1
|
Ichikawa-Kato T, Hara T, Yamada-Kubota C, Kuwahara M, Murakami A, Minagi S. Effects of intracerebral noradrenaline on cognitive decline associated with the loss of occlusal support. J Prosthodont Res 2024:JPR_D_23_00231. [PMID: 39198203 DOI: 10.2186/jpr.jpr_d_23_00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
PURPOSE The lack of occlusal support reportedly reduces cognitive function; however, the underlying mechanisms remain unclear. The locus coeruleus, which is located adjacent to the trigeminal mesencephalic nucleus, secretes noradrenaline throughout the brain. In this study, we evaluated the effects of noradrenaline in the hippocampus and cerebral cortex on cognitive decline following tooth extraction in rats. METHODS We performed passive avoidance experiments on male Wistar rats with extracted maxillary molars and determined the neuron density in the locus coeruleus and trigeminal mesencephalic nucleus using immunostaining and Nissl staining, respectively. We also assessed noradrenaline concentrations in the hippocampus and cerebral cortex using enzyme-linked immunosorbent assay. RESULTS In the passive avoidance experiment, the latency in the bright compartment was significantly shorter (P < 0.05) in the extraction group than in the control group. The numbers of cells in the locus coeruleus and trigeminal nucleus were significantly lower (P < 0.05) in the extraction group compared to those in the control group. The noradrenaline levels in the hippocampus and cerebral cortex were also significantly lower (P < 0.05) in the extraction group than those in the control group. CONCLUSIONS The lack of occlusal support associated with tooth extraction reduces the number of cells in the trigeminal mesencephalic nucleus and locus coeruleus, which may reduce the supply of noradrenaline to the cerebral cortex and hippocampus, leading to a decline in cognitive function.
Collapse
Affiliation(s)
- Tomoka Ichikawa-Kato
- Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tetsuya Hara
- Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chie Yamada-Kubota
- Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Miho Kuwahara
- Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Asuka Murakami
- Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shogo Minagi
- Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Wang Q, Zhen W, Hu R, Wang Z, Sun Y, Sun W, Huang C, Xu J, Zhang H. Occlusion dysfunction and Alzheimer's disease: Mendelian randomization study. Front Aging Neurosci 2024; 16:1423322. [PMID: 39035234 PMCID: PMC11258003 DOI: 10.3389/fnagi.2024.1423322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Aim Occlusion dysfunction (OD) is increasingly linked to Alzheimer's disease (AD). This study aimed to elucidate the causal relationship between OD and AD using Mendelian randomization (MR) analysis. Materials and methods Genome-wide association study (GWAS) meta-analysis data obtained from FinnGen, IEU Open GWAS, and UK Biobank (UKBB) was represented as instrumental variables. We validated the causal relationship between periodontal disease (PD), loose teeth (PD & occlusion dysfunction), dentures restoration (occlusion recovery), and AD. Results According to the MR analysis, PD and AD have no direct causal relationship (P = 0.395, IVW). However, loose teeth significantly increased the risk of AD progression (P = 0.017, IVW, OR = 187.3567, 95%CI = 2.54E+00-1.38E+04). These findings were further supported by the negative causal relationship between dentures restoration and AD (P = 0.015, IVW, OR = 0.0234, 95%CI = 1.13E-03-0.485). Conclusion The occlusion dysfunction can ultimately induce Alzheimer's disease. Occlusion function was a potentially protective factor for maintaining neurological health.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wenyu Zhen
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Rui Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zifei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yuqiang Sun
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wansu Sun
- Department of Stomatology, Anhui Public Health Clinical Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunxia Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianguang Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Kang Y, Toyoda H, Saito M. Search for unknown neural link between the masticatory and cognitive brain systems to clarify the involvement of its impairment in the pathogenesis of Alzheimer's disease. Front Cell Neurosci 2024; 18:1425645. [PMID: 38994328 PMCID: PMC11236757 DOI: 10.3389/fncel.2024.1425645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Brain degenerations in sporadic Alzheimer's disease (AD) are observed earliest in the locus coeruleus (LC), a population of noradrenergic neurons, in which hyperphosphorylated tau protein expression and β-amyloid (Aβ) accumulation begin. Along with this, similar changes occur in the basal forebrain cholinergic neurons, such as the nucleus basalis of Meynert. Neuronal degeneration of the two neuronal nuclei leads to a decrease in neurotrophic factors such as brain-derived neurotrophic factor (BDNF) in the hippocampus and cerebral cortex, which results in the accumulation of Aβ and hyperphosphorylated tau protein and ultimately causes neuronal cell death in those cortices. On the other hand, a large number of epidemiological studies have shown that tooth loss or masticatory dysfunction is a risk factor for dementia including AD, and numerous studies using experimental animals have also shown that masticatory dysfunction causes brain degeneration in the basal forebrain, hippocampus, and cerebral cortex similar to those observed in human AD, and that learning and memory functions are impaired accordingly. However, it remains unclear how masticatory dysfunction can induce such brain degeneration similar to AD, and the neural mechanism linking the trigeminal nervous system responsible for mastication and the cognitive and memory brain system remains unknown. In this review paper, we provide clues to the search for such "missing link" by discussing the embryological, anatomical, and physiological relationship between LC and its laterally adjoining mesencephalic trigeminal nucleus which plays a central role in the masticatory functions.
