luther-University Halle-WittenbergHalleGermany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre JülichJülichGermany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Matthias L Schroeter
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Clinic for Cognitive Neurology, University Hospital LeipzigLeipzigGermany
| |
Collapse
|
4
|
Vuic B, Milos T, Tudor L, Nikolac Perkovic M, Konjevod M, Nedic Erjavec G, Farkas V, Uzun S, Mimica N, Svob Strac D. Pharmacogenomics of Dementia: Personalizing the Treatment of Cognitive and Neuropsychiatric Symptoms. Genes (Basel) 2023; 14:2048. [PMID: 38002991 PMCID: PMC10671071 DOI: 10.3390/genes14112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Dementia is a syndrome of global and progressive deterioration of cognitive skills, especially memory, learning, abstract thinking, and orientation, usually affecting the elderly. The most common forms are Alzheimer's disease, vascular dementia, and other (frontotemporal, Lewy body disease) dementias. The etiology of these multifactorial disorders involves complex interactions of various environmental and (epi)genetic factors and requires multiple forms of pharmacological intervention, including anti-dementia drugs for cognitive impairment, antidepressants, antipsychotics, anxiolytics and sedatives for behavioral and psychological symptoms of dementia, and other drugs for comorbid disorders. The pharmacotherapy of dementia patients has been characterized by a significant interindividual variability in drug response and the development of adverse drug effects. The therapeutic response to currently available drugs is partially effective in only some individuals, with side effects, drug interactions, intolerance, and non-compliance occurring in the majority of dementia patients. Therefore, understanding the genetic basis of a patient's response to pharmacotherapy might help clinicians select the most effective treatment for dementia while minimizing the likelihood of adverse reactions and drug interactions. Recent advances in pharmacogenomics may contribute to the individualization and optimization of dementia pharmacotherapy by increasing its efficacy and safety via a prediction of clinical outcomes. Thus, it can significantly improve the quality of life in dementia patients.
Collapse
Affiliation(s)
- Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Vladimir Farkas
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| |
Collapse
|
5
|
Benussi A, Borroni B. Advances in the treatment and management of frontotemporal dementia. Expert Rev Neurother 2023; 23:621-639. [PMID: 37357688 DOI: 10.1080/14737175.2023.2228491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) is a complex neurodegenerative disorder, characterized by a wide range of pathological conditions associated with the buildup of proteins such as tau and TDP-43. With a strong hereditary component, FTD often results from genetic variants in three genes - MAPT, GRN, and C9orf72. AREAS COVERED In this review, the authors explore abnormal protein accumulation in FTD and forthcoming treatments, providing a detailed analysis of new diagnostic advancements, including innovative markers. They analyze how these discoveries have influenced therapeutic strategies, particularly disease-modifying treatments, which could potentially transform FTD management. This comprehensive exploration of FTD from its molecular underpinnings to its therapeutic prospects offers a compelling overview of the current state of FTD research. EXPERT OPINION Notable challenges in FTD management involve identifying reliable biomarkers for early diagnosis and response monitoring. Genetic forms of FTD, particularly those linked to C9orf72 and GRN, show promise, with targeted therapies resulting in substantial progress in disease-modifying strategies. The potential of neuromodulation techniques, like tDCS and rTMS, is being explored, requiring further study. Ongoing trials and multi-disciplinary care highlight the continued push toward effective FTD treatments. With increasing understanding of FTD's molecular and clinical intricacies, the hope for developing effective interventions grows.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
6
|
Minaya MA, Mahali S, Iyer AK, Eteleeb AM, Martinez R, Huang G, Budde J, Temple S, Nana AL, Seeley WW, Spina S, Grinberg LT, Harari O, Karch CM. Conserved gene signatures shared among MAPT mutations reveal defects in calcium signaling. Front Mol Biosci 2023; 10:1051494. [PMID: 36845551 PMCID: PMC9948093 DOI: 10.3389/fmolb.2023.1051494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction: More than 50 mutations in the MAPT gene result in heterogeneous forms of frontotemporal lobar dementia with tau inclusions (FTLD-Tau). However, early pathogenic events that lead to disease and the degree to which they are common across MAPT mutations remain poorly understood. The goal of this study is to determine whether there is a common molecular signature of FTLD-Tau. Methods: We analyzed genes differentially expressed in induced pluripotent stem cell-derived neurons (iPSC-neurons) that represent the three major categories of MAPT mutations: splicing (IVS10 + 16), exon 10 (p.P301L), and C-terminal (p.R406W) compared with isogenic controls. The genes that were commonly differentially expressed in MAPT IVS10 + 16, p.P301L, and p.R406W neurons were enriched in trans-synaptic signaling, neuronal processes, and lysosomal function. Many of these pathways are sensitive to disruptions in calcium homeostasis. One gene, CALB1, was significantly reduced across the three MAPT mutant iPSC-neurons and in a mouse model of tau accumulation. We observed a significant reduction in calcium levels in MAPT mutant neurons compared with isogenic controls, pointing to a functional consequence of this disrupted gene expression. Finally, a subset of genes commonly differentially expressed across MAPT mutations were also dysregulated in brains from MAPT mutation carriers and to a lesser extent in brains from sporadic Alzheimer disease and progressive supranuclear palsy, suggesting that molecular signatures relevant to genetic and sporadic forms of tauopathy are captured in a dish. The results from this study demonstrate that iPSC-neurons capture molecular processes that occur in human brains and can be used to pinpoint common molecular pathways involving synaptic and lysosomal function and neuronal development, which may be regulated by disruptions in calcium homeostasis.
