1
|
Yu MH, Lim JS, Yi HA, Won KS, Kim HW. Association between Visceral Adipose Tissue Metabolism and Cerebral Glucose Metabolism in Patients with Cognitive Impairment. Int J Mol Sci 2024; 25:7479. [PMID: 39000586 PMCID: PMC11242271 DOI: 10.3390/ijms25137479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Visceral adipose tissue (VAT) dysfunction has been recently recognized as a potential contributor to the development of Alzheimer's disease (AD). This study aimed to explore the relationship between VAT metabolism and cerebral glucose metabolism in patients with cognitive impairment. This cross-sectional prospective study included 54 patients who underwent 18F-fluorodeoxyglucose (18F-FDG) brain and torso positron emission tomography/computed tomography (PET/CT), and neuropsychological evaluations. VAT metabolism was measured by 18F-FDG torso PET/CT, and cerebral glucose metabolism was measured using 18F-FDG brain PET/CT. A voxel-based analysis revealed that the high-VAT-metabolism group exhibited a significantly lower cerebral glucose metabolism in AD-signature regions such as the parietal and temporal cortices. In the volume-of-interest analysis, multiple linear regression analyses with adjustment for age, sex, and white matter hyperintensity volume revealed that VAT metabolism was negatively associated with cerebral glucose metabolism in AD-signature regions. In addition, higher VAT metabolism was correlated with poorer outcomes on cognitive assessments, including the Korean Boston Naming Test, Rey Complex Figure Test immediate recall, and the Controlled Oral Word Association Test. In conclusion, our study revealed significant relationships among VAT metabolism, cerebral glucose metabolism, and cognitive function. This suggests that VAT dysfunction actively contributes to the neurodegenerative processes characteristic of AD, making VAT dysfunction targeting a novel AD therapy approach.
Collapse
Affiliation(s)
- Mi-Hee Yu
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea
| | - Ji Sun Lim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea
| | - Hyon-Ah Yi
- Department of Neurology, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea
| | - Kyoung Sook Won
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea
| | - Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea
| |
Collapse
|
2
|
Chen B, Schneeberger M. Neuro-Adipokine Crosstalk in Alzheimer's Disease. Int J Mol Sci 2024; 25:5932. [PMID: 38892118 PMCID: PMC11173274 DOI: 10.3390/ijms25115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The connection between body weight alterations and Alzheimer's disease highlights the intricate relationship between the brain and adipose tissue in the context of neurological disorders. During midlife, weight gain increases the risk of cognitive decline and dementia, whereas in late life, weight gain becomes a protective factor. Despite their substantial impact on metabolism, the role of adipokines in the transition from healthy aging to neurological disorders remains largely unexplored. We aim to investigate how the adipose tissue milieu and the secreted adipokines are involved in the transition between biological and pathological aging, highlighting the bidirectional relationship between the brain and systemic metabolism. Understanding the function of these adipokines will allow us to identify biomarkers for early detection of Alzheimer's disease and uncover novel therapeutic options.
Collapse
Affiliation(s)
- Bandy Chen
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Marc Schneeberger
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA;
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Arvanitakis Z, Capuano AW, Tong H, Mehta RI, Anokye-Danso F, Bennett DA, Arnold SE, Ahima RS. Associations of Serum Insulin and Related Measures With Neuropathology and Cognition in Older Persons With and Without Diabetes. Ann Neurol 2024; 95:665-676. [PMID: 38379184 PMCID: PMC11023784 DOI: 10.1002/ana.26882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/23/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVE To examine associations of serum insulin and related measures with neuropathology and cognition in older persons. METHODS We studied 192 older persons (96 with diabetes and 96 without, matched by sex and balanced by age-at-death, education, and postmortem interval) from a community-based, clinical-pathologic study of aging, with annual evaluations including neuropsychological testing (summarized into global cognition and 5 cognitive domains) and postmortem autopsy. We assessed serum insulin, glucose, leptin, adiponectin, hemoglobin A1C, advanced glycation-end products (AGEs), and receptors for advanced glycation-end products, and calculated the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and adiponectin-to-leptin ratio. Using adjusted regression analyses, we examined the associations of serum measures with neuropathology of cerebrovascular disease and Alzheimer's disease, and with the level of cognition proximate-to-death. RESULTS Higher HOMA-IR was associated with the presence of brain infarcts and specifically microinfarcts, and higher HOMA-IR and leptin were each associated with subcortical infarcts. Further, higher leptin levels and lower adiponectin-to-leptin ratios were associated with the presence of moderate-to-severe atherosclerosis. Serum insulin and related measures were not associated with the level of Alzheimer's disease pathology, as assessed by global, as well as amyloid burden or tau tangle density scores. Regarding cognitive outcomes, higher insulin and leptin levels, and lower adiponectin and receptors for advanced glycation-end products levels, respectively, were each associated with lower levels of global cognition. INTERPRETATION Peripheral insulin resistance indicated by HOMA-IR and related serum measures was associated with a greater burden of cerebrovascular neuropathology and lower cognition. ANN NEUROL 2024;95:665-676.