Collapse
Affiliation(s)
- Youngnam Kang
- Department of Behavioral Physiology, Osaka University Graduate School of Human Sciences, Osaka, Japan
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mitsuru Saito
- Department of Oral Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Wang X, Pang Q, Hu J, Luo B, Lu Y, Sun X, Meng S, Jiang Q. Cognitive decline in Sprague-Dawley rats induced by neuroplasticity changes after occlusal support loss. CNS Neurosci Ther 2024; 30:e14750. [PMID: 38898731 PMCID: PMC11187409 DOI: 10.1111/cns.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/28/2024] [Accepted: 04/20/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Tooth loss is closely related to cognitive impairment, especially affecting cognitive functions involving hippocampus. The most well-known function of the hippocampus is learning and memory, and the mechanism behind is neuroplasticity, which strongly depends on the level of brain-derived neurotrophic factor (BDNF). While research has delved into the possible mechanisms behind the loss of teeth leading to cognitive dysfunction, there are few studies on the plasticity of sensory neural pathway after tooth loss, and the changes in related indicators of synaptic plasticity still need to be further explored. METHODS In this study, the bilateral maxillary molars were extracted in Sprague-Dawley rats of two age ranges (young and middle age) to establish occlusal support loss model; then, the spatial cognition was tested by Morris Water Maze (MWM). Quantitative real-time PCR (qPCR) and Western Blotting (WB) were used to detect BDNF, AKT, and functional proteins (viz., PSD95 and NMDAR) of hippocampal synapses. Golgi staining was used to observe changes in ascending nerve pathway. IF was used to confirm the location of BDNF and AKT expressed in hippocampus. RESULTS MWM showed that the spatial cognitive level of rats dropped after occlusal support loss. qPCR, WB, and IF suggested that the BDNF/AKT pathway was down-regulated in the hippocampus. Golgi staining showed the neurons of ascending sensory pathway decreased in numbers. CONCLUSION Occlusal support loss caused plastic changes in ascending nerve pathway and induced cognitive impairment in rats by down-regulating BDNF and synaptic plasticity.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of StomatologyCapital Medical UniversityBeijingChina
| | - Qian Pang
- Department of Prosthodontics, Beijing Stomatological HospitalCapital Medical UniversityBeijingChina
| | - Jiangqi Hu
- Department of Prosthodontics, Beijing Stomatological HospitalCapital Medical UniversityBeijingChina
| | - Bin Luo
- Department of Prosthodontics, Beijing Stomatological HospitalCapital Medical UniversityBeijingChina
| | - Yunping Lu
- Department of Prosthodontics, Beijing Stomatological HospitalCapital Medical UniversityBeijingChina
| | - Xu Sun
- School of StomatologyCapital Medical UniversityBeijingChina
| | - Shixiang Meng
- School of StomatologyCapital Medical UniversityBeijingChina
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatological HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Sun X, Lu Y, Pang Q, Luo B, Jiang Q. Tooth loss impairs cognitive function in SAMP8 mice via the NLRP3/Caspase-1 pathway. Oral Dis 2024; 30:2746-2755. [PMID: 37357357 DOI: 10.1111/odi.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE Loss of occlusal support due to tooth loss has been indicated as one of the risk factors for Alzheimer's disease. This study aimed to investigate the relationship between tooth loss and cognitive dysfunction and illustrate the role of neuroinflammation in advancing Alzheimer's disease. MATERIALS AND METHODS Male 5-month-old senescence-accelerated mouse strain P8 (SAMP8) mice were divided into three groups (n = 7): the C (control), S (sham-operated), and TL (tooth loss) groups. The Morris water maze (MWM) test was performed to assess spatial memory. Additionally, histopathological and molecular assessments of hippocampal tissues were performed. RESULTS The TL groups exhibited impaired spatial memory in the water maze. Tooth loss induced higher protein expression levels of the neuroinflammation cytokine interleukin-1β (IL-1β) in the hippocampus than in the S and C groups. Tooth loss activated the NLRP3 inflammasome and increased the expression of Caspase-1 in the hippocampus. CONCLUSIONS The findings indicated that tooth loss impairs cognitive function in SAMP8 mice and is closely related to the activation of NLRP3/Caspase-1 in the hippocampus.
Collapse
Affiliation(s)
- Xu Sun
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yunping Lu
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Qian Pang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Bin Luo
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Ochi S, Yamada K, Saito T, Saido TC, Iinuma M, Azuma K, Kubo KY. Effects of early tooth loss on chronic stress and progression of neuropathogenesis of Alzheimer's disease in adult Alzheimer's model AppNL-G-F mice. Front Aging Neurosci 2024; 16:1361847. [PMID: 38469162 PMCID: PMC10925668 DOI: 10.3389/fnagi.2024.1361847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Alzheimer's disease (AD), the most common neurodegenerative disease, is characterized by accumulated amyloid-β (Aβ) plaques, aggregated phosphorylated tau protein, gliosis-associated neuroinflammation, synaptic dysfunction, and cognitive impairment. Many cohort studies indicate that tooth loss is a risk factor for AD. The detailed mechanisms underlying the association between AD and tooth loss, however, are not yet fully understood. Methods We explored the involvement of early tooth loss in the neuropathogenesis of the adult AppNL-G-F mouse AD model. The maxillary molars were extracted bilaterally in 1-month-old male mice soon after tooth eruption. Results Plasma corticosterone levels were increased and spatial learning memory was impaired in these mice at 6 months of age. The cerebral cortex and hippocampus of AD mice with extracted teeth showed an increased accumulation of Aβ plaques and phosphorylated tau proteins, and increased secretion of the proinflammatory cytokines, including interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), accompanied by an increased number of microglia and astrocytes, and decreased synaptophysin expression. AD mice with extracted teeth also had a shorter lifespan than the control mice. Discussion These findings revealed that long-term tooth loss is a chronic stressor, activating the recruitment of microglia and astrocytes; exacerbating neuroinflammation, Aβ deposition, phosphorylated tau accumulation, and synaptic dysfunction; and leading to spatial learning and memory impairments in AD model mice.