Collapse
Affiliation(s)
- Miguel A. Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Sidhartha Mahali
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Abhirami K. Iyer
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Abdallah M. Eteleeb
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Rita Martinez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Guangming Huang
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - John Budde
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY, United States
| | - Alissa L. Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - William W. Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Salvatore Spina
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Lea T. Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Pathology, University of Sao Paulo, Sao Paulo, Brazil
| | - Oscar Harari
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, United States
- NeuroGenomics and Informatics Center, Washington University in St Louis, St Louis, MO, United States
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, United States
- NeuroGenomics and Informatics Center, Washington University in St Louis, St Louis, MO, United States
| |
Collapse
|
7
|
Benussi A, Libri I, Premi E, Alberici A, Cantoni V, Gadola Y, Rivolta J, Pengo M, Gazzina S, Calhoun VD, Gasparotti R, Zetterberg H, Ashton NJ, Blennow K, Padovani A, Borroni B. Differences and similarities between familial and sporadic frontotemporal dementia: An Italian single-center cohort study. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12326. [PMID: 35898667 PMCID: PMC9310192 DOI: 10.1002/trc2.12326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/11/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Introduction The possibility to generalize our understandings on treatments and assessments to both familial frontotemporal dementia (f-FTD) and sporadic FTD (s-FTD) is a fundamental perspective for the near future, considering the constant advancement in potential disease-modifying therapies that target particular genetic forms of FTD. We aimed to investigate differences in clinical features, cerebrospinal fluid (CSF), and blood-based biomarkers between f-FTD and s-FTD. Methods In this longitudinal cohort study, we evaluated a consecutive sample of symptomatic FTD patients, classified as f-FTD and s-FTD according to Goldman scores (GS). All patients underwent clinical, behavioral, and neuropsychiatric symptom assessment, CSF biomarkers and serum neurofilament light (NfL) analysis, and brain atrophy evaluation with magnetic resonance imaging. Results Of 570 patients with FTD, 123 were classified as f-FTD, and 447 as s-FTD. In the f-FTD group, 95 had a pathogenic FTD mutation while 28 were classified as GS = 1 or 2; of the s-FTD group, 133 were classified as GS = 3 and 314 with GS = 4. f-FTD and s-FTD cases showed comparable demographic features, except for younger age at disease onset, age at diagnosis, and higher years of education in the f-FTD group (all P < .05). f-FTD showed worse behavioral disturbances as measured with Frontal Behavioral Inventory (FBI) negative behaviors (14.0 ± 7.6 vs. 11.6 ± 7.4, P = .002), and positive behaviors (20.0 ± 11.0 vs. 17.4 ± 11.8, P = .031). Serum NfL concentrations were higher in patients with f-FTD (70.9 ± 37.9 pg/mL) compared to s-FTD patients (37.3 ± 24.2 pg/mL, P < .001), and f-FTD showed greater brain atrophy in the frontal and temporal regions and basal ganglia. Patients with f-FTD had significantly shorter survival than those with s-FTD (P = .004). Discussion f-FTD and s-FTD are very similar clinical entities, but with different biological mechanisms, and different rates of progression. The parallel characterization of both f-FTD and s-FTD will improve our understanding of the disease, and aid in designing future clinical trials for both genetic and sporadic forms of FTD. Highlights Do clinical features and biomarkers differ between patients with familial frontotemporal dementia (f-FTD) and sporadic FTD (s-FTD)?In this cohort study of 570 patients with FTD, f-FTD and s-FTD share similar demographic features, but with younger age at disease onset and diagnosis in the f-FTD group.f-FTD showed higher serum neurofilament light concentrations, greater brain damage, and shorter survival, compared to s-FTD.f-FTD and s-FTD are very similar clinical entities, but with different cognitive reserve mechanisms and different rates of progression.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Neurology UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Ilenia Libri
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Enrico Premi
- Stroke UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Antonella Alberici
- Neurology UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Valentina Cantoni
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Yasmine Gadola
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Jasmine Rivolta
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Marta Pengo
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Stefano Gazzina
- Neurophysiology UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Vince D. Calhoun
- The Mind Research NetworkDepartment of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | | | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute at UCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Nicholas J. Ashton
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgMölndalSweden
- King's College LondonInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS FoundationLondonUK
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Alessandro Padovani
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Neurology UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Barbara Borroni