Collapse
Affiliation(s)
- Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Ana W Capuano
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Han Tong
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Rupal I Mehta
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Frederick Anokye-Danso
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Steven E Arnold
- Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
4
|
Afsar A, Zhang L. Putative Molecular Mechanisms Underpinning the Inverse Roles of Mitochondrial Respiration and Heme Function in Lung Cancer and Alzheimer's Disease. BIOLOGY 2024; 13:185. [PMID: 38534454 DOI: 10.3390/biology13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of oxidative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed in Alzheimer's disease (AD). Well-balanced mitochondrial respiration is important for the proper functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial respiration underlies the development and therapy resistance of many types of cancer, whereas diminished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration, numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS), and its association with cancer is the subject of increased research in recent years. In neural cells, heme is a key component in mitochondrial respiration and the production of ATP. Here, we review the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme in the development of both AD and cancer, this review also identifies some possible biological connections between the development of the two diseases. This review explores shared biological mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding these mechanisms may help advance treatments for both conditions. This review discusses precise information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
5
|
Sindzingre L, Bouaziz-Amar E, Mouton-Liger F, Cognat E, Dumurgier J, Vrillon A, Paquet C, Lilamand M. The role of adiponectin in Alzheimer's disease: A translational review. J Nutr Health Aging 2024; 28:100166. [PMID: 38280832 DOI: 10.1016/j.jnha.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Adiponectin is an adipokine playing a central role in the regulation of energy homeostasis, carbohydrate and lipid metabolism, as well as immunomodulation. The relationship between Alzheimer's disease (AD) and body composition has highlighted the bidirectional crosstalk between AD's pathophysiology and metabolic disorders. This review aimed to report the current state of knowledge about cellular and molecular mechanisms linking adiponectin and AD, in preclinical studies. Then, we reviewed human studies to assess the relationship between adiponectin levels and AD diagnosis. We also examined the risk of incident AD regarding the participants' baseline adiponectin level, as well as the relationship of adiponectin and cognitive decline in patients with AD. We conducted a systematic review, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses reporting guideline, of studies published over the last decade on MEDLINE and Cochrane databases. Overall, we reviewed 34 original works about adiponectin in AD, including 11 preclinical studies, two both preclinical and human studies and 21 human studies. Preclinical studies brought convincing evidence for the neuroprotective role of adiponectin on several key mechanisms of AD. Human studies showed conflicting results regarding the relationship between AD and adiponectin levels, as well as regarding the cross-sectional association between cognitive function and adiponectin levels. Adiponectin did not appear as a predictor of incident AD, nor as a predictor of cognitive decline in patients with AD. Despite solid preclinical evidence suggesting the protective role of adiponectin in AD, inconsistent results in humans supports the need for further research.
Collapse
Affiliation(s)
- Louise Sindzingre
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France.
| | - Elodie Bouaziz-Amar
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Biochemistry Department, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | | | - Emmanuel Cognat
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Julien Dumurgier
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Agathe Vrillon
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Claire Paquet
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Matthieu Lilamand
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Geriatrics Department, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| |
Collapse
|
6
|
Cai X, Wang Y, Li Y, Du Z, Wang Z. The Causal Associations between Adipokines and Alzheimer's Disease: A Two-Sample Mendelian Randomization Study. J Alzheimers Dis Rep 2024; 8:75-83. [PMID: 38312531 PMCID: PMC10836602 DOI: 10.3233/adr-230110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024] Open
Abstract
Background Observational studies have indicated the association of alteration of adipokines with Alzheimer's disease (AD). However, it remains unclear whether the associations are causal. Objective To determine the causal associations between adipokines and AD. Methods A Mendelian randomization (MR) method was applied to investigate the causal relationships of adipokines, including adiponectin and resistin, with risk of AD. Genetic proxies from genome-wide association studies (GWAS) of adiponectin and resistin were selected as instrumental variables. GWAS summary statistics for AD were extracted as outcome. Results In this study, we found evidence of the causal effects of adiponectin on AD (OR: 0.850, 95% CI: 0.731-0.990, p = 0.037). However, no relationship between resistin and AD (OR: 0.936, 95% CI: 0.851-1.029, p = 0.171) was detected. In the reverse causation analysis, null associations of AD were found for adiponectin and resistin (all p > 0.05). Conclusions This study provides evidence of causality between adiponectin and risk of AD. However, no genetic susceptibility of resistin was discovered for AD.
