1
|
Yoo J, Lee J, Ahn B, Han J, Lim MH. Multi-target-directed therapeutic strategies for Alzheimer's disease: controlling amyloid-β aggregation, metal ion homeostasis, and enzyme inhibition. Chem Sci 2025; 16:2105-2135. [PMID: 39810997 PMCID: PMC11726323 DOI: 10.1039/d4sc06762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia, marked by progressive cognitive decline and memory impairment. Despite advances in therapeutic research, single-target-directed treatments often fall short in addressing the complex, multifactorial nature of AD. This arises from various pathological features, including amyloid-β (Aβ) aggregate deposition, metal ion dysregulation, oxidative stress, impaired neurotransmission, neuroinflammation, mitochondrial dysfunction, and neuronal cell death. This review illustrates their interrelationships, with a particular emphasis on the interplay among Aβ, metal ions, and AD-related enzymes, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE1), matrix metalloproteinase 9 (MMP9), lysyl oxidase-like 2 (LOXL2), acetylcholinesterase (AChE), and monoamine oxidase B (MAOB). We further underscore the potential of therapeutic strategies that simultaneously inhibit Aβ aggregation and address other pathogenic mechanisms. These approaches offer a more comprehensive and effective method for combating AD, overcoming the limitations of conventional therapies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jimin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Byeongha Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
2
|
Althobaiti NA. Heavy metals exposure and Alzheimer's disease: Underlying mechanisms and advancing therapeutic approaches. Behav Brain Res 2025; 476:115212. [PMID: 39187176 DOI: 10.1016/j.bbr.2024.115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Heavy metals such as lead, cadmium, mercury, and arsenic are prevalent in the environment due to both natural and anthropogenic sources, leading to significant public health concerns. These heavy metals are known to cause damage to the nervous system, potentially leading to a range of neurological conditions including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and attention-deficit hyperactivity disorder (ADHD). The present study examines the complex relationship between heavy metal exposure and AD, focusing on the underlying mechanisms of toxicity and potential therapeutic approaches. This review article highlights how these metals can impair brain function through mechanisms such as oxidative stress, inflammation, and neurotransmitter disruption, ultimately contributing to neurodegenerative diseases like AD. It also addresses the challenges in diagnosing heavy metal-induced cognitive impairments and emphasizes the need for further research to explore effective treatment strategies and preventive measures against heavy metal exposure.
Collapse
Affiliation(s)
- Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Saudi Arabia.
| |
Collapse
|
3
|
Chib S, Dutta BJ, Chalotra R, Abubakar M, Kumar P, Singh TG, Singh R. Role of Flavonoids in Mitigating the Pathological Complexities and Treatment Hurdles in Alzheimer's Disease. Phytother Res 2024. [PMID: 39660432 DOI: 10.1002/ptr.8406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
With the passage of time, people step toward old age and become more prone to several diseases associated with the age. One such is Alzheimer's disease (AD) which results into neuronal damage and dementia with the progression of age. The existing therapeutics has been hindered by various enkindles like less eminent between remote populations, affordability issues and toxicity profiles. Moreover, lack of suitable therapeutic option further worsens the quality of life in older population. Developing an efficient therapeutic intervention to cure AD is still a challenge for medical fraternity. Recently, alternative approaches attain the attention of researchers to focus on plant-based therapy in mitigating AD. In this context, flavonoids gained centrality as a feasible treatment in modifying various neurological deficits. This review mainly focuses on the pathological facets and economic burden of AD. Furthermore, we have explored the possible mechanism of flavonoids with the preclinical and clinical aspects for curing AD. Flavonoids being potential therapeutic, target the pathogenic factors of AD such as oxidative stress, inflammation, metal toxicity, Aβ accumulation, modulate neurotransmission and insulin signaling. In this review, we emphasized on potential neuroprotective effects of flavonoids in AD pathology, with focus on both experimental and clinical findings. While preclinical studies suggest promising therapeutic benefits, clinical data remains limited and inconclusive. Thus, further high-quality clinical trials are necessary to validate the efficacy of flavonoids in AD. The study aim is to promote the plant-based therapies and encourage people to add flavonoids to regular diet to avail the beneficial effects in preventive therapy for AD.