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Neurology UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| |
Collapse
|
8
|
Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, Chen KHS, Chen R, Chistyakov AV, Classen J, Kiernan MC, Koch G, Lanza G, Lefaucheur JP, Matsumoto H, Nguyen JP, Orth M, Pascual-Leone A, Rektorova I, Simko P, Taylor JP, Tremblay S, Ugawa Y, Dubbioso R, Ranieri F. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol 2021; 132:2568-2607. [PMID: 34482205 DOI: 10.1016/j.clinph.2021.05.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to probe in vivo brain circuits, as it allows to assess several cortical properties such asexcitability, plasticity and connectivity in humans. In the last 20 years, TMS has been applied to patients with dementia, enabling the identification of potential markers of thepathophysiology and predictors of cognitive decline; moreover, applied repetitively, TMS holds promise as a potential therapeutic intervention. The objective of this paper is to present a comprehensive review of studies that have employed TMS in dementia and to discuss potential clinical applications, from the diagnosis to the treatment. To provide a technical and theoretical framework, we first present an overview of the basic physiological mechanisms of the application of TMS to assess cortical excitability, excitation and inhibition balance, mechanisms of plasticity and cortico-cortical connectivity in the human brain. We then review the insights gained by TMS techniques into the pathophysiology and predictors of progression and response to treatment in dementias, including Alzheimer's disease (AD)-related dementias and secondary dementias. We show that while a single TMS measure offers low specificity, the use of a panel of measures and/or neurophysiological index can support the clinical diagnosis and predict progression. In the last part of the article, we discuss the therapeutic uses of TMS. So far, only repetitive TMS (rTMS) over the left dorsolateral prefrontal cortex and multisite rTMS associated with cognitive training have been shown to be, respectively, possibly (Level C of evidence) and probably (Level B of evidence) effective to improve cognition, apathy, memory, and language in AD patients, especially at a mild/early stage of the disease. The clinical use of this type of treatment warrants the combination of brain imaging techniques and/or electrophysiological tools to elucidate neurobiological effects of neurostimulation and to optimally tailor rTMS treatment protocols in individual patients or specific patient subgroups with dementia or mild cognitive impairment.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kai-Hsiang S Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Brain, Imaging& Behaviour, Krembil Brain Institute, Toronto, Canada
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig University Medical Center, Germany
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Department of Neurology IC, Oasi Research Institute-IRCCS, Troina, Italy
| | - Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | | | - Jean-Paul Nguyen
- Pain Center, clinique Bretéché, groupe ELSAN, Multidisciplinary Pain, Palliative and Supportive care Center, UIC 22/CAT2 and Laboratoire de Thérapeutique (EA3826), University Hospital, Nantes, France
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Swiss Huntington's Disease Centre, Siloah, Bern, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Universitat Autonoma Barcelona, Spain
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Tremblay
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada; Royal Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Bowles KR, Silva MC, Whitney K, Bertucci T, Berlind JE, Lai JD, Garza JC, Boles NC, Mahali S, Strang KH, Marsh JA, Chen C, Pugh DA, Liu Y, Gordon RE, Goderie SK, Chowdhury R, Lotz S, Lane K, Crary JF, Haggarty SJ, Karch CM, Ichida JK, Goate AM, Temple S. ELAVL4, splicing, and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids. Cell 2021; 184:4547-4563.e17. [PMID: 34314701 PMCID: PMC8635409 DOI: 10.1016/j.cell.2021.07.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/06/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022]
Abstract
Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.
Collapse
Affiliation(s)
- Kathryn R Bowles
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - M Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kristen Whitney
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA; Department of Pathology, Neuropathology Brain Bank and Research Core, ISMMS, New York, NY 10029, USA
| | | | - Joshua E Berlind
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jesse D Lai
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Amgen Research, One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Jacob C Garza
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Sidhartha Mahali
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kevin H Strang
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA; Department of Pathology, Neuropathology Brain Bank and Research Core, ISMMS, New York, NY 10029, USA
| | - Jacob A Marsh
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Cynthia Chen
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Derian A Pugh
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Yiyuan Liu
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Ronald E Gordon
- Department of Pathology, Neuropathology Brain Bank and Research Core, ISMMS, New York, NY 10029, USA
| | | | | | - Steven Lotz
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Keith Lane
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - John F Crary
- Department of Pathology, Neuropathology Brain Bank and Research Core, ISMMS, New York, NY 10029, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA.
