1
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Lozano-Tovar S, Nuccetelli M, Placidi F, Izzi F, Sancesario G, Bernardini S, Biagio Mercuri N, Liguori C. CSF dynamics of orexin and β-amyloid 42 levels in narcolepsy and Alzheimer's disease patients: a controlled study. Neurosci Lett 2024; 837:137914. [PMID: 39032802 DOI: 10.1016/j.neulet.2024.137914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/12/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
β-amyloid42 (Aβ42) in Alzheimer's disease (AD) and orexin in narcolepsy are considered crucial biomarkers for diagnosis and therapeutic targets. Recently, orexin and Aβ cerebral dynamics have been studied in both pathologies, but how they interact with each other remains further to be known. In this study, we investigated the reliability of using the correlation between orexin-A and Aβ42 CSF levels as a candidate marker to explain the chain of events leading to narcolepsy or AD pathology. In order to test the correlation between these biomarkers, patients diagnosed with AD (n = 76), narcolepsy type 1 (NT1, n = 17), narcolepsy type 2 (NT2, n = 23) and healthy subjects (n = 91) were examined. Patients and healthy subjects underwent lumbar puncture between 8:00 and 10:00 am at the Neurology Unit of the University Hospital of Rome "Tor Vergata". CSF levels of Aβ42, total-tau, phosphorylated-tau, and orexin-A were assessed. The results showed that CSF levels of Aβ42 were significantly lower (p < 0.001) in AD (332.28 ± 237.36 pg/mL) compared to NT1 (569.88 ± 187.00 pg/mL), NT2 (691.00 ± 292.63 pg/mL) and healthy subjects (943.68 ± 198.12 pg/mL). CSF orexin-A levels were statistically different (p < 0.001) between AD (148.01 ± 29.49 pg/mL), NT1 (45.94 ± 13.63 pg/mL), NT2 (104.92 ± 25.55 pg/mL) and healthy subjects (145.18 ± 27.01 pg/mL). Moderate-severe AD patients (mini mental state examination < 21) showed the highest CSF orexin-A levels, whereas NT1 patients showed the lowest CSF orexin-A levels. Correlation between CSF levels of Aβ42 and orexin-A was found only in healthy subjects (r = 0.26; p = 0.01), and not in narcolepsy or AD patients. This lack of correlation in both diseases may be explained by the pathology itself since the correlation between these two biomarkers is evident only in the healthy subjects. This study adds to the present literature by further documenting the interplay between orexinergic neurotransmission and cerebral Aβ dynamics, possibly sustained by sleep.
Collapse
Affiliation(s)
- Susana Lozano-Tovar
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Circuito Ciudad Universitaria Avenida, C.U., Mexico City 04510, Mexico
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", 00133 Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", 00133 Rome, Italy
| | - Giuseppe Sancesario
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", 00133 Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
3
|
Hu XH, Yu KY, Li XX, Zhang JN, Jiao JJ, Wang ZJ, Cai HY, Wang L, He YX, Wu MN. Selective Orexin 2 Receptor Blockade Alleviates Cognitive Impairments and the Pathological Progression of Alzheimer's Disease in 3xTg-AD Mice. J Gerontol A Biol Sci Med Sci 2024; 79:glae115. [PMID: 38682858 DOI: 10.1093/gerona/glae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Indexed: 05/01/2024] Open
Abstract
The orexin system is closely related to the pathogenesis of Alzheimer's disease (AD). Orexin-A aggravates cognitive dysfunction and increases amyloid β (Aβ) deposition in AD model mice, but studies of different dual orexin receptor (OXR) antagonists in AD have shown inconsistent results. Our previous study revealed that OX1R blockade aggravates cognitive deficits and pathological progression in 3xTg-AD mice, but the effects of OX2R and its potential mechanism in AD have not been reported. In the present study, OX2R was blocked by oral administration of the selective OX2R antagonist MK-1064, and the effects of OX2R blockade on cognitive dysfunction and neuropsychiatric symptoms in 3xTg-AD mice were evaluated via behavioral tests. Then, immunohistochemistry, western blotting, and ELISA were used to detect Aβ deposition, tau phosphorylation, and neuroinflammation, and electrophysiological and wheel-running activity recording were recorded to observe hippocampal synaptic plasticity and circadian rhythm. The results showed that OX2R blockade ameliorated cognitive dysfunction, improved LTP depression, increased the expression of PSD-95, alleviated anxiety- and depression-like behaviors and circadian rhythm disturbances in 3xTg-AD mice, and reduced Aβ pathology, tau phosphorylation, and neuroinflammation in the brains of 3xTg-AD mice. These results indicated that chronic OX2R blockade exerts neuroprotective effects in 3xTg-AD mice by reducing AD pathology at least partly through improving circadian rhythm disturbance and the sleep-wake cycle and that OX2R might be a potential target for the prevention and treatment of AD; however, the potential mechanism by which OX2R exerts neuroprotective effects on AD needs to be further investigated.