Collapse
Affiliation(s)
- Shivani Chib
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Md Abubakar
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | | | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
4
|
Singh R, Panghal A, Jadhav K, Thakur A, Verma RK, Singh C, Goyal M, Kumar J, Namdeo AG. Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer's Disease. Mol Neurobiol 2024; 61:10916-10940. [PMID: 38809370 DOI: 10.1007/s12035-024-04256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Changes in the transition metal homeostasis in the brain are closely linked with Alzheimer's disease (AD), including intraneuronal iron accumulation and extracellular copper and zinc pooling in the amyloid plague. The brain copper, zinc, and iron surplus are commonly acknowledged characteristics of AD, despite disagreements among some. This has led to the theory that oxidative stress resulting from abnormal homeostasis of these transition metals may be a causative explanation behind AD. In the nervous system, the interaction of metals with proteins appears to be an essential variable in the development or suppression of neurodegeneration. Chelation treatment may be an option for treating neurodegeneration induced by transition metal ion dyshomeostasis. Some clinicians even recommend using chelating agents as an adjunct therapy for AD. The current review also looks at the therapeutic strategies that have been attempted, primarily with metal-chelating drugs. Metal buildup in the nervous system, as reported in the AD, could be the result of compensatory mechanisms designed to improve metal availability for physiological functions.
Collapse
Affiliation(s)
- Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institutes of Nano Science and Technology (INST), Sector 81. Mohali, Punjab, 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Krishna Jadhav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, ICFAI University, Baddi, Distt. Solan, Himachal Pradesh, 174103, India
| | - Rahul Kumar Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Charan Singh
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India.
| | - Ajay G Namdeo
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| |
Collapse
|
5
|
Krasnovskaya O, Abramchuk D, Vaneev A, Gorelkin P, Abakumov M, Timoshenko R, Kuzmichev I, Chmelyuk N, Vadehina V, Kuanaeva R, Dubrovin E, Kolmogorov V, Beloglazkina E, Kechko O, Mitkevich V, Varshavskaya K, Salikhov S, Erofeev A. Bifunctional Copper Chelators Capable of Reducing Aβ Aggregation and Aβ-Induced Oxidative Stress. ACS OMEGA 2024; 9:43376-43384. [PMID: 39493999 PMCID: PMC11525521 DOI: 10.1021/acsomega.4c03152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
Five bifunctional copper chelating agents, Alz-(1-5), designed to prevent beta-amyloid (Aβ) aggregation, were synthesized, and the leader compound (Alz-5) was chosen. Alz-5 acts as a bifunctional chelator that can interact with various Aβ aggregates and reduce their neurotoxicity. Reactive oxygen species measurements provided by the Pt-nanoelectrode technique in single Aβ42-affected human neuroblastoma SH-SY5Y cells revealed significant antioxidant activity of Alz-5. AFM data obtained on Aβ42 fibrils clearly indicate the antiaggregating property of Alz-5. To gain insights into the changes in the physiomechanical properties of Aβ42-affected cells, as well as in order to evaluate the antiaggregating ability of Alz-5, Young's modulus mapping on living SH-SY5Y cells affected consequently by Aβ42 and Alz-5 was conducted, and the ability of Alz-5 to decrease cell rigidity induced by Aβ42 was indisputably proven. Low cell toxicity and antioxidating properties, in conjunction with AFM and SICM-based biophysical provided on Aβ42-affected SH-SY5Y cells, support Alz-5 as a potential inhibitor of Aβ aggregation.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Daniil Abramchuk
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Alexander Vaneev
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Petr Gorelkin
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Maxim Abakumov
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
- Pirogov
Russian National Research Medical University (RNRMU), Moscow 117997, Russia
| | - Roman Timoshenko
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Ilia Kuzmichev
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119991, Russia
| | - Nelly Chmelyuk
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Veronika Vadehina
- Pirogov
Russian National Research Medical University (RNRMU), Moscow 117997, Russia
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119991, Russia
| | - Regina Kuanaeva
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Evgeniy Dubrovin
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
- Faculty
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 2, Moscow 119991, Russia
| | - Vasilii Kolmogorov
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Elena Beloglazkina
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Olga Kechko
- Engelhardt
Institute of Molecular Biology, Russian
Academy of Sciences, Moscow 119991, Russia
| | - Vladimir Mitkevich
- Engelhardt
Institute of Molecular Biology, Russian
Academy of Sciences, Moscow 119991, Russia
| | - Kseniya Varshavskaya
- Engelhardt
Institute of Molecular Biology, Russian
Academy of Sciences, Moscow 119991, Russia
| | - Sergey Salikhov
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Alexander Erofeev
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| |
Collapse
|
6
|
Preethy H A, Rajendran K, Sukumar AJ, Krishnan UM. Emerging paradigms in Alzheimer's therapy. Eur J Pharmacol 2024; 981:176872. [PMID: 39117266 DOI: 10.1016/j.ejphar.2024.176872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder that affects elderly, and its incidence is continuously increasing across the globe. Unfortunately, despite decades of research, a complete cure for Alzheimer's disease continues to elude us. The current medications are mainly symptomatic and slow the disease progression but do not result in reversal of all disease pathologies. The growing body of knowledge on the factors responsible for the onset and progression of the disease has resulted in the identification of new targets that could be targeted for treatment of Alzheimer's disease. This has opened new vistas for treatment of Alzheimer's disease that have moved away from chemotherapeutic agents modulating a single target to biologics and combinations that acted on multiple targets thereby offering better therapeutic outcomes. This review discusses the emerging directions in therapeutic interventions against Alzheimer's disease highlighting their merits that promise to change the treatment paradigm and challenges that limit their clinical translation.