Collapse
Affiliation(s)
- Suzuko Ochi
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Kumiko Yamada
- Department of Health and Nutrition, Faculty of Health Science, Nagoya Women's University, Nagoya, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Mitsuo Iinuma
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kin-Ya Kubo
- Graduate School of Human Life Science, Nagoya Women's University, Nagoya, Japan
| |
Collapse
|
7
|
Misawa-Omori E, Okihara H, Ogawa T, Abe Y, Kato C, Ishidori H, Fujita A, Kokai S, Ono T. Reduced mastication during growth inhibits cognitive function by affecting trigeminal ganglia and modulating Wnt signaling pathway and ARHGAP33 molecular transmission. Neuropeptides 2023; 102:102370. [PMID: 37634443 DOI: 10.1016/j.npep.2023.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Binding of brain-derived neurotrophic factor (BDNF) to its receptor tyrosine kinase B (TrkB) is essential for the development of the hippocampus, which regulates memory and learning. Decreased masticatory stimulation during growth reportedly increases BDNF expression while decreasing TrkB expression in the hippocampus. Increased BDNF expression is associated with Wnt family member 3A (Wnt3a) expression and decreased expression of Rho GTPase Activating Protein 33 (ARHGAP33), which regulates intracellular transport of TrkB. TrkB expression may be decreased at the cell surface and affects the hippocampus via BDNF/TrkB signaling. Mastication affects cerebral blood flow and the neural cascade that occurs through the trigeminal nerve and hippocampus. In the current study, we hypothesized that decreased masticatory stimulation reduces memory/learning in mice due to altered Wnt3a and ARHGAP33 expression, which are related to memory/learning functions in the hippocampus. To test this hypothesis, we fed mice a powdered diet until 14 weeks of age and analyzed the BDNF and TrkB mRNA expression in the right hippocampus using real-time polymerase chain reaction and Wnt3a and ARHGAP33 levels in the left hippocampus using western blotting. Furthermore, we used staining to assess BDNF and TrkB expression in the hippocampus and the number of nerve cells, the average size of each single cell and the area of intercellular spaces of the trigeminal ganglion (TG). We found that decreased masticatory stimulation affected the expression of BDNF, Wnt3a, ARHGAP33, and TrkB proteins in the hippocampus, as well as memory/learning. The experimental group showed significantly decreased numbers of neurons and increased the area of intercellular spaces in the TG. Our findings suggest that reduced masticatory stimulation during growth induces a decline in memory/learning by modulating molecular transmission mechanisms in the hippocampus and TG.
Collapse
Affiliation(s)
- Eri Misawa-Omori
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Hidemasa Okihara
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan.
| | - Takuya Ogawa
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yasunori Abe
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Chiho Kato
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Hideyuki Ishidori
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Akiyo Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Satoshi Kokai
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| |
Collapse
|
8
|
Pisani F, Pisani V, Arcangeli F, Harding A, Singhrao SK. Treponema denticola Has the Potential to Cause Neurodegeneration in the Midbrain via the Periodontal Route of Infection-Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6049. [PMID: 37297653 PMCID: PMC10252855 DOI: 10.3390/ijerph20116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common example of dementia. The neuropathological features of AD are the abnormal deposition of extracellular amyloid-β (Aβ) and intraneuronal neurofibrillary tangles with hyperphosphorylated tau protein. It is recognized that AD starts in the frontal cerebral cortex, and then it progresses to the entorhinal cortex, the hippocampus, and the rest of the brain. However, some studies on animals suggest that AD could also progress in the reverse order starting from the midbrain and then spreading to the frontal cortex. Spirochetes are neurotrophic: From a peripheral route of infection, they can reach the brain via the midbrain. Their direct and indirect effect via the interaction of their virulence factors and the microglia potentially leads to the host peripheral nerve, the midbrain (especially the locus coeruleus), and cortical damage. On this basis, this review aims to discuss the hypothesis of the ability of Treponema denticola to damage the peripheral axons in the periodontal ligament, to evade the complemental pathway and microglial immune response, to determine the cytoskeletal impairment and therefore causing the axonal transport disruption, an altered mitochondrial migration and the consequent neuronal apoptosis. Further insights about the central neurodegeneration mechanism and Treponema denticola's resistance to the immune response when aggregated in biofilm and its quorum sensing are suggested as a pathogenetic model for the advanced stages of AD.
Collapse
Affiliation(s)
- Flavio Pisani
- Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Valerio Pisani
- IRCCS, “Santa Lucia” Foundation, Neurology and Neurorehabilitation Unit, Via Ardeatina, 306, 00179 Rome, Italy
| | - Francesca Arcangeli
- Azienda Sanitaria Locale ASLRM1, Nuovo Regina Margherita Hospital, Geriatric Department, Advanced Centre for Dementia and Cognitive Disorders, Via Emilio Morosini, 30, 00153 Rome, Italy
| | - Alice Harding
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Simarjit Kaur Singhrao
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
9
|
Furukawa M, Tada H, Raju R, Wang J, Yokoi H, Ikuyo Y, Yamada M, Shikama Y, Matsushita K. Long-Term Capsaicin Administration Ameliorates the Dysfunction and Astrogliosis of the Brain in Aged Mice with Missing Maxillary Molars. Nutrients 2023; 15:nu15112471. [PMID: 37299434 DOI: 10.3390/nu15112471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Tooth loss and decreased masticatory function reportedly affect cognitive function; tooth loss allegedly induces astrogliosis and aging of astrocytes in the hippocampus and hypothalamus, which is a response specific to the central nervous system owing to homeostasis in different brain regions. Capsaicin, a component of red peppers, has positive effects on brain disorders in mice. Decreased expression of transient receptor potential vanilloid 1, a receptor of capsaicin, is associated with the development of dementia. In this study, we investigated the effect of capsaicin administration in aged mice (C57BL/6N mice) with reduced masticatory function owing to the extraction of maxillary molars to investigate preventive/therapeutic methods for cognitive decline attributed to age-related masticatory function loss. The results demonstrated that mice with impaired masticatory function showed decreased motor and cognitive function at the behavioral level. At the genetic level, neuroinflammation, microglial activity, and astrogliosis, such as increased glial fibrillary acidic protein levels, were observed in the mouse brain. The mice with extracted molars fed on a diet containing capsaicin for 3 months demonstrated improved behavioral levels and astrogliosis, which suggest that capsaicin is useful in maintaining brain function in cases of poor oral function and prosthetic difficulties.