Collapse
Affiliation(s)
- Xiao-Hong Hu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Kai-Yue Yu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xin-Xin Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jin-Nan Zhang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Juan-Juan Jiao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Lei Wang
- Department of Geriatrics, Shanxi Bethune Hospital, Taiyuan, People's Republic of China
| | - Ye-Xin He
- Department of Radiology, Shanxi Provincial People's Hospital, Taiyuan, People's Republic of China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
4
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
5
|
Fernandes M, Chiaravalloti A, Nuccetelli M, Placidi F, Izzi F, Camedda R, Bernardini S, Sancesario G, Schillaci O, Mercuri NB, Liguori C. Sleep Dysregulation Is Associated with 18F-FDG PET and Cerebrospinal Fluid Biomarkers in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:845-854. [PMID: 37662614 PMCID: PMC10473116 DOI: 10.3233/adr-220111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Background Sleep impairment has been commonly reported in Alzheimer's disease (AD) patients. The association between sleep dysregulation and AD biomarkers has been separately explored in mild cognitive impairment (MCI) and AD patients. Objective The present study investigated cerebrospinal-fluid (CSF) and 18F-fluoro-deoxy-glucose positron emission tomography (18F-FDG-PET) biomarkers in MCI and AD patients in order to explore their association with sleep parameters measured with polysomnography (PSG). Methods MCI and AD patients underwent PSG, 18F-FDG-PET, and CSF analysis for detecting and correlating these biomarkers with sleep architecture. Results Thirty-five patients were included in the study (9 MCI and 26 AD patients). 18F-FDG uptake in left Brodmann area 31 (owing to the posterior cingulate cortex) correlated negatively with REM sleep latency (p = 0.013) and positively with REM sleep (p = 0.033). 18F-FDG uptake in the hippocampus was negatively associated with sleep onset latency (p = 0.041). Higher CSF orexin levels were associated with higher sleep onset latency (p = 0.042), Non-REM stage 1 of sleep (p = 0.031), wake after sleep onset (p = 0.028), and lower sleep efficiency (p = 0.045). CSF levels of Aβ42 correlated negatively with the wake bouts index (p = 0.002). CSF total-tau and phosphorylated tau levels correlated positively with total sleep time (p = 0.045) and time in bed (p = 0.031), respectively. Conclusion Sleep impairment, namely sleep fragmentation, REM sleep dysregulation, and difficulty in initiating sleep correlates with AD biomarkers, suggesting an effect of sleep on the pathological processes in different AD stages. Targeting sleep for counteracting the AD pathological processes represents a timely need for clinicians and researchers.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Giuseppe Sancesario
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
6
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Zaafar D, Batiha GES. Orexin pathway in Parkinson's disease: a review. Mol Biol Rep 2023:10.1007/s11033-023-08459-5. [PMID: 37155018 DOI: 10.1007/s11033-023-08459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease (NDD) caused by dopaminergic neuron degeneration in the substantia nigra (SN). Orexin is a neuropeptide that plays a role in the pathogenesis of PD. Orexin has neuroprotective properties in dopaminergic neurons. In PD neuropathology, there is also degeneration of orexinergic neurons in the hypothalamus, in addition to dopaminergic neurons. However, the loss of orexinergic neurons in PD began after the degeneration of dopaminergic neurons. Reduced activity of orexinergic neurons has been linked to developing and progressing motor and non-motor symptoms in PD. In addition, the dysregulation of the orexin pathway is linked to the development of sleep disorders. The hypothalamic orexin pathway regulates various aspects of PD neuropathology at the cellular, subcellular, and molecular levels. Finally, non-motor symptoms, particularly insomnia and disturbed sleep, promote neuroinflammation and the accumulation of neurotoxic proteins as a result of defects in autophagy, endoplasmic reticulum (ER) stress, and the glymphatic system. As a result, this review aimed to highlight the potential role of orexin in PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of clinical pharmacology and therapeutic medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of clinical pharmacology and therapeutic medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Al Beheira, Egypt.