Collapse
Affiliation(s)
- Agnes Preethy H
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Anitha Josephine Sukumar
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
7
|
Hao D, Luo W, Yan Y, Zhou J. Focus on cuproptosis: Exploring new mechanisms and therapeutic application prospects of cuproptosis regulation. Biomed Pharmacother 2024; 178:117182. [PMID: 39053428 DOI: 10.1016/j.biopha.2024.117182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cuproptosis is a novel form of regulated cell death, which plays an important role in the physiological and pathological processes of the human body. Despite the increasing research on cuproptosis-related genes (CRGs) and their correlation with diseases, the pathogenesis of cuproptosis-related diseases remains unclear. Furthermore, there is a lack of reviews on the emerging technologies for regulating cuproptosis in disease treatment. This study delves into the copper-induced cell death mechanism, distinguishing cuproptosis from mechanisms like oxidative stress, glutathione synthesis inhibition, and ubiquitin-proteasome system inhibition. Several long-standing mysteries of diseases such as Wilson's disease and Menkes disease may be attributed to the occurrence of cuproptosis. In addition, we also review the detection indicators related to cuproptosis, providing targets for the diagnosis of cuproptosis-related diseases, and summarize the application value of cuproptosis in tumor therapy to better elucidate the impact of copper in cell death and diseases, and thus to promote the application prospects and possible strategies of cuproptosis-related substances, such as copper ion chelators, copper ion carriers, and copper nanomaterials, in disease therapy.
Collapse
Affiliation(s)
- Donglin Hao
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Wei Luo
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| |
Collapse
|
8
|
Menezes L, Sampaio RMSN, Meurer L, Szpoganicz B, Cervo R, Cargnelutti R, Wang L, Yang J, Prabhakar R, Fernandes C, Horn A. A Multipurpose Metallophore and Its Copper Complexes with Diverse Catalytic Antioxidant Properties to Deal with Metal and Oxidative Stress Disorders: A Combined Experimental, Theoretical, and In Vitro Study. Inorg Chem 2024; 63:14827-14850. [PMID: 39078252 PMCID: PMC11323273 DOI: 10.1021/acs.inorgchem.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
We report the discovery that the molecule 1-(pyridin-2-ylmethylamino)propan-2-ol (HL) can reduce oxidative stress in neuronal C6 glioma cells exposed to reactive oxygen species (O2-•, H2O2, and •OH) and metal (Cu+) stress conditions. Furthermore, its association with Cu2+ generates [Cu(HL)Cl2] (1) and [Cu(HL)2](ClO4)2 (2) complexes that also exhibit antioxidant properties. Potentiometric titration data show that HL can coordinate to Cu2+ in 1:1 and 1:2 Cu2+:ligand ratios, which was confirmed by monocrystal X-ray studies. The subsequent ultraviolet-visible, electrospray ionization mass spectrometry, and electron paramagnetic resonance experiments show that they can decompose a variety of reactive oxygen species (ROS). Kinetic studies revealed that 1 and 2 mimic the superoxide dismutase and catalase activities. Complex 1 promotes the fastest decomposition of H2O2 (kobs = 2.32 × 107 M-1 s-1), efficiently dismutases the superoxide anion (kcat = 3.08 × 107 M-1 s-1), and scavenges the hydroxyl radical (RSA50 = 25.7 × 10-6 M). Density functional theory calculations support the formation of dinuclear Cu-peroxide and mononuclear Cu-superoxide species in the reactions of [Cu(HL)Cl2] with H2O2 and O2•-, respectively. Furthermore, both 1 and 2 also reduce the oxidative stress of neuronal glioma C6 cells exposed to different ROS, including O2•- and •OH.