Collapse
Affiliation(s)
- Masae Furukawa
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Hirobumi Tada
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu 474-8651, Japan
- Department of Integrative Physiology, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Resmi Raju
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Jingshu Wang
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Haruna Yokoi
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Yoriko Ikuyo
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Mitsuyoshi Yamada
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
- Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan
| | - Yosuke Shikama
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| |
Collapse
|
10
|
Sonoda R, Kuramoto E, Minami S, Matsumoto SE, Ohyagi Y, Saito T, Saido T, Noguchi K, Goto T. Reduced Autophagy in Aged Trigeminal Neurons Causes Amyloid β Diffusion. J Dent Res 2023:220345231156095. [PMID: 36919893 DOI: 10.1177/00220345231156095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The relationship between oral health and the development of Alzheimer's disease (AD) in the elderly is not yet well understood. In this regard, the association between aging or neurodegeneration of the trigeminal nervous system and the accumulation of amyloid-β(1-42) (Aβ42) oligomers in the pathogenesis of AD is unknown. We focused on selective autophagy in the trigeminal mesencephalic nucleus (Vmes) and the diffusion of Aβ42 oligomers with respect to aging of the trigeminal nervous system and whether the degeneration of Vmes neurons affects the diffusion of Aβ42 oligomers. We used female 2- to 8-mo-old transgenic 3xTg-AD mice and AppNL-G-F knock-in mice and immunohistochemically examined aging-related changes in selective autophagy and Aβ42 oligomer processing in the Vmes, which exhibits high amyloid-β (Aβ) expression. We induced degeneration of Vmes neurons by extracting the maxillary molars and examined the changes in Aβ42 oligomer kinetics. Autophagosome-like membranes, which stained positive for Aβ, HO-1, and LC3B, were observed in Vmes neurons of 3xTg-AD mice, while there was weak immunoreactivity of the membranes for intraneuronal Aβ in AppNL-G-F mice. By contrast, there was strong immunopositivity for extracellular Aβ42 oligomers with the formation of Aβ42 oligomer clusters in AppNL-G-F mice. The expression of Rubicon, which indicates age-related deterioration of autophagy, increased the diffusion of Aβ42 oligomer with the age of Vmes neurons. Tooth extraction increased the extracellular immunopositivity for Aβ42 oligomers in AppNL-G-F mice. These results suggest that autophagy maintains homeostasis in Vmes neurons and that deterioration of autophagy due to aging or neurodegeneration leads to the diffusion of Aβ42 oligomers into the extracellular space and possibly the development of AD.
Collapse
Affiliation(s)
- R Sonoda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - E Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - S Minami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - S E Matsumoto
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Y Ohyagi
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| | - T Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - T Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - K Noguchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - T Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
11
|
Wang RPH, Huang J, Chan KWY, Leung WK, Goto T, Ho YS, Chang RCC. IL-1β and TNF-α play an important role in modulating the risk of periodontitis and Alzheimer's disease. J Neuroinflammation 2023; 20:71. [PMID: 36915108 PMCID: PMC10012546 DOI: 10.1186/s12974-023-02747-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Systemic activation of the immune system can exert detrimental effects on the central nervous system. Periodontitis, a chronic disease of the oral cavity, is a common source of systemic inflammation. Neuroinflammation might be a result of this to accelerate progressive deterioration of neuronal functions during aging or exacerbate pre-existing neurodegenerative diseases, such as Alzheimer's disease. With advancing age, the progressive increase in the body's pro-inflammatory status favors the state of vulnerability to both periodontitis and Alzheimer's disease. In the present study, we sought to delineate the roles of cytokines in the pathogenesis of both diseases. METHODS To examine the impacts of periodontitis on the onset and progression of Alzheimer's disease, 6-month-old female 3 × Tg-AD mice and their age-matched non-transgenic mice were employed. Periodontitis was induced using two different experimental models: heat-killed bacterial-induced periodontitis and ligature-induced periodontitis. To delineate the roles of pro-inflammatory cytokines in the pathogenesis of periodontitis and Alzheimer's disease, interleukin 1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) were also injected into the buccal mandibular vestibule of mice. RESULTS Here, we show that IL-1β and TNF-α were two of the most important and earliest cytokines upregulated upon periodontal infection. The systemic upregulation of these two cytokines promoted a pro-inflammatory environment in the brain contributing to the development of Alzheimer's disease-like pathology and cognitive dysfunctions. Periodontitis-induced systemic inflammation also enhanced brain inflammatory responses and subsequently exacerbated Alzheimer's disease pathology and cognitive impairment in 3 × Tg-AD mice. The role of inflammation in connecting periodontitis to Alzheimer's disease was further affirmed in the conventional magnetization transfer experiment in which increased glial responses resulting from periodontitis led to decreased magnetization transfer ratios in the brain of 3 × Tg-AD mice. CONCLUSIONS Systemic inflammation resulting from periodontitis contributed to the development of Alzheimer's disease tau pathology and subsequently led to cognitive decline in non-transgenic mice. It also potentiated Alzheimer's disease pathological features and exacerbated impairment of cognitive function in 3 × Tg-AD mice. Taken together, this study provides convincing evidence that systemic inflammation serves as a connecting link between periodontitis and Alzheimer's disease.