| |
Collapse
|
7
|
Lozano-Tovar S, Rodríguez-Agudelo Y, Dávila-Ortiz de Montellano DJ, Pérez-Aldana BE, Ortega-Vázquez A, Monroy-Jaramillo N. Relationship between APOE, PER2, PER3 and OX2R Genetic Variants and Neuropsychiatric Symptoms in Patients with Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4412. [PMID: 36901420 PMCID: PMC10001852 DOI: 10.3390/ijerph20054412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of neuropsychiatric or behavioral and psychological symptoms of dementia (BPSD). BPSD have been associated with the APOE_ε4 allele, which is also the major genetic AD risk factor. Although the involvement of some circadian genes and orexin receptors in sleep and behavioral disorders has been studied in some psychiatric pathologies, including AD, there are no studies considering gene-gene interactions. The associations of one variant in PER2, two in PER3, two in OX2R and two in APOE were evaluated in 31 AD patients and 31 cognitively healthy subjects. Genotyping was performed using real-time PCR and capillary electrophoresis from blood samples. The allelic-genotypic frequencies of variants were calculated for the sample study. We explored associations between allelic variants with BPSD in AD patients based on the NPI, PHQ-9 and sleeping disorders questionnaires. Our results showed that the APOE_ε4 allele is an AD risk variant (p = 0.03). The remaining genetic variants did not reveal significant differences between patients and controls. The PER3_rs228697 variant showed a nine-fold increased risk for circadian rhythm sleep-wake disorders in Mexican AD patients, and our gene-gene interaction analysis identified a novel interaction between PERIOD and APOE gene variants. These findings need to be further confirmed in larger samples.
Collapse
Affiliation(s)
- Susana Lozano-Tovar
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Circuito Ciudad Universitaria Avenida, C.U., Mexico City 04510, Mexico
| | - Yaneth Rodríguez-Agudelo
- Laboratorio de Neuropsicología Clínica, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | | | - Blanca Estela Pérez-Aldana
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Alberto Ortega-Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico
| | - Nancy Monroy-Jaramillo
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
8
|
Qin L, Luo Y, Chang H, Zhang H, Zhu Z, Du Y, Liu K, Wu H. The association between serum orexin-A levels and sleep quality in pregnant women. Sleep Med 2023; 101:93-98. [PMID: 36368074 DOI: 10.1016/j.sleep.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE/BACKGROUND Orexin has been shown to regulate the sleep-wake cycle, and it may play a major role in the pathogenesis of sleep disorders; however, its role in sleep disorders in pregnant women remains unclear. We aimed to assess the relationship between serum orexin-A (OXA) levels and sleep quality in pregnant women. PATIENTS/METHODS This study comprised 214 enrolled pregnant women (poor sleep quality, n = 125; no poor sleep quality, n = 89). We assessed participants' sleep quality and depression and anxiety levels. OXA levels were measured using enzyme-linked immunosorbent assay. RESULTS Women in the poor sleep quality group showed higher serum OXA levels (0.33[0.3] vs. 0.27[0.11], P < 0.001) than those in the no poor sleep quality group. Binary regression analysis showed that the higher the OXA levels (odds ratio [OR] 1.385, 95% CI [confidence interval] 1.160-1.655) and Zung Self-Rating Anxiety Scale scores (OR 1.073, 95% CI 1.009-1.140), the greater the risk of sleep quality in pregnant women. First-trimester OXA levels differed significantly from those in the second and third trimesters (P < 0.05). CONCLUSION Serum OXA levels were higher in pregnant women with poor sleep quality than in those without poor sleep quality. OXA levels were also higher in the second and third trimesters than in the first trimester.
Collapse
Affiliation(s)
- Liwei Qin
- Department of Nursing, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Yanyan Luo
- School of Nursing, Xinxiang Medical University, Xingxiang, 453003, China.