Collapse
Affiliation(s)
- Xiaoying Cai
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Li
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhanxin Du
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Cisternas P, Gherardelli C, Gutierrez J, Salazar P, Mendez-Orellana C, Wong GW, Inestrosa NC. Adiponectin and resistin modulate the progression of Alzheimer´s disease in a metabolic syndrome model. Front Endocrinol (Lausanne) 2023; 14:1237796. [PMID: 37732123 PMCID: PMC10507329 DOI: 10.3389/fendo.2023.1237796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
Metabolic syndrome (MetS), a cluster of metabolic conditions that include obesity, hyperlipidemia, and insulin resistance, increases the risk of several aging-related brain diseases, including Alzheimer's disease (AD). However, the underlying mechanism explaining the link between MetS and brain function is poorly understood. Among the possible mediators are several adipose-derived secreted molecules called adipokines, including adiponectin (ApN) and resistin, which have been shown to regulate brain function by modulating several metabolic processes. To investigate the impact of adipokines on MetS, we employed a diet-induced model to induce the various complications associated with MetS. For this purpose, we administered a high-fat diet (HFD) to both WT and APP/PSN1 mice at a pre-symptomatic disease stage. Our data showed that MetS causes a fast decline in cognitive performance and stimulates Aβ42 production in the brain. Interestingly, ApN treatment restored glucose metabolism and improved cognitive functions by 50% while decreasing the Aβ42/40 ratio by approximately 65%. In contrast, resistin exacerbated Aβ pathology, increased oxidative stress, and strongly reduced glucose metabolism. Together, our data demonstrate that ApN and resistin alterations could further contribute to AD pathology.
Collapse
Affiliation(s)
- Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| | - Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joel Gutierrez
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Mendez-Orellana
- Carrera de Fonoaudiología, Departamento Ciencias de la Salud, facultad Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - G. William Wong
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
8
|
Gong Y, Luo H, Li Z, Feng Y, Liu Z, Chang J. Metabolic Profile of Alzheimer's Disease: Is 10-Hydroxy-2-decenoic Acid a Pertinent Metabolic Adjuster? Metabolites 2023; 13:954. [PMID: 37623897 PMCID: PMC10456792 DOI: 10.3390/metabo13080954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) represents a significant public health concern in modern society. Metabolic syndrome (MetS), which includes diabetes mellitus (DM) and obesity, represents a modifiable risk factor for AD. MetS and AD are interconnected through various mechanisms, such as mitochondrial dysfunction, oxidative stress, insulin resistance (IR), vascular impairment, inflammation, and endoplasmic reticulum (ER) stress. Therefore, it is necessary to seek a multi-targeted and safer approach to intervention. Thus, 10-hydroxy-2-decenoic acid (10-HDA), a unique hydroxy fatty acid in royal jelly, has shown promising anti-neuroinflammatory, blood-brain barrier (BBB)-preserving, and neurogenesis-promoting properties. In this paper, we provide a summary of the relationship between MetS and AD, together with an introduction to 10-HDA as a potential intervention nutrient. In addition, molecular docking is performed to explore the metabolic tuning properties of 10-HDA with associated macromolecules such as GLP-1R, PPARs, GSK-3, and TREM2. In conclusion, there is a close relationship between AD and MetS, and 10-HDA shows potential as a beneficial nutritional intervention for both AD and MetS.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Chang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Ren’ai Road, Suzhou 215123, China; (Y.G.)