Collapse
Affiliation(s)
- Rachel Pei-Hsuan Wang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Laboratory Block, Rm. L4-49, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Tetsuya Goto
- Division of Oral Anatomy and Histology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong SAR, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Laboratory Block, Rm. L4-49, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
12
|
Pisani F, Pisani V, Arcangeli F, Harding A, Singhrao SK. Locus Coeruleus Dysfunction and Trigeminal Mesencephalic Nucleus Degeneration: A Cue for Periodontal Infection Mediated Damage in Alzheimer's Disease? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1007. [PMID: 36673763 PMCID: PMC9858796 DOI: 10.3390/ijerph20021007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disease with deteriorating cognition as its main clinical sign. In addition to the clinical history, it is characterized by the presence of two neuropathological hallmark lesions; amyloid-beta (Aβ) and neurofibrillary tangles (NFTs), identified in the brain at post-mortem in specific anatomical areas. Recently, it was discovered that NFTs occur initially in the subcortical nuclei, such as the locus coeruleus in the pons, and are said to spread from there to the cerebral cortices and the hippocampus. This contrasts with the prior acceptance of their neuropathology in the enthorinal cortex and the hippocampus. The Braak staging system places the accumulation of phosphorylated tau (p-tau) binding to NFTs in the locus coeruleus and other subcortical nuclei to precede stages I-IV. The locus coeruleus plays diverse psychological and physiological roles within the human body including rapid eye movement sleep disorder, schizophrenia, anxiety, and depression, regulation of sleep-wake cycles, attention, memory, mood, and behavior, which correlates with AD clinical behavior. In addition, the locus coeruleus regulates cardiovascular, respiratory, and gastrointestinal activities, which have only recently been associated with AD by modern day research enabling the wider understanding of AD development via comorbidities and microbial dysbiosis. The focus of this narrative review is to explore the modes of neurodegeneration taking place in the locus coeruleus during the natural aging process of the trigeminal nerve connections from the teeth and microbial dysbiosis, and to postulate a pathogenetic mechanism due to periodontal damage and/or infection focused on Treponema denticola.
Collapse
Affiliation(s)
- Flavio Pisani
- Programme Lead, MSc/MClinDent in Clinical Periodontology, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Valerio Pisani
- I.R.C.C.S. “Santa Lucia” Foundation, Neurology and Neurorehabilitation Unit, Via Ardeatina, 306, 00179 Rome, Italy
| | - Francesca Arcangeli
- Azienda Sanitaria Locale ASLRM1, Nuovo Regina Margherita Hospital, Geriatric Department-Advanced Centre for Dementia and Cognitive Disorders, Via Emilio Morosini, 30, 00153 Rome, Italy
| | - Alice Harding
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Sim K. Singhrao
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
13
|
Matsumoto H, Tagai K, Endo H, Matsuoka K, Takado Y, Kokubo N, Shimada H, Goto T, Goto TK, Higuchi M. Association of Tooth Loss with Alzheimer's Disease Tau Pathologies Assessed by Positron Emission Tomography. J Alzheimers Dis 2023; 96:1253-1265. [PMID: 37980663 PMCID: PMC10741329 DOI: 10.3233/jad-230581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Deterioration of the oral environment is one of the risk factors for dementia. A previous study of an Alzheimer's disease (AD) model mouse suggests that tooth loss induces denervation of the mesencephalic trigeminal nucleus and neuroinflammation, possibly leading to accelerated tau dissemination from the nearby locus coeruleus (LC). OBJECTIVE To elucidate the relevance of oral conditions and amyloid-β (Aβ) and tau pathologies in human participants. METHODS We examined the number of remaining teeth and the biofilm-gingival interface index in 24 AD-spectrum patients and 19 age-matched healthy controls (HCs). They also underwent positron emission tomography (PET) imaging of Aβ and tau with specific radiotracers, 11C-PiB and 18F-PM-PBB3, respectively. All AD-spectrum patients were Aβ-positive, and all HCs were Aβ-negative. We analyzed the correlation between the oral parameters and radiotracer retention. RESULTS No differences were found in oral conditions between the AD and HC groups. 11C-PiB retentions did not correlate with the oral indices in either group. In AD-spectrum patients, brain-wide, voxel-based image analysis highlighted several regions, including the LC and associated brainstem substructures, as areas where 18F-PM-PBB3 retentions negatively correlated with the remaining teeth and revealed the correlation of tau deposits in the LC (r = -0.479, p = 0.018) primarily with the hippocampal and neighboring areas. The tau deposition in none of the brain regions was associated with the periodontal status. CONCLUSIONS Our findings with previous preclinical evidence imply that tooth loss may enhance AD tau pathogenesis, promoting tau spreading from LC to the hippocampal formation.