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
10
|
Salmon E, Bahri MA, Plenevaux A, Becker G, Seret A, Delhaye E, Degueldre C, Balteau E, Lemaire C, Luxen A, Bastin C. In vivo exploration of synaptic projections in frontotemporal dementia. Sci Rep 2021; 11:16092. [PMID: 34373529 PMCID: PMC8352914 DOI: 10.1038/s41598-021-95499-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/20/2021] [Indexed: 11/15/2022] Open
Abstract
The purpose of this exploratory research is to provide data on synaptopathy in the behavioral variant of frontotemporal dementia (bvFTD). Twelve patients with probable bvFTD were compared to 12 control participants and 12 patients with Alzheimer’s disease (AD). Loss of synaptic projections was assessed with [18F]UCBH-PET. Total distribution volume was obtained with Logan method using carotid artery derived input function. Neuroimages were analyzed with SPM12. Verbal fluency, episodic memory and awareness of cognitive impairment were equally impaired in patients groups. Compared to controls, [18F]UCBH uptake tended to decrease in the right anterior parahippocampal gyrus of bvFTD patients. Loss of synaptic projections was observed in the right hippocampus of AD participants, but there was no significant difference in [18F]UCBH brain uptake between patients groups. Anosognosia for clinical disorder was correlated with synaptic density in the caudate nucleus and the anteromedial prefrontal cortex. This study suggests that synaptopathy in bvFTD targets the temporal social brain and self-referential processes.
Collapse
Affiliation(s)
- Eric Salmon
- GIGA Cyclotron Research Centre, University of Liège, B30 Sart Tilman, 4000, Liège, Belgium.
| | - Mohamed Ali Bahri
- GIGA Cyclotron Research Centre, University of Liège, B30 Sart Tilman, 4000, Liège, Belgium
| | - Alain Plenevaux
- GIGA Cyclotron Research Centre, University of Liège, B30 Sart Tilman, 4000, Liège, Belgium
| | - Guillaume Becker
- GIGA Cyclotron Research Centre, University of Liège, B30 Sart Tilman, 4000, Liège, Belgium
| | - Alain Seret
- GIGA Cyclotron Research Centre, University of Liège, B30 Sart Tilman, 4000, Liège, Belgium
| | - Emma Delhaye
- GIGA Cyclotron Research Centre, University of Liège, B30 Sart Tilman, 4000, Liège, Belgium
| | - Christian Degueldre
- GIGA Cyclotron Research Centre, University of Liège, B30 Sart Tilman, 4000, Liège, Belgium
| | - Evelyne Balteau
- GIGA Cyclotron Research Centre, University of Liège, B30 Sart Tilman, 4000, Liège, Belgium
| | - Christian Lemaire
- GIGA Cyclotron Research Centre, University of Liège, B30 Sart Tilman, 4000, Liège, Belgium
| | - André Luxen
- GIGA Cyclotron Research Centre, University of Liège, B30 Sart Tilman, 4000, Liège, Belgium
| | - Christine Bastin
- GIGA Cyclotron Research Centre, University of Liège, B30 Sart Tilman, 4000, Liège, Belgium
| |
Collapse
|
11
|
Duran-Aniotz C, Orellana P, Leon Rodriguez T, Henriquez F, Cabello V, Aguirre-Pinto MF, Escobedo T, Takada LT, Pina-Escudero SD, Lopez O, Yokoyama JS, Ibanez A, Parra MA, Slachevsky A. Systematic Review: Genetic, Neuroimaging, and Fluids Biomarkers for Frontotemporal Dementia Across Latin America Countries. Front Neurol 2021; 12:663407. [PMID: 34248820 PMCID: PMC8263937 DOI: 10.3389/fneur.2021.663407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) includes a group of clinically, genetically, and pathologically heterogeneous neurodegenerative disorders, affecting the fronto-insular-temporal regions of the brain. Clinically, FTD is characterized by progressive deficits in behavior, executive function, and language and its diagnosis relies mainly on the clinical expertise of the physician/consensus group and the use of neuropsychological tests and/or structural/functional neuroimaging, depending on local availability. The modest correlation between clinical findings and FTD neuropathology makes the diagnosis difficult using clinical criteria and often leads to underdiagnosis or misdiagnosis, primarily due to lack of recognition or awareness of FTD as a disease and symptom overlap with psychiatric disorders. Despite advances in understanding the underlying neuropathology of FTD, accurate and sensitive diagnosis for this disease is still lacking. One of the major challenges is to improve diagnosis in FTD patients as early as possible. In this context, biomarkers have emerged as useful methods to provide and/or complement clinical diagnosis for this complex syndrome, although more evidence is needed to incorporate most of them into clinical practice. However, most biomarker studies have been performed using North American or European populations, with little representation of the Latin American and the Caribbean (LAC) region. In the LAC region, there are additional challenges, particularly the lack of awareness and knowledge about FTD, even in specialists. Also, LAC genetic heritage and cultures are complex, and both likely influence clinical presentations and may modify baseline biomarker levels. Even more, due to diagnostic delay, the clinical presentation might be further complicated by both neurological and psychiatric comorbidity, such as vascular brain damage, substance abuse, mood disorders, among others. This systematic review provides a brief update and an overview of the current knowledge on genetic, neuroimaging, and fluid biomarkers for FTD in LAC countries. Our review highlights the need for extensive research on biomarkers in FTD in LAC to contribute to a more comprehensive understanding of the disease and its associated biomarkers. Dementia research is certainly reduced in the LAC region, highlighting an urgent need for harmonized, innovative, and cross-regional studies with a global perspective across multiple areas of dementia knowledge.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon Rodriguez
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Henriquez
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Victoria Cabello
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Tamara Escobedo
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Stefanie D. Pina-Escudero
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer S. Yokoyama
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
- Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
12
|