| | - Hongjuan Chang
- School of Nursing, Xinxiang Medical University, Xingxiang, 453003, China
| | - Hongxing Zhang
- School of Psychology, Xinxiang Medical University, Xingxiang, 453003, China
| | - Zhiling Zhu
- Department of Nursing, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Yishen Du
- Department of Nursing, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Kaili Liu
- School of Nursing, Xinxiang Medical University, Xingxiang, 453003, China
| | - Huimin Wu
- School of Nursing, Xinxiang Medical University, Xingxiang, 453003, China
| |
Collapse
|
9
|
Casagrande M, Forte G, Favieri F, Corbo I. Sleep Quality and Aging: A Systematic Review on Healthy Older People, Mild Cognitive Impairment and Alzheimer’s Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148457. [PMID: 35886309 PMCID: PMC9325170 DOI: 10.3390/ijerph19148457] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023]
Abstract
Aging is characterized by changes in the structure and quality of sleep. When the alterations in sleep become substantial, they can generate or accelerate cognitive decline, even in the absence of overt pathology. In fact, impaired sleep represents one of the earliest symptoms of Alzheimer’s disease (AD). This systematic review aimed to analyze the studies on sleep quality in aging, also considering mild cognitive impairment (MCI) and AD. The review process was conducted according to the PRISMA statement. A total of 71 studies were included, and the whole sample had a mean age that ranged from 58.3 to 93.7 years (62.8–93.7 healthy participants and 61.8–86.7 pathological populations). Of these selected studies, 33 adopt subjective measurements, 31 adopt objective measures, and 10 studies used both. Pathological aging showed a worse impoverishment of sleep than older adults, in both subjective and objective measurements. The most common aspect compromised in AD and MCI were REM sleep, sleep efficiency, sleep latency, and sleep duration. These results underline that sleep alterations are associated with cognitive impairment. In conclusion, the frequency and severity of sleep disturbance appear to follow the evolution of cognitive impairment. The overall results of objective measures seem more consistent than those highlighted by subjective measurements.
Collapse
Affiliation(s)
- Maria Casagrande
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00185 Roma, Italy;
- Correspondence: (M.C.); (I.C.)
| | - Giuseppe Forte
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00185 Roma, Italy;
- Body and Action Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy;
| | - Francesca Favieri
- Body and Action Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy;
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Roma, Italy
| | - Ilaria Corbo
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Roma, Italy
- Correspondence: (M.C.); (I.C.)
| |
Collapse
|
10
|
Fernandes M, Chiaravalloti A, Manfredi N, Placidi F, Nuccetelli M, Izzi F, Camedda R, Bernardini S, Schillaci O, Mercuri NB, Liguori C. Nocturnal Hypoxia and Sleep Fragmentation May Drive Neurodegenerative Processes: The Compared Effects of Obstructive Sleep Apnea Syndrome and Periodic Limb Movement Disorder on Alzheimer’s Disease Biomarkers. J Alzheimers Dis 2022; 88:127-139. [DOI: 10.3233/jad-215734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background: Sleep disorders may cause dysregulation of cerebral glucose metabolism and synaptic functions, as well as alterations in cerebrospinal fluid (CSF) biomarker levels. Objective: This study aimed at measuring sleep, CSF Alzheimer’s disease (AD) biomarkers, and cerebral glucose consumption in patients with obstructive sleep apnea syndrome (OSAS) and patients with periodic limb movement disorder (PLMD), compared to controls. Methods: OSAS and PLMD patients underwent 18F-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET), polysomnographic monitoring, and lumbar puncture to quantify CSF levels of amyloid-β42 (Aβ42), total tau, and phosphorylated tau. All patients were compared to controls, who were not affected by sleep or neurodegenerative disorders. Results: Twenty OSAS patients, 12 PLMD patients, and 15 controls were included. Sleep quality and sleep structure were altered in both OSAS and PLMD patients when compared to controls. OSAS and PLMD patients showed lower CSF Aβ42 levels than controls. OSAS patients showed a significant increase in glucose uptake in a wide cluster of temporal-frontal areas and cerebellum, as well as a reduced glucose consumption in temporal-parietal regions compared to controls. PLMD patients showed increased brain glucose consumption in the left parahippocampal gyrus and left caudate than controls. Conclusion: Sleep dysregulation and nocturnal hypoxia present in OSAS patients, more than sleep fragmentation in PLMD patients, were associated with the alteration in CSF and 18F-FDG PET AD biomarkers, namely reduction of CSF Aβ42 levels and cerebral glucose metabolism dysregulation mainly in temporal areas, thus highlighting the possible role of sleep disorders in driving neurodegenerative processes typical of AD pathology.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Natalia Manfredi
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
- Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesca Izzi
- Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
- IRCSS Santa Lucia Foundation, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
- Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
11
|
Durairaja A, Steinecke CS, Fendt M. Intracerebroventricular infusion of the selective orexin 1 receptor antagonist SB-334867 impairs cognitive flexibility in a sex-dependent manner. Behav Brain Res 2022; 424:113791. [DOI: 10.1016/j.bbr.2022.113791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
|
12
|
Bergamini G, Coloma P, Massinet H, Steiner MA. What evidence is there for implicating the brain orexin system in neuropsychiatric symptoms in dementia? Front Psychiatry 2022; 13:1052233. [PMID: 36506416 PMCID: PMC9732550 DOI: 10.3389/fpsyt.2022.1052233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
Neuropsychiatric symptoms (NPS) affect people with dementia (PwD) almost universally across all stages of the disease, and regardless of its exact etiology. NPS lead to disability and reduced quality of life of PwD and their caregivers. NPS include hyperactivity (agitation and irritability), affective problems (anxiety and depression), psychosis (delusions and hallucinations), apathy, and sleep disturbances. Preclinical studies have shown that the orexin neuropeptide system modulates arousal and a wide range of behaviors via a network of axons projecting from the hypothalamus throughout almost the entire brain to multiple, even distant, regions. Orexin neurons integrate different types of incoming information (e.g., metabolic, circadian, sensory, emotional) and convert them into the required behavioral output coupled to the necessary arousal status. Here we present an overview of the behavioral domains influenced by the orexin system that may be relevant for the expression of some critical NPS in PwD. We also hypothesize on the potential effects of pharmacological interference with the orexin system in the context of NPS in PwD.