Collapse
Affiliation(s)
- Lucas
B. Menezes
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Raquel M. S. N. Sampaio
- Laboratório
de Ciências Químicas, Universidade
Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Lino Meurer
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Bruno Szpoganicz
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Rodrigo Cervo
- Departamento
de Química, Universidade Federal
de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Roberta Cargnelutti
- Departamento
de Química, Universidade Federal
de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Lukun Wang
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Jiawen Yang
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Rajeev Prabhakar
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Christiane Fernandes
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Adolfo Horn
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
9
|
Gucký A, Hamuľaková S. Targeting Biometals in Alzheimer's Disease with Metal Chelating Agents Including Coumarin Derivatives. CNS Drugs 2024; 38:507-532. [PMID: 38829443 PMCID: PMC11182807 DOI: 10.1007/s40263-024-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Numerous physiological processes happening in the human body, including cerebral development and function, require the participation of biometal ions such as iron, copper, and zinc. Their dyshomeostasis may, however, contribute to the onset of Alzheimer's disease (AD) and potentially other neurodegenerative diseases. Chelation of biometal ions is therefore a therapeutic strategy against AD. This review provides a survey of natural and synthetic chelating agents that are or could potentially be used to target the metal hypothesis of AD. Since metal dyshomeostasis is not the only pathological aspect of AD, and the nature of this disorder is very complex and multifactiorial, the most efficient therapeutics should target as many neurotoxic factors as possible. Various coumarin derivatives match this description and apart from being able to chelate metal ions, they exhibit the capacity to inhibit cholinesterases (ChEs) and monoamine oxidase B (MAO-B) while also possessing antioxidant, anti-inflammatory, and numerous other beneficial effects. Compounds based on the coumarin scaffold therefore represent a desirable class of anti-AD therapeutics.
Collapse
Affiliation(s)
- Adrián Gucký
- Department of Biochemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 040 01, Kosice, Slovak Republic
| | - Slávka Hamuľaková
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 040 01, Kosice, Slovak Republic.
| |
Collapse
|
10
|
Ficiarà E, Stura I, Vernone A, Silvagno F, Cavalli R, Guiot C. Iron Overload in Brain: Transport Mismatches, Microbleeding Events, and How Nanochelating Therapies May Counteract Their Effects. Int J Mol Sci 2024; 25:2337. [PMID: 38397013 PMCID: PMC10889007 DOI: 10.3390/ijms25042337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Iron overload in many brain regions is a common feature of aging and most neurodegenerative diseases. In this review, the causes, mechanisms, mathematical models, and possible therapies are summarized. Indeed, physiological and pathological conditions can be investigated using compartmental models mimicking iron trafficking across the blood-brain barrier and the Cerebrospinal Fluid-Brain exchange membranes located in the choroid plexus. In silico models can investigate the alteration of iron homeostasis and simulate iron concentration in the brain environment, as well as the effects of intracerebral iron chelation, determining potential doses and timing to recover the physiological state. Novel formulations of non-toxic nanovectors with chelating capacity are already tested in organotypic brain models and could be available to move from in silico to in vivo experiments.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy;
| | - Ilaria Stura
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Annamaria Vernone
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Francesca Silvagno
- Department of Oncology, Università degli Studi di Torino, 10126 Torino, TO, Italy;
| | - Roberta Cavalli
- Department of Drug Science and Technology, Università degli Studi di Torino, 10125 Torino, TO, Italy;
| | - Caterina Guiot
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| |
Collapse
|
11
|
Kumar G, Srivastava A, Kumar P, Srikrishna S, Singh VP. Fluorescent Turn-On Anthracene-Based Aluminum(III) Sensor for a Therapeutic Study in Alzheimer's Disease Model of Drosophila. ACS Chem Neurosci 2023; 14:2792-2801. [PMID: 37436111 DOI: 10.1021/acschemneuro.3c00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
A new anthracene-based probe (E)-N'-(1-(anthracen-9-yl)ethylidene)-2-hydroxybenzohydrazide (AHB) has been efficiently synthesized and characterized by various spectroscopic methods. It exhibits extremely selective and sensitive fluorometric sensing of Al3+ ions with a large enhancement in the fluorescent intensity due to the restricted photoinduced electron transfer (PET) mechanism with a chelation-enhanced fluorescence (CHEF) effect. The AHB-Al3+ complex shows a remarkably low limit of detection at 0.498 nM. The binding mechanism has been proposed based on Job's plot, 1H NMR titration, Fourier transform infrared (FT-IR), high-resolution mass spectrometry (HRMS), and density functional theory (DFT) studies. The chemosensor is reusable and reversible in the presence of ctDNA. The practical usability of the fluorosensor has been established by a test strip kit. Further, the therapeutic potential of AHB against Al3+ ion-induced tau protein toxicity has been tested in the eye of Alzheimer's disease (AD) model of Drosophila via metal chelation therapy. AHB shows great therapeutic potential with 53.3% rescue in the eye phenotype. The in vivo interaction study of AHB with Al3+ in the gut tissue of Drosophila confirms its sensing efficiency in the biological environment. A detailed comparison table included evaluates the effectiveness of AHB.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prabhat Kumar