| |
Collapse
|
9
|
Arjunan A, Song J. Pharmacological and physiological roles of adipokines and myokines in metabolic-related dementia. Biomed Pharmacother 2023; 163:114847. [PMID: 37150030 DOI: 10.1016/j.biopha.2023.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023] Open
Abstract
Dementia is a detrimental neuropathologic condition with considerable physical, mental, social, and financial impact on patients and society. Patients with metabolic syndrome (MetS), a group of diseases that occur in tandem and increase the risk of neurologic diseases, have a higher risk of dementia. The ratio between muscle and adipose tissue is crucial in MetS, as these contain many hormones, including myokines and adipokines, which are involved in crosstalk and local paracrine/autocrine interactions. Evidence suggests that abnormal adipokine and myokine synthesis and release may be implicated in various MetS, such as atherosclerosis, diabetic mellitus (DM), and dyslipidemia, but their precise role is unclear. Here we review the literature on adipokine and myokine involvement in MetS-induced dementia via glucose and insulin homeostasis regulation, neuroinflammation, vascular dysfunction, emotional changes, and cognitive function.
Collapse
Affiliation(s)
- Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| |
Collapse
|
10
|
Dezonne RS, Pereira CM, de Moraes Martins CJ, de Abreu VG, Francischetti EA. Adiponectin, the adiponectin paradox, and Alzheimer's Disease: Is this association biologically plausible? Metab Brain Dis 2023; 38:109-121. [PMID: 35921057 DOI: 10.1007/s11011-022-01064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/19/2022] [Indexed: 02/03/2023]
Abstract
Dementia, especially Alzheimer's Disease (AD) and vascular dementia, is a major public health problem that continues to expand in both economically emerging and hegemonic countries. In 2017, the World Alzheimer Report estimated that over 50 million people were living with dementia globally. Metabolic dysfunctions of brain structures such as the hippocampus and cerebral cortex have been implicated as risk factors for dementia. Several well-defined metabolic risk factors for AD include visceral obesity, chronic inflammation, peripheral and brain insulin resistance, type 2 diabetes mellitus (T2DM), hypercholesterolemia, and others. In this review, we describe the relationship between the dysmetabolic mechanisms, although still unknown, and dementia, particularly AD. Adiponectin (ADPN), the most abundant circulating adipocytokine, acts as a protagonist in the metabolic dysfunction associated with AD, with unexpected and intriguing dual biological functions. This contradictory role of ADPN has been termed the adiponectin paradox. Some evidence suggests that the adiponectin paradox is important in amyloidogenic evolvability in AD. We present cumulative evidence showing that AD and T2DM share many common features. We also review the mechanistic pathways involving brain insulin resistance. We discuss the importance of the evolvability of amyloidogenic proteins (APs), defined as the capacity of a system for adaptive evolution. Finally, we describe potential therapeutic strategies in AD, based on the adiponectin paradox.
Collapse
Affiliation(s)
- Rômulo Sperduto Dezonne
- Neuropathology and Molecular Genetics Laboratory, State Institute of the Brain Paulo Niemeyer, State Health Department, Rio de Janeiro, Brazil
| | | | - Cyro José de Moraes Martins
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Virgínia Genelhu de Abreu
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Emilio Antonio Francischetti
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Kim KY, Ha J, Kim M, Cho SY, Kim H, Kim E. Plasma adiponectin levels predict cognitive decline and cortical thinning in mild cognitive impairment with beta-amyloid pathology. Alzheimers Res Ther 2022; 14:165. [PMID: 36329496 PMCID: PMC9635143 DOI: 10.1186/s13195-022-01107-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Background Blood adiponectin and leptin are adipokines that emerged as potential biomarkers for predicting Alzheimer’s disease (AD) owing to their strong connection with obesity. Although obesity affects the relation between beta-amyloid (Aβ) aggregation and cognitive decline, the longitudinal interactive effect of adipokines and Aβ on cognition and brain structures in humans remains unexplored. Hence, we investigated whether plasma levels of adiponectin and leptin are associated with future cognitive decline and cortical thinning across Aβ conditions (Aβ [+] and Aβ [−]) in individuals with mild cognitive impairment (MCI). Methods Of 156 participants with MCI from the longitudinal cohort study of Alzheimer’s Disease Neuroimaging Initiative (ADNI), 31 were Aβ (−) and 125 were Aβ (+) as determined by CSF analysis. The Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) scores and the thickness of the parahippocampal and entorhinal cortices were used to evaluate cognition and brain structure, respectively. After stratifying groups by Aβ conditions, the association of cognitive and brain structural changes with baseline plasma levels of adiponectin and leptin was examined. Results Of the total 156 participants, 51 were women (32.7%). The mean age of participants was 74.5 (standard deviation 7.57), and the mean follow-up period was 54.3 months, without a difference between the Aβ (+) and (−) groups. After adjustment for confounders, higher plasma adiponectin levels were associated with a faster increase in ADAS-Cog scores, indicating faster cognitive decline under the Aβ (+) condition (beta = 0.224, p = 0.018). Likewise, participants with higher plasma adiponectin presented faster cortical thinning in the bilateral parahippocampal cortices under the Aβ (+) condition (beta = − 0.004, p = 0.012 for the right side; beta = − 0.004, p = 0.025 for the left side). Interestingly, plasma adiponectin levels were not associated with longitudinal ADAS-Cog scores or cortical thickness in the Aβ (−) condition. Plasma leptin levels were not predictive of cognition or cortical thickness regardless of Aβ status. Conclusion Plasma adiponectin can be a potential biomarker for predicting the speed of AD progression in individuals with Aβ (+) MCI. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01107-3.