Collapse
Affiliation(s)
- Giorgio Bergamini
- CNS Pharmacology and Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Preciosa Coloma
- Clinical Science, Global Clinical Development, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Helene Massinet
- CNS Pharmacology and Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | |
Collapse
|
13
|
Kuang H, Zhu YG, Zhou ZF, Yang MW, Hong FF, Yang SL. Sleep disorders in Alzheimer's disease: the predictive roles and potential mechanisms. Neural Regen Res 2021; 16:1965-1972. [PMID: 33642368 PMCID: PMC8343328 DOI: 10.4103/1673-5374.308071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sleep disorders are common in patients with Alzheimer's disease, and can even occur in patients with amnestic mild cognitive impairment, which appears before Alzheimer's disease. Sleep disorders further impair cognitive function and accelerate the accumulation of amyloid-β and tau in patients with Alzheimer's disease. At present, sleep disorders are considered as a risk factor for, and may be a predictor of, Alzheimer's disease development. Given that sleep disorders are encountered in other types of dementia and psychiatric conditions, sleep-related biomarkers to predict Alzheimer's disease need to have high specificity and sensitivity. Here, we summarize the major Alzheimer's disease-specific sleep changes, including abnormal non-rapid eye movement sleep, sleep fragmentation, and sleep-disordered breathing, and describe their ability to predict the onset of Alzheimer's disease at its earliest stages. Understanding the mechanisms underlying these sleep changes is also crucial if we are to clarify the role of sleep in Alzheimer's disease. This paper therefore explores some potential mechanisms that may contribute to sleep disorders, including dysregulation of the orexinergic, glutamatergic, and γ-aminobutyric acid systems and the circadian rhythm, together with amyloid-β accumulation. This review could provide a theoretical basis for the development of drugs to treat Alzheimer's disease based on sleep disorders in future work.
Collapse
Affiliation(s)
- Huang Kuang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Ge Zhu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi-Feng Zhou
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang, Jiangxi Province, China
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
14
|
Wang Q, Cao F, Wu Y. Orexinergic System in Neurodegenerative Diseases. Front Aging Neurosci 2021; 13:713201. [PMID: 34483883 PMCID: PMC8416170 DOI: 10.3389/fnagi.2021.713201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023] Open
Abstract
Orexinergic system consisting of orexins and orexin receptors plays an essential role in regulating sleep–wake states, whereas sleep disruption is a common symptom of a number of neurodegenerative diseases. Emerging evidence reveals that the orexinergic system is disturbed in various neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and multiple sclerosis (MS), whereas the dysregulation of orexins and/or orexin receptors contributes to the pathogenesis of these diseases. In this review, we summarized advanced knowledge of the orexinergic system and its role in sleep, and reviewed the dysregulation of the orexinergic system and its role in the pathogenesis of AD, PD, HD, and MS. Moreover, the therapeutic potential of targeting the orexinergic system for the treatment of these diseases was discussed.