Collapse
Affiliation(s)
- Hideki Matsumoto
- Department of Oral and Maxillofacial Radiology, Tokyo Dental College, Tokyo, Japan
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kenji Tagai
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Psychiatry, The Jikei University of Medicine, Tokyo, Japan
| | - Hironobu Endo
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kiwamu Matsuoka
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Naomi Kokubo
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Functional Neurology & Neurosurgery, Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tazuko K. Goto
- Department of Oral and Maxillofacial Radiology, Tokyo Dental College, Tokyo, Japan
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
14
|
Kuramoto E, Kitawaki A, Yagi T, Kono H, Matsumoto SE, Hara H, Ohyagi Y, Iwai H, Yamanaka A, Goto T. Development of a system to analyze oral frailty associated with Alzheimer's disease using a mouse model. Front Aging Neurosci 2022; 14:935033. [PMID: 35983379 PMCID: PMC9380890 DOI: 10.3389/fnagi.2022.935033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
The rapid aging of the population makes the detection and prevention of frailty increasingly important. Oral frailty has been proposed as a novel frailty phenotype and is defined as a decrease in oral function coexisting with a decline in cognitive and physical functions. Oral frailty has received particular attention in relation to Alzheimer's disease (AD). However, the pathomechanisms of oral frailty related to AD remain unknown. It is assumed that the mesencephalic trigeminal nucleus (Vmes), which controls mastication, is affected by AD pathology, and as a result, masticatory function may be impaired. To investigate this possibility, we included male 3 × Tg-AD mice and their non-transgenic counterpart (NonTg) of 3-4 months of age in the present study. Immunohistochemistry revealed amyloid-β deposition and excessive tau phosphorylation in the Vmes of 3 × Tg-AD mice. Furthermore, vesicular glutamate transporter 1-immunopositive axon varicosities, which are derived from Vmes neurons, were significantly reduced in the trigeminal motor nucleus of 3 × Tg-AD mice. To investigate whether the AD pathology observed in the Vmes affects masticatory function, we analyzed electromyography of the masseter muscle during feeding. The 3 × Tg-AD mice showed a significant delay in masticatory rhythm compared to NonTg mice. Furthermore, we developed a system to simultaneously record bite force and electromyography of masseter, and devised a new method to estimate bite force during food chewing in mice. Since the muscle activity of the masseter showed a high correlation with bite force, it could be accurately estimated from the muscle activity. The estimated bite force of 3 × Tg-AD mice eating sunflower seeds was predominantly smaller than that of NonTg mice. However, there was no difference in masseter weight or muscle fiber cross-sectional area between the two groups, suggesting that the decreased bite force and delayed mastication rhythm observed in 3 × Tg-AD mice were not due to abnormality of the masseter. In conclusion, the decreased masticatory function observed in 3 × Tg-AD mice was most likely caused by AD pathology in the Vmes. Thus, novel quantitative analyses of masticatory function using the mouse model of AD enabled a comprehensive understanding of oral frailty pathogenesis.
Collapse
Affiliation(s)
- Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ayano Kitawaki
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takakazu Yagi
- Department of Oral Health Science, Kobe Tokiwa University, Kobe, Japan
| | - Hiroshi Kono
- Department of Biomaterials Science, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shin-Ei Matsumoto
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasumasa Ohyagi
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
15
|
The Mechanistic Pathways of Periodontal Pathogens Entering the Brain: The Potential Role of Treponema denticola in Tracing Alzheimer’s Disease Pathology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159386. [PMID: 35954742 PMCID: PMC9368682 DOI: 10.3390/ijerph19159386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Alzheimer’s Disease (AD) is a complex neurodegenerative disease and remains the most common form of dementia. The pathological features include amyloid (Aβ) accumulation, neurofibrillary tangles (NFTs), neural and synaptic loss, microglial cell activation, and an increased blood–brain barrier permeability. One longstanding hypothesis suggests that a microbial etiology is key to AD initiation. Among the various periodontal microorganisms, Porphyromonas gingivalis has been considered the keystone agent to potentially correlate with AD, due to its influence on systemic inflammation. P. gingivalis together with Treponema denticola and Tannerella forsythia belong to the red complex consortium of bacteria advocated to sustain periodontitis within a local dysbiosis and a host response alteration. Since the implication of P. gingivalis in the pathogenesis of AD, evidence has emerged of T. denticola clusters in some AD brain tissue sections. This narrative review explored the potential mode of spirochetes entry into the AD brain for tracing pathology. Spirochetes are slow-growing bacteria, which can hide within ganglia for many years. It is this feature in combination with the ability of these bacteria to evade the hosts’ immune responses that may account for a long lag phase between infection and plausible AD disease symptoms. As the locus coeruleus has direct connection between the trigeminal nuclei to periodontal free nerve endings and proprioceptors with the central nervous system, it is plausible that they could initiate AD pathology from this anatomical region.
Collapse
|
16
|
Hu J, Wang X, Kong W, Jiang Q. Tooth Loss Suppresses Hippocampal Neurogenesis and Leads to Cognitive Dysfunction in Juvenile Sprague–Dawley Rats. Front Neurosci 2022; 16:839622. [PMID: 35573291 PMCID: PMC9095951 DOI: 10.3389/fnins.2022.839622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Both animal studies and prospective observational studies on patients with neurodegenerative disease have reported a positive link between oral diseases and cognitive function. However, the effect of early tooth loss on hippocampal morphology remains unknown. Methods In this study, 6-week-old, male, juvenile Sprague–Dawley (SD) rats were randomized into the control (C) and tooth loss (TL) groups. In the TL group, all right maxillary molars of SD rats were extracted, while in the C group, no teeth were extracted. After 3 months, the learning and memory behavior were examined by Morris Water Maze (MWM), and the protein expression and mechanic signaling pathways were analyzed by real-time polymerase chain reaction, and cresyl violet staining. Results Two days after the operation, the body weight of both groups recovered and gradually returned to the level before operation. Three months after tooth extraction, the completion time of the C group in the MWM was significantly shorter than the TL group. The mRNA expression of BDNF, TrkB, AKT1, and NR2B in the C group were significantly higher than in the TL group. The pyramidal neurons in the TL group was fewer than in the C group. Conclusion Tooth loss in the juvenile SD rats will reduce the number of pyramidal neurons in the hippocampus, inhibit the expression of BDNF, TrkB, AKT1, and NR2B, and eventually lead to cognitive dysfunction.