Giunta M, Solje E, Gardoni F, Borroni B, Benussi A. Experimental Disease-Modifying Agents for Frontotemporal Lobar Degeneration. J Exp Pharmacol 2021; 13:359-376. [PMID: 33790662 PMCID: PMC8005747 DOI: 10.2147/jep.s262352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia is a clinically, genetically and pathologically heterogeneous neurodegenerative disorder, enclosing a wide range of different pathological entities, associated with the accumulation of proteins such as tau and TPD-43. Characterized by a high hereditability, mutations in three main genes, MAPT, GRN and C9orf72, can drive the neurodegenerative process. The connection between different genes and proteinopathies through specific mechanisms has shed light on the pathophysiology of the disease, leading to the identification of potential pharmacological targets. New experimental strategies are emerging, in both preclinical and clinical settings, which focus on small molecules rather than gene therapy. In this review, we provide an insight into the aberrant mechanisms leading to FTLD-related proteinopathies and discuss recent therapies with the potential to ameliorate neurodegeneration and disease progression.
Collapse
Affiliation(s)
- Marcello Giunta
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
13
|
Dev SI, Dickerson BC, Touroutoglou A. Neuroimaging in Frontotemporal Lobar Degeneration: Research and Clinical Utility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:93-112. [PMID: 33433871 PMCID: PMC8787866 DOI: 10.1007/978-3-030-51140-1_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Frontotemporal lobar dementia (FTLD) is a clinically and pathologically complex disease. Advances in neuroimaging techniques have provided a specialized set of tools to investigate underlying pathophysiology and identify clinical biomarkers that aid in diagnosis, prognostication, monitoring, and identification of appropriate endpoints in clinical trials. In this chapter, we review data discussing the utility of neuroimaging biomarkers in sporadic FTLD, with an emphasis on current and future clinical applications. Among those modalities readily utilized in clinical settings, T1-weighted structural magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) are best supported in differential diagnosis and as targets for clinical trial endpoints. However, a number of nonclinical neuroimaging modalities, including diffusion tensor imaging and resting-state functional connectivity MRI, show promise as biomarkers to predict progression and as clinical trial endpoints. Other neuroimaging modalities, including amyloid PET, Tau PET, and arterial spin labeling MRI, are also discussed, though more work is required to establish their utility in FTLD in clinical settings.
Collapse
Affiliation(s)
- Sheena I Dev
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA.
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
14
|
Benussi A, Ashton NJ, Karikari TK, Gazzina S, Premi E, Benussi L, Ghidoni R, Rodriguez JL, Emeršič A, Binetti G, Fostinelli S, Giunta M, Gasparotti R, Zetterberg H, Blennow K, Borroni B. Serum Glial Fibrillary Acidic Protein (GFAP) Is a Marker of Disease Severity in Frontotemporal Lobar Degeneration. J Alzheimers Dis 2020; 77:1129-1141. [DOI: 10.3233/jad-200608] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: It is still unknown if serum glial fibrillary acidic protein (GFAP) is a useful marker in frontotemporal lobar degeneration (FTLD). Objective: To assess the diagnostic and prognostic value of serum GFAP in a large cohort of patients with FTLD. Methods: In this retrospective study, performed on 406 participants, we measured serum GFAP concentration with an ultrasensitive Single molecule array (Simoa) method in patients with FTLD, Alzheimer’s disease (AD), and in cognitively unimpaired elderly controls. We assessed the role of GFAP as marker of disease severity by analyzing the correlation with clinical variables, neurophysiological data, and cross-sectional brain imaging. Moreover, we evaluated the role of serum GFAP as a prognostic marker of disease survival. Results: We observed significantly higher levels of serum GFAP in patients with FTLD syndromes, except progressive supranuclear palsy, compared with healthy controls, but not compared with AD patients. In FTLD, serum GFAP levels correlated with measures of cognitive dysfunction and disease severity, and were associated with indirect measures of GABAergic deficit. Serum GFAP concentration was not a significant predictor of survival. Conclusion: Serum GFAP is increased in FTLD, correlates with cognition and GABAergic deficits, and thus shows promise as a biomarker of disease severity in FTLD.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Nicholas J. Ashton
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Thomas K. Karikari
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | | | - Enrico Premi
- Stroke Unit, ASST Spedali Civili, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Juan Lantero Rodriguez
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Andreja Emeršič
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Giuliano Binetti
- MAC Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Marcello Giunta
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
15
|
Lesman-Segev OH, Edwards L, Rabinovici GD. Chronic Traumatic Encephalopathy: A Comparison with Alzheimer's Disease and Frontotemporal Dementia. Semin Neurol 2020; 40:394-410. [PMID: 32820492 DOI: 10.1055/s-0040-1715134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The clinical diagnosis of chronic traumatic encephalopathy (CTE) is challenging due to heterogeneous clinical presentations and overlap with other neurodegenerative dementias. Depending on the clinical presentation, the differential diagnosis of CTE includes Alzheimer's disease (AD), behavioral variant frontotemporal dementia (bvFTD), Parkinson's disease, amyotrophic lateral sclerosis, primary mood disorders, posttraumatic stress disorder, and psychotic disorders. The aim of this article is to compare the clinical aspects, genetics, fluid biomarkers, imaging, treatment, and pathology of CTE to those of AD and bvFTD. A detailed clinical evaluation, neurocognitive assessment, and structural brain imaging can inform the differential diagnosis, while molecular biomarkers can help exclude underlying AD pathology. Prospective studies that include clinicopathological correlations are needed to establish tools that can more accurately determine the cause of neuropsychiatric decline in patients at risk for CTE.