Collapse
Affiliation(s)
- Qinqin Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Fei Cao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Yili Wu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Wenzhou, China
| |
Collapse
|
15
|
Fronczek R, Schinkelshoek M, Shan L, Lammers GJ. The orexin/hypocretin system in neuropsychiatric disorders: Relation to signs and symptoms. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:343-358. [PMID: 34225940 DOI: 10.1016/b978-0-12-820107-7.00021-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hypocretin-1 and 2 (or orexin A and B) are neuropeptides exclusively produced by a group of neurons in the lateral and dorsomedial hypothalamus that project throughout the brain. In accordance with this, the two different hypocretin receptors are also found throughout the brain. The hypocretin system is mainly involved in sleep-wake regulation, but also in reward mechanisms, food intake and metabolism, autonomic regulation including thermoregulation, and pain. The disorder most strongly linked to the hypocretin system is the primary sleep disorder narcolepsy type 1 caused by a lack of hypocretin signaling, which is most likely due to an autoimmune process targeting the hypocretin-producing neurons. However, the hypocretin system may also be affected, but to a lesser extent and less specifically, in various other neurological disorders. Examples are neurodegenerative diseases such as Alzheimer's, Huntington's and Parkinson's disease, immune-mediated disorders such as multiple sclerosis, neuromyelitis optica, and anti-Ma2 encephalitis, and genetic disorders such as type 1 diabetus mellitus and Prader-Willi Syndrome. A partial hypocretin deficiency may contribute to the sleep features of these disorders.
Collapse
Affiliation(s)
- Rolf Fronczek
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands.
| | - Mink Schinkelshoek
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| | - Ling Shan
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands; Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Gert Jan Lammers
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| |
Collapse
|
16
|
Fernandes M, Placidi F, Mercuri NB, Liguori C. The Importance of Diagnosing and the Clinical Potential of Treating Obstructive Sleep Apnea to Delay Mild Cognitive Impairment and Alzheimer's Disease: A Special Focus on Cognitive Performance. J Alzheimers Dis Rep 2021; 5:515-533. [PMID: 34368635 PMCID: PMC8293664 DOI: 10.3233/adr-210004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a highly frequent sleep disorder in the middle-aged and older population, and it has been associated with an increased risk of developing cognitive decline and dementia, including mild cognitive impairment (MCI) and Alzheimer's disease (AD). In more recent years, a growing number of studies have focused on: 1) the presence of OSA in patients with MCI or AD, 2) the link between OSA and markers of AD pathology, and 3) the role of OSA in accelerating cognitive deterioration in patients with MCI or AD. Moreover, some studies have also assessed the effects of continuous positive airway pressure (CPAP) treatment on the cognitive trajectory in MCI and AD patients with comorbid OSA. This narrative review summarizes the findings of studies that analyzed OSA as a risk factor for developing MCI and/or AD in the middle-aged and older populations with a special focus on cognition. In addition, it describes the results regarding the effects of CPAP treatment in hampering the progressive cognitive decline in AD and delaying the conversion to AD in MCI patients. Considering the importance of identifying and treating OSA in patients with MCI or AD in order to prevent or reduce the progression of cognitive decline, further larger and adequately powered studies are needed both to support these findings and to set programs for the early recognition of OSA in patients with cognitive impairment.
Collapse
Affiliation(s)
- Mariana Fernandes
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Fabio Placidi
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
17
|
Liguori C, Spanetta M, Izzi F, Franchini F, Nuccetelli M, Sancesario GM, Di Santo S, Bernardini S, Mercuri NB, Placidi F. Sleep-Wake Cycle in Alzheimer's Disease Is Associated with Tau Pathology and Orexin Dysregulation. J Alzheimers Dis 2021; 74:501-508. [PMID: 32065791 DOI: 10.3233/jad-191124] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia. It is mainly characterized by a progressive deterioration of cognition, but sleep-wake cycle disturbances frequently occur. Irregular sleep-wake cycle, insomnia, and daytime napping usually occur in patients with AD in the course of the disease. OBJECTIVE The aim of the present study was to verify the sleep-wake cycle in mild to moderate AD patients compared to controls, and to evaluate the relationship between the sleep-wake cycle impairment and the neuropsychological testing, CSF AD biomarkers, and CSF orexin concentrations. METHODS Mild to moderate AD patients were enrolled and underwent 14-day actigraphic recording, sleep diary, neuropsychological testing, and CSF biomarkers analysis. All patients were compared to controls. RESULTS Eighteen AD patients were compared to ten controls. AD patients showed the alteration of the sleep-wake cycle, featured by sleep dysregulation and daytime wake fragmentation, with respect to controls. Considering the correlation analysis, we documented the correlation between tau proteins and orexin CSF levels and sleep-wake cycle dysregulation. CONCLUSION This study confirmed the dysregulation of sleep-wake cycle in AD patients, as reflected by the daytime wake fragmentation, irregular sleep-wake rhythm, and nocturnal sleep impairment. This sleep-wake cycle disorder correlates with AD neuropathological in vivo features and brain orexin activity. Hence, we suppose that a more marked AD pathology coupled with orexinergic system dysregulation may promote sleep-wake cycle impairment in AD patients.