Collapse
Affiliation(s)
- Jiangqi Hu
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Wang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Qingsong Jiang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- *Correspondence: Qingsong Jiang,
| |
Collapse
|
17
|
Furukawa M, Tada H, Wang J, Yamada M, Kurosawa M, Satoh A, Ogiso N, Shikama Y, Matsushita K. Molar loss induces hypothalamic and hippocampal astrogliosis in aged mice. Sci Rep 2022; 12:6409. [PMID: 35437315 PMCID: PMC9016068 DOI: 10.1038/s41598-022-10321-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
Age-related tooth loss impedes mastication. Epidemiological and physiological studies have reported that poor oral hygiene and occlusion are associated with cognitive decline. In the present study, we analyzed the mechanism by which decreased occlusal support following bilateral extraction of the maxillary first molars affects cognitive functions in young and aged mice and examined the expression of brain-function-related genes in the hippocampus and hypothalamus. We observed decreased working memory, enhanced restlessness, and increased nocturnal activity in aged mice with molar extraction compared with that in mice with intact molars. Furthermore, in the hypothalamus and hippocampus of molar-extracted aged mice, the transcript-level expression of Bdnf, Rbfox3, and Fos decreased, while that of Cdkn2a and Aif1 increased. Thus, decreased occlusal support after maxillary first molar extraction may affect cognitive function and activity in mice by influencing aging, neural activity, and neuroinflammation in the hippocampus and hypothalamus.
Collapse
Affiliation(s)
- Masae Furukawa
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan.
| | - Hirobumi Tada
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan.,Department of Inflammation and Immunosenescence, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Jingshu Wang
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Mitsuyoshi Yamada
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Mie Kurosawa
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Integrative Physiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Noboru Ogiso
- Department of Laboratory of Experimental Animals, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yosuke Shikama
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan.
| |
Collapse
|
18
|
Wang X, Hu J, Jiang Q. Tooth Loss-Associated Mechanisms That Negatively Affect Cognitive Function: A Systematic Review of Animal Experiments Based on Occlusal Support Loss and Cognitive Impairment. Front Neurosci 2022; 16:811335. [PMID: 35221901 PMCID: PMC8866659 DOI: 10.3389/fnins.2022.811335] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
BackgroundThere is a dose-response relationship between tooth loss and cognitive impairment, while tooth loss can be an independent risk factor for Alzheimer's disease (AD) and vascular dementia (VaD). Tooth loss can also accelerate nerve damage and neurodegeneration. However, the associated mechanisms remain poorly understood.ObjectiveTo conduct a systematic review of animal experiments on cognitive decline caused by the loss of occlusal support performed over the past 10 years and summarize the possible underlying mechanisms.Methods“Tooth Loss,” “Edentulous,” “Tooth Extraction and Memory Loss,” “Cognition Impairment,” and “Dementia” were used as keywords to search PubMed, Embase, SCI, ScienceDirect, and OpenGrey. A total of 1,317 related articles from 2010 to 2021 were retrieved, 26 of which were included in the review after screening according to predetermined inclusion and exclusion criteria. Comprehensiveness was evaluated using ARRIVE guidelines and the risk of bias was assessed using SYCLE'S risk of bias tool.ResultsThe putative mechanisms underlying the cognitive impairment resulting from the loss of occlusal support are as follows: (1) The mechanical pathway, whereby tooth loss leads to masticatory motor system functional disorders. Masticatory organ activity and cerebral blood flow decrease. With reduced afferent stimulation of peripheral receptors (such as in the periodontal membrane) the strength of the connections between neural pathways is decreased, and the corresponding brain regions degenerate; (2) the aggravation pathway, in which tooth loss aggravates existing neurodegenerative changes. Tooth loss can accelerates nerve damage through apoptosis and mitochondrial autophagy, increases amyloid deposition in the brain; and (3) the long-term inflammatory stress pathway, which involves metabolic disorders, microbial-gut-brain axis, the activation of microglia and astrocytes, and inflammatory cascade effect in central nervous system.ConclusionThe loss of occlusal support may lead to cognitive dysfunction through the reduction of chewing-related stimuli, aggravation of nerve damage, and long-term inflammatory stress.