Collapse
Affiliation(s)
- Keun You Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Department of Psychiatry, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Junghee Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Minae Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - So Yeon Cho
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunjeong Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea. .,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | | |
Collapse
|
12
|
Kujawska A, Kujawski S, Kozakiewicz M, Hajec W, Kwiatkowska M, Skierkowska N, Husejko J, Newton JL, Zalewski P, Kędziora-Kornatowska K. Adipokines Level and Cognitive Function-Disturbance in Homeostasis in Older People with Poorly Managed Hypertension: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116467. [PMID: 35682051 PMCID: PMC9180904 DOI: 10.3390/ijerph19116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Aim: To explore the network relationship between cognitive function, depressive symptom intensity, body composition, proxies of cognitive reserve, trophic factor, adipokines and myokines, physical performance and blood pressure in a group of older people with poorly managed hypertension (PMHTN) compared to a normotensive (NTN) group. Materials and methods: History of hypertension and blood pressure level were examined in older participants. Thirty-one subjects diagnosed with PMHTN (history of hypertension diagnosis and values of sBP or dBP over 140/90 mmHg) and eighteen NTN (lack of history of hypertension and sBP and dBP lower than 140/90 mmHg) participated. Participants completed physical and cognitive function assessments: including the Mini–Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA) and its two subtests Delayed Recall (DR) and Verbal Fluency (VF) and Trail Making Test Part B (TMT B). Factors associated with cognitive functioning: age, years of education, cognitive and travel activity were assessed using a questionnaire. Visceral fat was determined by bioimpedance testing and gait velocity and agility assessed using an Up and Go test. To summarize the strength and direction (negative or positive) of a relationship between two variables, Spearman’s rank correlation coefficient was used. Then, network graphs were created to illustrate the relationship between variables. Node strength (number of edges per node), neighbourhood connectivity (the average connectivity of all the neighbours of a node), stress (the number of shortest paths passing through each node) were compared in network from PMHTN group to network from NTN group. Results: Neighbourhood connectivity and stress were significantly higher in of the PMHTN network compared to NTN (6.03 ± 1.5 vs. 4.23 ± 2.5, p = 0.005 and 118.21 ± 137.6 vs. 56.87 ± 101.5, p = 0.02, accordingly). Conclusion: In older subjects with poorly managed hypertension, dyshomeostasis was observed, compared to normotensive subjects.
Collapse
Affiliation(s)
- Agnieszka Kujawska
- Department of Human Physiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
- Correspondence:
| | - Sławomir Kujawski
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Świętojańska 20, 85-077 Bydgoszcz, Poland; (S.K.); (P.Z.)
| | - Mariusz Kozakiewicz
- Department of Geriatrics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (M.K.); (W.H.); (M.K.); (N.S.); (J.H.); (K.K.-K.)
| | - Weronika Hajec
- Department of Geriatrics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (M.K.); (W.H.); (M.K.); (N.S.); (J.H.); (K.K.-K.)
| | - Małgorzata Kwiatkowska
- Department of Geriatrics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (M.K.); (W.H.); (M.K.); (N.S.); (J.H.); (K.K.-K.)
| | - Natalia Skierkowska
- Department of Geriatrics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (M.K.); (W.H.); (M.K.); (N.S.); (J.H.); (K.K.-K.)
| | - Jakub Husejko
- Department of Geriatrics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (M.K.); (W.H.); (M.K.); (N.S.); (J.H.); (K.K.-K.)
| | - Julia L. Newton
- Population Health Sciences Institute, The Medical School, Newcastle University, Newcastle-Upon-Tyne NE2 4AX, UK;
| | - Paweł Zalewski
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Świętojańska 20, 85-077 Bydgoszcz, Poland; (S.K.); (P.Z.)