Collapse
Affiliation(s)
- Orit H Lesman-Segev
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Lauren Edwards
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Gil D Rabinovici
- Department of Neurology, University of California San Francisco, San Francisco, California.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,Weill Neuroscience Institute, University of California San Francisco, San Francisco, California
| |
Collapse
|
16
|
Neurotransmitter imbalance dysregulates brain dynamic fluidity in frontotemporal degeneration. Neurobiol Aging 2020; 94:176-184. [PMID: 32629312 DOI: 10.1016/j.neurobiolaging.2020.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Frontotemporal degeneration (FTD) is characterized by reduced global brain flexibility along with GABAergic/glutamatergic neurotransmitter deficits. We aimed to assess the relationship between dynamical properties of time-varying whole-brain network connectivity as well as static large-scale networks and neurotransmitter imbalance using resting-state functional MRI and transcranial magnetic stimulation (TMS) in sixty-six patients with FTD. We assessed GABAergic and glutamatergic neurotransmission by TMS, considering short- and long-interval intracortical inhibition and intracortical facilitation, and large-scale networks connectivity as well as four indexes of meta-state dynamic fluidity: (1) number of distinct meta-states, (2) number of switches from one meta-state to another, (3) span of the realized meta-states, and (4) total distance traveled in the state space. No significant correlations between TMS parameters and large-scale networks connectivity were observed. However, we observed a significant correlation between short-interval intracortical inhibition-intracortical facilitation and four meta-states (all indexes p < 0.02, false discovery rate-corrected). This study suggests that neurotransmitter imbalance dysregulates brain dynamic fluidity, linking microscopic and macroscopic changes in FTD.
Collapse
|
17
|
Boxer AL, Gold M, Feldman H, Boeve BF, Dickinson SLJ, Fillit H, Ho C, Paul R, Pearlman R, Sutherland M, Verma A, Arneric SP, Alexander BM, Dickerson BC, Dorsey ER, Grossman M, Huey ED, Irizarry MC, Marks WJ, Masellis M, McFarland F, Niehoff D, Onyike CU, Paganoni S, Panzara MA, Rockwood K, Rohrer JD, Rosen H, Schuck RN, Soares HD, Tatton N. New directions in clinical trials for frontotemporal lobar degeneration: Methods and outcome measures. Alzheimers Dement 2020; 16:131-143. [PMID: 31668596 PMCID: PMC6949386 DOI: 10.1016/j.jalz.2019.06.4956] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Frontotemporal lobar degeneration (FTLD) is the most common form of dementia for those under 60 years of age. Increasing numbers of therapeutics targeting FTLD syndromes are being developed. METHODS In March 2018, the Association for Frontotemporal Degeneration convened the Frontotemporal Degeneration Study Group meeting in Washington, DC, to discuss advances in the clinical science of FTLD. RESULTS Challenges exist for conducting clinical trials in FTLD. Two of the greatest challenges are (1) the heterogeneity of FTLD syndromes leading to difficulties in efficiently measuring treatment effects and (2) the rarity of FTLD disorders leading to recruitment challenges. DISCUSSION New personalized endpoints that are clinically meaningful to individuals and their families should be developed. Personalized approaches to analyzing MRI data, development of new fluid biomarkers and wearable technologies will help to improve the power to detect treatment effects in FTLD clinical trials and enable new, clinical trial designs, possibly leveraged from the experience of oncology trials. A computational visualization and analysis platform that can support novel analyses of combined clinical, genetic, imaging, biomarker data with other novel modalities will be critical to the success of these endeavors.