Collapse
Affiliation(s)
- Claudio Liguori
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy.,Neurology Unit, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Matteo Spanetta
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | | | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | | | | | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Fabio Placidi
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| |
Collapse
|
18
|
Increased orexin A concentrations in cerebrospinal fluid of patients with behavioural variant frontotemporal dementia. Neurol Sci 2021; 43:313-317. [PMID: 33904007 PMCID: PMC8724071 DOI: 10.1007/s10072-021-05250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/10/2021] [Indexed: 11/17/2022]
Abstract
Orexins are hypothalamic neuropeptides that regulate several physiological functions, such as appetite, arousal, cognition, stress, sleep and metabolism. Emerging pieces of evidence suggest an orexinergic dysfunction in several neuropsychiatric disorders, including depression, anxiety and addiction. A syndromic overlap between behavioural variant frontotemporal dementia (bvFTD) and several psychiatric disorders was recently demonstrated. Therefore, we analysed cerebrospinal fluid (CSF) orexin A concentrations of 40 bvFTD and 32 non-demented patients, correlating neuropeptide concentrations with several clinical characteristics. A significant increase of orexin A concentrations was found in bvFTD patients when compared to controls (p<0.001). CSF orexin A concentration showed a correlation with Mini-Mental State Examination scores, drug assumption, history of compulsive behaviour and extrapyramidal signs. Moreover, we found a relationship between CSF markers of neurodegeneration, total tau and Aβ1–42 and CSF orexin A concentrations. Our study provides evidence of an orexinergic dysfunction in bvFTD, correlating with several clinical symptoms. Further larger studies are needed to confirm our data.
Collapse
|
19
|
Sleep disorders and late-onset epilepsy of unknown origin: Understanding new trajectories to brain amyloidopathy. Mech Ageing Dev 2021; 194:111434. [PMID: 33444630 DOI: 10.1016/j.mad.2021.111434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022]
Abstract
The intertwining between epilepsy, sleep disorders and beta amyloid pathology has been progressively highlighted, as early identification and stratification of patients at high risk of cognitive decline is the need of the hour. Modification of the sleep-wake activity, such as sleep impairment or excessive daytime sleepiness, can critically affect cerebral beta amyloid levels. Both mice models and human studies have demonstrated a substantial increase in the burden of beta amyloid pathology after sleep-deprivation, with potential negative effects partially restored by sleep recovery. The accumulation of beta amyloid has been shown to be an early event in the course of Alzheimer's disease dementia. Beta amyloid accumulation has been linked to epileptic seizures epileptic seizures, with beta amyloid being itself pro-epileptogenic in mice models already at oligomeric stage, well before plaque deposition. Further supporting a potential relationship between beta amyloid and epilepsy: i) seizures happen in 1 out of oofut 10 patients with Alzheimer's disease in the prodromal stage, ii) epileptic activity accelerates cognitive decline in Alzheimer's disease, iii) people with late-onset epilepsy present a critically high risk of developing dementia. In this Review we highlight the role of beta amyloid as a potential shared mechanisms between sleep disorders, late-onset epilepsy, and cognitive decline.
Collapse
|
20
|
Berteotti C, Liguori C, Pace M. Dysregulation of the orexin/hypocretin system is not limited to narcolepsy but has far-reaching implications for neurological disorders. Eur J Neurosci 2020; 53:1136-1154. [PMID: 33290595 DOI: 10.1111/ejn.15077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
Neuropeptides orexin A and B (OX-A/B, also called hypocretin 1 and 2) are released selectively by a population of neurons which projects widely into the entire central nervous system but is localized in a restricted area of the tuberal region of the hypothalamus, caudal to the paraventricular nucleus. The OX system prominently targets brain structures involved in the regulation of wake-sleep state switching, and also orchestrates multiple physiological functions. The degeneration and dysregulation of the OX system promotes narcoleptic phenotypes both in humans and animals. Hence, this review begins with the already proven involvement of OX in narcolepsy, but it mainly discusses the new pre-clinical and clinical insights of the role of OX in three major neurological disorders characterized by sleep impairment which have been recently associated with OX dysfunction, such as Alzheimer's disease, stroke and Prader Willi syndrome, and have been emerged over the past 10 years to be strongly associated with the OX dysfunction and should be more considered in the future. In the light of the impairment of the OX system in these neurological disorders, it is conceivable to speculate that the integrity of the OX system is necessary for a healthy functioning body.