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Warsaw Medical University, 1b Banacha Street, 02-097 Warsaw, Poland
| | - Kornelia Kędziora-Kornatowska
- Department of Geriatrics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (M.K.); (W.H.); (M.K.); (N.S.); (J.H.); (K.K.-K.)
| |
Collapse
|
13
|
Association between Visceral Adipose Tissue Metabolism and Alzheimer’s Disease Pathology. Metabolites 2022; 12:metabo12030258. [PMID: 35323701 PMCID: PMC8949138 DOI: 10.3390/metabo12030258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
The visceral adipose tissue (VAT) has been recognized as an endocrine organ, and VAT dysfunction could be a risk factor for Alzheimer’s disease (AD). We aimed to evaluate the association of VAT metabolism with AD pathology. This cross-sectional study included 54 older subjects with cognitive impairment who underwent 2-deoxy-2-[fluorine-18]-fluoro-D-glucose (18F-FDG) torso positron emission tomography (PET) and 18F-florbetaben brain PET. 18F-FDG uptake in VAT on 18F-FDG PET images was used as a marker of VAT metabolism, and subjects were classified into high and low VAT metabolism groups. A voxel-based analysis revealed that the high VAT metabolism group exhibited a significantly higher cerebral amyloid-β (Aβ) burden than the low VAT metabolism group. In the volume-of-interest analysis, multiple linear regression analyses with adjustment for age, sex, and white matter hyperintensity volume revealed that 18F-FDG uptake in VAT was significantly associated with the cerebral Aβ burden (β = 0.359, p = 0.007). In conclusion, VAT metabolism was associated with AD pathology in older subjects. Our findings suggest that VAT dysfunction could contribute to AD development.
Collapse
|
14
|
An Explanation for the Adiponectin Paradox. Pharmaceuticals (Basel) 2021; 14:ph14121266. [PMID: 34959666 PMCID: PMC8703455 DOI: 10.3390/ph14121266] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
The adipokine adiponectin improves insulin sensitivity. Functional signal transduction of adiponectin requires at least one of the receptors AdipoR1 or AdipoR2, but additionally the glycosyl phosphatidylinositol-anchored molecule, T-cadherin. Overnutrition causes a reduction in adiponectin synthesis and an increase in the circulating levels of the enzyme glycosyl phosphatidylinositol-phospholipase D (GPI-PLD). GPI-PLD promotes the hydrolysis of T-cadherin. The functional consequence of T-cadherin hydrolysis is a reduction in adiponectin sequestration by responsive tissues, an augmentation of adiponectin levels in circulation and a (further) reduction in signal transduction. This process creates the paradoxical situation that adiponectin levels are augmented, whereas the adiponectin signal transduction and insulin sensitivity remain strongly impaired. Although both hypoadiponectinemia and hyperadiponectinemia reflect a situation of insulin resistance, the treatments are likely to be different.
Collapse
|
15
|
Lopez-Vilaret KM, Cantero JL, Fernandez-Alvarez M, Calero M, Calero O, Lindín M, Zurrón M, Díaz F, Atienza M. Impaired glucose metabolism reduces the neuroprotective action of adipocytokines in cognitively normal older adults with insulin resistance. Aging (Albany NY) 2021; 13:23936-23952. [PMID: 34731089 PMCID: PMC8610113 DOI: 10.18632/aging.203668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022]
Abstract
Evidence suggests that aging-related dysfunctions of adipose tissue and metabolic disturbances increase the risk of diabetes and metabolic syndrome (MtbS), eventually leading to cognitive impairment and dementia. However, the neuroprotective role of adipocytokines in this process has not been specifically investigated. The present study aims to identify metabolic alterations that may prevent adipocytokines from exerting their neuroprotective action in normal ageing. We hypothesize that neuroprotection may occur under insulin resistance (IR) conditions as long as there are no other metabolic alterations that indirectly impair the action of adipocytokines, such as hyperglycemia. This hypothesis was tested in 239 cognitively normal older adults (149 females) aged 52 to 87 years (67.4 ± 5.9 yr). We assessed whether the homeostasis model assessment-estimated insulin resistance (HOMA-IR) and the presence of different components of MtbS moderated the association of plasma adipocytokines (i.e., adiponectin, leptin and the adiponectin to leptin [Ad/L] ratio) with cognitive functioning and cortical thickness. The results showed that HOMA-IR, circulating triglyceride and glucose levels moderated the neuroprotective effect of adipocytokines. In particular, elevated triglyceride levels reduced the beneficial effect of Ad/L ratio on cognitive functioning in insulin-sensitive individuals; whereas under high IR conditions, it was elevated glucose levels that weakened the association of the Ad/L ratio with cognitive functioning and with cortical thickness of prefrontal regions. Taken together, these findings suggest that the neuroprotective action of adipocytokines is conditioned not only by whether cognitively normal older adults are insulin-sensitive or not, but also by the circulating levels of triglycerides and glucose, respectively.