Collapse
Affiliation(s)
- Adam L. Boxer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | | | - Howard Feldman
- Department of Neurosciences, University of California San Diego, San Diego, CA
| | | | | | | | - Carole Ho
- Denali Therapeutics, San Francisco, CA
| | | | | | | | | | | | | | | | - Earl Ray Dorsey
- Center for Health and Technology, University of Rochester, Rochester, NY
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Edward D. Huey
- Departments of Psychiatry and Neurology, Columbia University, NY
| | | | - William J. Marks
- Clinical Neurology, Verily Life Sciences, South San Francisco, CA
| | - Mario Masellis
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, ON, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, ON, Canada
| | | | - Debra Niehoff
- Association for Frontotemporal Degeneration, Radnor, PA
| | - Chiadi U. Onyike
- Department Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins University, Baltimore, MD
| | - Sabrina Paganoni
- Healey Center for ALS, Massachusetts General Hospital, Boston, MA
| | | | - Kenneth Rockwood
- Division of Geriatric Medicine, Dalhousie University, Halifax, NS
| | - Jonathan D. Rohrer
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Howard Rosen
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Robert N. Schuck
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | | | - Nadine Tatton
- Association for Frontotemporal Degeneration, Radnor, PA
| |
Collapse
|
18
|
Boeve B, Bove J, Brannelly P, Brushaber D, Coppola G, Dever R, Dheel C, Dickerson B, Dickinson S, Faber K, Fields J, Fong J, Foroud T, Forsberg L, Gavrilova R, Gearhart D, Ghoshal N, Goldman J, Graff-Radford J, Graff-Radford N, Grossman M, Haley D, Heuer H, Hsiung GYR, Huey E, Irwin D, Jones D, Jones L, Kantarci K, Karydas A, Knopman D, Kornak J, Kraft R, Kramer J, Kremers W, Kukull W, Lapid M, Lucente D, Mackenzie I, Manoochehri M, McGinnis S, Miller B, Pearlman R, Petrucelli L, Potter M, Rademakers R, Ramos EM, Rankin K, Rascovsky K, Sengdy P, Shaw L, Syrjanen J, Tatton N, Taylor J, Toga A, Trojanowski J, Weintraub S, Wong B, Wszolek Z, Boxer A, Rosen H. The longitudinal evaluation of familial frontotemporal dementia subjects protocol: Framework and methodology. Alzheimers Dement 2020; 16:22-36. [PMID: 31636026 PMCID: PMC6949411 DOI: 10.1016/j.jalz.2019.06.4947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION It is important to establish the natural history of familial frontotemporal lobar degeneration (f-FTLD) and provide clinical and biomarker data for planning these studies, particularly in the asymptomatic phase. METHODS The Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects protocol was designed to enroll and follow at least 300 subjects for more than at least three annual visits who are members of kindreds with a mutation in one of the three most common f-FTLD genes-microtubule-associated protein tau, progranulin, or chromosome 9 open reading frame 72. RESULTS We present the theoretical considerations of f-FTLD and the aims/objectives of this protocol. We also describe the design and methodology for evaluating and rating subjects, in which detailed clinical and neuropsychological assessments are performed, biofluid samples are collected, and magnetic resonance imaging scans are performed using a standard protocol. DISCUSSION These data and samples, which are available to interested investigators worldwide, will facilitate planning for upcoming disease-modifying therapeutic trials in f-FTLD.
Collapse
Affiliation(s)
| | - Jessica Bove
- University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Brannelly
- Tau Consortium, Rainwater Charitable Foundation, Fort Worth, TX, USA
| | | | | | | | | | | | - Susan Dickinson
- Association for Frontotemporal Degeneration, Radnor, PA, USA
| | - Kelley Faber
- National Cell Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indiana University, Indianapolis, IN, USA
| | | | | | - Tatiana Foroud
- National Cell Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indiana University, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - David Irwin
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | - Walter Kukull
- National Alzheimer Coordinating Center (NACC), University of Washington, Seattle, WA, USA
| | | | | | - Ian Mackenzie
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | - Madeline Potter
- National Cell Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indiana University, Indianapolis, IN, USA
| | | | | | | | | | - Pheth Sengdy
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Les Shaw
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nadine Tatton
- Association for Frontotemporal Degeneration, Radnor, PA, USA
| | | | - Arthur Toga
- Laboratory of Neuroimaging (LONI), USC, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, Hodges JR, Kiernan MC, Loy CT, Kassiou M, Kril JJ. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol 2019; 15:540-555. [PMID: 31324897 DOI: 10.1038/s41582-019-0231-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders with different pathological signatures, genetic variability and complex disease mechanisms, for which no effective treatments exist. Despite advances in understanding the underlying pathology of FTD, sensitive and specific fluid biomarkers for this disease are lacking. As in other types of dementia, mounting evidence suggests that neuroinflammation is involved in the progression of FTD, including cortical inflammation, microglial activation, astrogliosis and differential expression of inflammation-related proteins in the periphery. Furthermore, an overlap between FTD and autoimmune disease has been identified. The most substantial evidence, however, comes from genetic studies, and several FTD-related genes are also implicated in neuroinflammation. This Review discusses specific evidence of neuroinflammatory mechanisms in FTD and describes how advances in our understanding of these mechanisms, in FTD as well as in other neurodegenerative diseases, might facilitate the development and implementation of diagnostic tools and disease-modifying treatments for FTD.