Collapse
Affiliation(s)
- Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marta Pace
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
21
|
Abstract
Twenty-two years after their discovery, the hypocretins (Hcrts), also known as orexins, are two of the most studied peptidergic systems, involved in myriad physiological systems that range from sleep, arousal, motivation, homeostatic regulation, fear, anxiety and learning. A causal relationship between activity of Hcrt and arousal stability was established shortly after their discovery and have led to the development of a new class of drugs to treat insomnia. In this review we discuss the many faces of the Hcrt system and examine recent findings that implicate decreased Hcrt function in the pathogenesis of a number of neuropsychiatric conditions. We also discuss future therapeutic strategies to replace or enhance Hcrt function as a treatment option for these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Erica Seigneur
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
22
|
Todd WD. Potential Pathways for Circadian Dysfunction and Sundowning-Related Behavioral Aggression in Alzheimer's Disease and Related Dementias. Front Neurosci 2020; 14:910. [PMID: 33013301 PMCID: PMC7494756 DOI: 10.3389/fnins.2020.00910] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Patients with Alzheimer's disease (AD) and related dementias are commonly reported to exhibit aggressive behavior and other emotional behavioral disturbances, which create a tremendous caretaker burden. There has been an abundance of work highlighting the importance of circadian function on mood and emotional behavioral regulation, and recent evidence demonstrates that a specific hypothalamic pathway links the circadian system to neurons that modulate aggressive behavior, regulating the propensity for aggression across the day. Such shared circuitry may have important ramifications for clarifying the complex interactions underlying "sundowning syndrome," a poorly understood (and even controversial) clinical phenomenon in AD and dementia patients that is characterized by agitation, aggression, and delirium during the late afternoon and early evening hours. The goal of this review is to highlight the potential output and input pathways of the circadian system that may underlie circadian dysfunction and behavioral aggression associated with sundowning syndrome, and to discuss possible ways these pathways might inform specific interventions for treatment. Moreover, the apparent bidirectional relationship between chronic disruptions of circadian and sleep-wake regulation and the pathology and symptoms of AD suggest that understanding the role of these circuits in such neurobehavioral pathologies could lead to better diagnostic or even preventive measures.
Collapse
Affiliation(s)
- William D Todd
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
23
|
Liguori C, Placidi F, Izzi F, Spanetta M, Mercuri NB, Di Pucchio A. Sleep dysregulation, memory impairment, and CSF biomarkers during different levels of neurocognitive functioning in Alzheimer's disease course. ALZHEIMERS RESEARCH & THERAPY 2020; 12:5. [PMID: 31901236 PMCID: PMC6942389 DOI: 10.1186/s13195-019-0571-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Background Alzheimer's disease (AD) is frequently accompanied by sleep impairment, which can induce AD-related neurodegeneration. We herein investigated the sleep architecture, cognition, and cerebrospinal fluid (CSF) biomarkers (tau proteins and β-amyloid42) during AD progression from subjective cognitive impairment (SCI) to mild cognitive impairment (MCI) and eventually to AD dementia, and compared the results with cognitively normal (CN) subjects. Methods We included patients affected by SCI, MCI, mild AD, and moderate-to-severe AD in our study along with CN subjects as controls. All the subjects underwent nocturnal polysomnography to investigate sleep, neuropsychological testing to evaluate cognition, and lumbar puncture for CSF AD biomarkers assessment. Results Sleep (both rapid eye movement (REM) and non-REM sleep) and memory function are both progressively impaired during the course of AD from SCI to mild and subsequently to moderate AD. Further, sleep dysregulation appears earlier than cognitive deterioration, with a reduction of CSF β-amyloid42 level. Conclusion Sleep, memory, and CSF AD biomarkers are closely interrelated in AD progression from the earliest asymptomatic and preclinical stages of the disease related in AD since the earliest and preclinical stages of the disease.
Collapse
Affiliation(s)
- Claudio Liguori
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy. .,Neurology Unit, Department of Systems Medicine, University of Rome 'Tor Vergata", Viale Oxford, 81 00133, Rome, Italy.
| | - Fabio Placidi
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Matteo Spanetta
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome 'Tor Vergata", Viale Oxford, 81 00133, Rome, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Alessandra Di Pucchio
- Training Office, Italian National Institute of Health (Istituto Superiore di Sanità), Rome, Italy
| |
Collapse
|