Collapse
Affiliation(s)
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Marina Fernandez-Alvarez
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Miguel Calero
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.,Chronic Disease Programme, Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Calero
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.,Chronic Disease Programme, Instituto de Salud Carlos III, Madrid, Spain
| | - Mónica Lindín
- Cognitive Neuroscience Laboratory, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Montserrat Zurrón
- Cognitive Neuroscience Laboratory, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Díaz
- Cognitive Neuroscience Laboratory, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| |
Collapse
|
16
|
Signoriello E, Mallardo M, Nigro E, Polito R, Casertano S, Di Pietro A, Coletta M, Monaco ML, Rossi F, Lus G, Daniele A. Adiponectin in Cerebrospinal Fluid from Patients Affected by Multiple Sclerosis Is Correlated with the Progression and Severity of Disease. Mol Neurobiol 2021; 58:2663-2670. [PMID: 33486671 PMCID: PMC8128828 DOI: 10.1007/s12035-021-02287-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Adiponectin exerts relevant actions in immunity and is modulated in several disorders, such as multiple sclerosis (MS). In this study, we characterized adiponectin expression and profiles in cerebrospinal fluid (CSF) from MS patients to investigate its potential relationship with the severity and progression of the disease. Total adiponectin in CSF was measured by ELISA in 66 unrelated CSF MS patients and compared with 24 age- and sex-matched controls. Adiponectin oligomer profiles were analysed by Western blotting and FPLC chromatography. Total CSF adiponectin was significantly increased in MS patients compared with controls (9.91 ng/mL vs 6.02 ng/mL) (p < 0.001). Interestingly, CSF adiponectin positively correlated with CSF IgG, and CSF/serum albumin directly correlated with CSF/serum adiponectin. Our data demonstrated that CSF adiponectin predicts a worse prognosis: patients with the progressive form of MS had higher levels compared with the relapsing remitting form; patients with higher EDSS at baseline and a higher MS severity score at 4.5-year follow-up had significantly elevated adiponectin levels with respect to patients with a less severe phenotype. Finally, the adiponectin oligomerization profile was altered in CSF from MS patients, with a significant increase in HMW and MMW. The correlation of CSF adiponectin with the severity and prognosis of MS disease confirmed the role of this adipokine in the inflammatory/immune processes of MS and suggested its use as a complementary tool to assess the severity, progression and prognosis of the disease. Further studies on larger MS cohorts are needed to clarify the contribution of adiponectin to the etiopathogenesis of MS.
Collapse
Affiliation(s)
- Elisabetta Signoriello
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | - Marta Mallardo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli", Via G. Vivaldi 42, 81100, Caserta, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145, Naples, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli", Via G. Vivaldi 42, 81100, Caserta, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145, Naples, Italy
| | - Rita Polito
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145, Naples, Italy
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli "Federico II", via Pansini 5, 80145, Naples, Italy
| | - Sara Casertano
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | - Andrea Di Pietro
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | - Marcella Coletta
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | | | - Fabiana Rossi
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | - Giacomo Lus
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli", Via G. Vivaldi 42, 81100, Caserta, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145, Naples, Italy.