Collapse
Affiliation(s)
- Fiona Bright
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Eryn L Werry
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Carol Dobson-Stone
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Olivier Piguet
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Clement T Loy
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Jillian J Kril
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Benussi A, Alberici A, Buratti E, Ghidoni R, Gardoni F, Di Luca M, Padovani A, Borroni B. Toward a Glutamate Hypothesis of Frontotemporal Dementia. Front Neurosci 2019; 13:304. [PMID: 30983965 PMCID: PMC6449454 DOI: 10.3389/fnins.2019.00304] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a heterogenous neurodegenerative disorder, characterized by diverse clinical presentations, neuropathological characteristics and underlying genetic causes. Emerging evidence has shown that FTD is characterized by a series of changes in several neurotransmitter systems, including serotonin, dopamine, GABA and, above all, glutamate. Indeed, several studies have now provided preclinical and clinical evidence that glutamate is key in the pathogenesis of FTD. Animal models of FTD have shown a selective hypofunction in N-methyl D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, while in patients, glutamatergic pyramidal neurons are depleted in several areas, including the frontal and temporal cortices. Recently, a selective involvement of the AMPA GluA3 subunit has been observed in patients with autoimmune anti-GluA3 antibodies, which accounted for nearly 25% of FTD patients, leading to a decrease of the GluA3 subunit synaptic localization of the AMPA receptor and loss of dendritic spines. Other in vivo evidence of the involvement of the glutamatergic system in FTD derives from non-invasive brain stimulation studies using transcranial magnetic stimulation, in which specific stimulation protocols have indirectly identified a selective and prominent impairment in glutamatergic circuits in patients with both sporadic and genetic FTD. In view of limited disease modifying therapies to slow or revert disease progression in FTD, an important approach could consist in targeting the neurotransmitter deficits, similarly to what has been achieved in Parkinson’s disease with dopaminergic therapy or Alzheimer’s disease with cholinergic therapy. In this review, we summarize the current evidence concerning the involvement of the glutamatergic system in FTD, suggesting the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Roberta Ghidoni
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
21
|
Benussi A, Alberici A, Ferrari C, Cantoni V, Dell'Era V, Turrone R, Cotelli MS, Binetti G, Paghera B, Koch G, Padovani A, Borroni B. The impact of transcranial magnetic stimulation on diagnostic confidence in patients with Alzheimer disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:94. [PMID: 30227895 PMCID: PMC6145195 DOI: 10.1186/s13195-018-0423-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
Background Cholinergic dysfunction is a key abnormality in Alzheimer disease (AD) that can be detected in vivo with transcranial magnetic stimulation (TMS) protocols. Although TMS has clearly demonstrated analytical validity, its clinical utility is still debated. In the present study, we evaluated the incremental diagnostic value, expressed in terms of diagnostic confidence of Alzheimer disease (DCAD; range 0–100), of TMS measures in addition to the routine clinical diagnostic assessment in patients evaluated for cognitive impairment as compared with validated biomarkers of amyloidosis. Methods One hundred twenty patients with dementia were included and scored in terms of DCAD in a three-step assessment based on (1) demographic, clinical, and neuropsychological evaluations (clinical work-up); (2) clinical work-up plus amyloid markers (cerebrospinal fluid or amyloid positron emission tomographic imaging); and (3) clinical work-up plus TMS intracortical connectivity measures. Two blinded neurologists were asked to review the diagnosis and diagnostic confidence at each step. Results TMS measures increased the discrimination of DCAD in two clusters (AD-like vs FTD-like) when added to the clinical and neuropsychological evaluations with levels comparable to established biomarkers of brain amyloidosis (cluster distance of 55.1 for clinical work-up alone, 76.0 for clinical work-up plus amyloid markers, 80.0 for clinical work-up plus TMS). Classification accuracy for the “gold standard” diagnosis (dichotomous - AD vs FTD - variable) evaluated in the three-step assessment, expressed as AUC, increased from 0.82 (clinical work-up alone) to 0.98 (clinical work-up plus TMS) and to 0.99 (clinical work-up plus amyloidosis markers). Conclusions TMS in addition to routine assessment in patients with dementia has a significant effect on diagnosis and diagnostic confidence that is comparable to well-established amyloidosis biomarkers. Electronic supplementary material The online version of this article (10.1186/s13195-018-0423-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Clarissa Ferrari
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Valentina Dell'Era
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Rosanna Turrone
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Giuliano Binetti
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Barbara Paghera
- Nuclear Medicine Unit, Spedali Civili Brescia, Brescia, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Rome, Italy.,Stroke Unit, Policlinico Tor Vergata, Rome, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|