Collapse
|
19
|
Maeshiba M, Kajiya H, Tsutsumi T, Migita K, Goto-T K, Kono Y, Tsuzuki T, Ohno J. Occlusal disharmony transiently decrease cognition via cognitive suppressor molecules and partially restores cognitive ability via clearance molecules. Biochem Biophys Res Commun 2022; 594:74-80. [DOI: 10.1016/j.bbrc.2022.01.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
|
20
|
Taslima F, Jung CG, Zhou C, Abdelhamid M, Abdullah M, Goto T, Saito T, Saido TC, Michikawa M. Tooth Loss Induces Memory Impairment and Gliosis in App Knock-In Mouse Models of Alzheimer's Disease. J Alzheimers Dis 2021; 80:1687-1704. [PMID: 33720883 DOI: 10.3233/jad-201055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Epidemiological studies have shown that tooth loss is associated with Alzheimer's disease (AD) and dementia. However, the molecular and cellular mechanisms by which tooth loss causes AD remain unclear. OBJECTIVE We investigated the effects of tooth loss on memory impairment and AD pathogenesis in AppNL-G-F mice. METHODS Maxillary molar teeth on both sides were extracted from 2-month-old AppNL-G-F mice, and the mice were reared for 2 months. The short- and long-term memory functions were evaluated using a novel object recognition test and a passive avoidance test. Amyloid plaques, amyloid-β (Aβ) levels, glial activity, and neuronal activity were evaluated by immunohistochemistry, Aβ ELISA, immunofluorescence staining, and western blotting. The mRNA expression levels of neuroinflammatory cytokines were determined by qRT-PCR analysis. RESULTS Tooth loss induced memory impairment via an amyloid-cascade-independent pathway, and decreased the neuronal activity, presynaptic and postsynaptic protein levels in both the cortex and hippocampus. Interestingly, we found that tooth loss induced glial activation, which in turn leads to the upregulation of the mRNA expression levels of the neuroinflammation cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β in the hippocampus. We also found that tooth loss activated a stress-activated protein kinase, c-Jun N-terminal kinase (JNK), and increased heat shock protein 90 (HSP90) levels in the hippocampus, which may lead to a glial activation. CONCLUSION Our findings suggest that taking care of teeth is very important to preserve a healthy oral environment, which may reduce the risk of cognitive dysfunction.
Collapse
Affiliation(s)
- Ferdous Taslima
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Cha-Gyun Jung
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chunyu Zhou
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mona Abdelhamid
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mohammad Abdullah
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Goto
- Department of Oral Anatomy & Cell Biology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
21
|
Dhar A, Kuramoto E, Fukushima M, Iwai H, Yamanaka A, Goto T. The Periodontium Damage Induces Neuronal Cell Death in the Trigeminal Mesencephalic Nucleus and Neurodegeneration in the Trigeminal Motor Nucleus in C57BL/6J Mice. Acta Histochem Cytochem 2021; 54:11-19. [PMID: 33731966 PMCID: PMC7947638 DOI: 10.1267/ahc.20-00036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/14/2021] [Indexed: 11/22/2022] Open
Abstract
Proprioception from masticatory apparatus and periodontal ligaments comes through the trigeminal mesencephalic nucleus (Vmes). We evaluated the effects of tooth loss on neurodegeneration of the Vmes and trigeminal motor nucleus (Vmo). Bilateral maxillary molars of 2-month-old C57BL/6J mice were extracted under anesthesia. Neural projections of the Vmes to the periodontium were confirmed by injecting Fluoro-Gold (FG) retrogradely into the extraction sockets, and for the anterograde labeling adeno-associated virus encoding green fluorescent protein (AAV-GFP) was applied. For immunohistochemistry, Piezo2, ATF3, Caspase 3, ChAT and TDP-43 antibodies were used. At 1 month after tooth extraction, the number of Piezo2-immunoreactive (IR) Vmes neurons were decreased significantly. ATF3-IR neurons were detected on day 5 after tooth extraction. Dead cleaved caspase-3-IR neurons were found among Vmes neurons on days 7 and 12. In the Vmo, neuronal cytoplasmic inclusions (NCIs) formation type of TDP-43 increased at 1 and 2 months after extraction. These indicate the existence of neural projections from the Vmes to the periodontium in mice and that tooth loss induces the death of Vmes neurons followed by TDP-43 pathology in the Vmo. Therefore, tooth loss induces Vmes neuronal cell death, causing Vmo neurodegeneration and presumably affecting masticatory function.
Collapse
Affiliation(s)
- Ashis Dhar
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Makoto Fukushima
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University
| |
Collapse
|
22
|
Kanagasingam S, Chukkapalli SS, Welbury R, Singhrao SK. Porphyromonas gingivalis is a Strong Risk Factor for Alzheimer's Disease. J Alzheimers Dis Rep 2020; 4:501-511. [PMID: 33532698 PMCID: PMC7835991 DOI: 10.3233/adr-200250] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is one of the several important bacterial pathogens associated with the sporadic Alzheimer’s disease (AD). Different serotypes are either capsulated or are non-capsulated. It has been demonstrated that P. gingivalis (non-capsulated) can reproduce the neurodegenerative AD-like changes in vitro, and a capsular P. gingivalis (strain W83) could reproduce the cardinal hallmark lesions of AD in a wild-type mouse model. All P. gingivalis forms express proteolytically active proteases that enable cleavage of the amyloid-β protin precursor (AβPP) and tau resulting in the formation of amyloid-β and neurofibrillary tangles. Tau is an established substrate for gingipains, which can cleave tau into various peptides. Some of the P. gingivalis fragmented tau protein peptides contain “VQIINK” and “VQIVYK” hexapeptide motifs which map to the flanking regions of the microtubule binding domains and are also found in paired helical filaments that form NFTs. P. gingivalis can induce peripheral inflammation in periodontitis and can also initiate signaling pathways that activate kinases, which in turn, phosphorylate neuronal tau. Periodontal disease related inflammation has metabolic implications for an individual’s peripheral and brain health as patients suffering from generalized periodontitis often have related co-morbidities and are “at risk” of developing AD. The aim here is to discuss the role of P. gingivalis behind such associations with the backdrop of huge efforts to test P. gingivalis virulence factors clinically (GAIN Trial: Phase 2/3 Study of COR388 in Subjects with AD) with inhibitors, which may lead to an intervention by reducing the pathogenic bacterial load.
Collapse
Affiliation(s)
- Shalini Kanagasingam
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Sasanka S Chukkapalli
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Richard Welbury
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Sim K Singhrao
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|