| |
Collapse
|
17
|
Pratap AA, Holsinger RMD. Altered Brain Leptin and Leptin Receptor Expression in the 5XFAD Mouse Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:E401. [PMID: 33218163 PMCID: PMC7698839 DOI: 10.3390/ph13110401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the accumulation of amyloid plaques and neurofibrillary tangles. Interestingly, individuals with metabolic syndromes share some pathologies with those diagnosed with AD including neuroinflammation, insulin resistance and cognitive deficits. Leptin, an adipocyte-derived hormone, regulates metabolism, energy expenditure and satiety via its receptor, LepR. To investigate the possible involvement of leptin in AD, we examined the distribution of leptin and LepR in the brains of the 5XFAD mouse model of AD, utilizing immunofluorescent staining in young (10-12-weeks; n = 6) and old (48-52-weeks; n = 6) transgenic (Tg) mice, together with age-matched wild-type (WT) controls for both age groups (young-WT, n = 6; old-WT, n = 6). We also used double immunofluorescent staining to examine the distribution of leptin and leptin receptor expression in astrocytes. In young 5XFAD, young-WT and old-WT mice, we observed neuronal and endothelial expression of leptin and LepR throughout the brain. However, neuronal leptin and LepR expression in the old 5XFAD brain was significantly diminished. Reduced neuronal leptin and LepR expression was accompanied by plaque loading and neuroinflammation in the AD brain. A marked increase in astrocytic leptin and LepR was also observed in old 5XFAD mice compared to younger 5XFAD mice. We postulate that astrocytes may utilize LepR signalling to mediate and drive their metabolically active state when degrading amyloid in the AD brain. Overall, these findings provide evidence of impaired leptin and LepR signalling in the AD brain, supporting clinical and epidemiological studies performed in AD patients.
Collapse
Affiliation(s)
- Anishchal A. Pratap
- Brain and Mind Centre, Laboratory of Molecular Neuroscience and Dementia, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Brain and Mind Centre, Laboratory of Molecular Neuroscience and Dementia, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Bradley D. Clusterin as a Potential Biomarker of Obesity-Related Alzheimer's Disease Risk. Biomark Insights 2020; 15:1177271920964108. [PMID: 33110346 PMCID: PMC7555556 DOI: 10.1177/1177271920964108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 02/03/2023] Open
Abstract
Over 35% of the adult US population is obese. In turn, excess adiposity increases the risk of multiple complications including type 2 diabetes (T2D), insulin resistance, and cardiovascular disease; yet, obesity also independently heightens risk of Alzheimer's Disease (AD), even after adjusting for other important confounding risk factors including blood pressure, sociodemographics, cholesterol levels, smoking status, and Apolipoprotein E (ApoE) genotype. Among patients over the age of 65 with dementia, 37% have coexisting diabetes, and an estimated 7.3% of cases of AD are directly attributable to midlife obesity. Clusterin, also known as apolipoprotein J (ApoJ), is a multifunctional glycoprotein that acts as a molecular chaperone, assisting folding of secreted proteins. Clusterin has been implicated in several physiological and pathological states, including AD, metabolic disease, and cardiovascular disease. Despite long-standing interest in elucidating clusterin's relationship with amyloid beta (Aβ) aggregation/clearance and toxicity, significant knowledge gaps still exist. Altered clusterin expression and protein levels have been linked with cognitive and memory function, disrupted central nervous system lipid flux, as well as pathogenic brain structure; and its role in cardiometabolic disease suggests that it may be a link between insulin resistance, dyslipidemia, and AD. Here, we briefly highlight clusterin's relevance to AD by presenting existing evidence linking clusterin to AD and cardiometabolic disease, and discussing its potential utility as a biomarker for AD in the presence of obesity-related metabolic disease.
Collapse
Affiliation(s)
- David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
19
|
Chen R, Shu Y, Zeng Y. Links Between Adiponectin and Dementia: From Risk Factors to Pathophysiology. Front Aging Neurosci 2020; 11:356. [PMID: 31969813 PMCID: PMC6960116 DOI: 10.3389/fnagi.2019.00356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
With the aging population, dementia is becoming one of the most serious and troublesome global public health issues. Numerous studies have been seeking for effective strategies to delay or block its progression, but with little success. In recent years, adiponectin (APN) as one of the most abundant and multifunctional adipocytokines related to anti-inflammation, regulating glycogen metabolism and inhibiting insulin resistance (IR) and anti-atherosclerosis, has attracted widespread attention. In this article, we summarize recent studies that have contributed to a better understanding of the extent to which APN influences the risks of developing dementia as well as its pathophysiological progression. In addition, some controversial results interlinked with its effects on cognitive dysfunction diseases will be critically discussed. Ultimately, we aim to gain a novel insight into the pleiotropic effects of APN levels in circulation and suggest potential therapeutic target and future research strategies.
Collapse
Affiliation(s)
- RuiJuan Chen
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Shu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zeng
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|