- Department of Bio Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - S Srikrishna
- Department of Bio Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinod P Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
12
|
Pal I, Dey SG. The Role of Heme and Copper in Alzheimer's Disease and Type 2 Diabetes Mellitus. JACS AU 2023; 3:657-681. [PMID: 37006768 PMCID: PMC10052274 DOI: 10.1021/jacsau.2c00572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/19/2023]
Abstract
Beyond the well-explored proposition of protein aggregation or amyloidosis as the central event in amyloidogenic diseases like Alzheimer's Disease (AD), and Type 2 Diabetes Mellitus (T2Dm); there are alternative hypotheses, now becoming increasingly evident, which suggest that the small biomolecules like redox noninnocent metals (Fe, Cu, Zn, etc.) and cofactors (Heme) have a definite influence in the onset and extent of such degenerative maladies. Dyshomeostasis of these components remains as one of the common features in both AD and T2Dm etiology. Recent advances in this course reveal that the metal/cofactor-peptide interactions and covalent binding can alarmingly enhance and modify the toxic reactivities, oxidize vital biomolecules, significantly contribute to the oxidative stress leading to cell apoptosis, and may precede the amyloid fibrils formation by altering their native folds. This perspective highlights this aspect of amyloidogenic pathology which revolves around the impact of the metals and cofactors in the pathogenic courses of AD and T2Dm including the active site environments, altered reactivities, and the probable mechanisms involving some highly reactive intermediates as well. It also discusses some in vitro metal chelation or heme sequestration strategies which might serve as a possible remedy. These findings might open up a new paradigm in our conventional understanding of amyloidogenic diseases. Moreover, the interaction of the active sites with small molecules elucidates potential biochemical reactivities that can inspire designing of drug candidates for such pathologies.
Collapse
Affiliation(s)
- Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick
Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick
Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
13
|
Thakur R, Karwasra R, Umar T. Understanding Alzheimer's Disease and its Metal Chelation Therapeutics: A Narrative Review. Curr Pharm Des 2023; 29:2377-2386. [PMID: 37859328 DOI: 10.2174/0113816128263992231012113847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
The neurodegenerative disorders are age-related illnesses that cause the morphology or activity of neurons to deteriorate over time. Alzheimer's disease is the most frequent neurodegenerative illness in the long run. The rate of advancement might vary, even though it is a progressive neurological illness. Various explanations have been proposed, however the true etiology of Alzheimer's disease remains unclear. Most pharmacological interventions are based on the cholinergic theory, that is earliest idea. In accordance with the amyloid hypothesis, the buildup of beta-amyloid in brain regions is the primitive cause of illness. There is no proof that any one strategy is useful in avoiding Alzheimer's disease, though some epidemiological studies have suggested links within various modifiable variables, such as cardiovascular risk, diet and so on. Different metals like zinc, iron, and copper are naturally present in our bodies. In metal chelation therapy drugs are used to jam the metal ions from combining with other molecules in the body. Clioquinol is one of the metal chelation drugs used by researchers. Research on metal chelation is still ongoing. In the present review, we go over the latest developments in prevalence, incidence, etiology, or pathophysiology of our understanding of Alzheimer's disease. Additionally, a brief discussion on the development of therapeutic chelating agents and their viability as Alzheimer's disease medication candidates is presented. We also assess the effect of clioquinol as a potential metal chelator.
Collapse
Affiliation(s)
- Ritik Thakur
- Department of Chemistry, Chandigarh University, Mohali, Punjab, India
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine (CCRUM), Ministry of Ayush, Government of India, Janakpuri, New Delhi 110058, India
| | - Tarana Umar
- Central Council for Research in Unani Medicine (CCRUM), Ministry of Ayush, Government of India, Janakpuri, New Delhi 110058, India
| |
Collapse
|
14
|
Cunliffe G, Lim YT, Chae W, Jung S. Alternative Pharmacological Strategies for the Treatment of Alzheimer's Disease: Focus on Neuromodulator Function. Biomedicines 2022; 10:3064. [PMID: 36551821 PMCID: PMC9776382 DOI: 10.3390/biomedicines10123064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, comprising 70% of dementia diagnoses worldwide and affecting 1 in 9 people over the age of 65. However, the majority of its treatments, which predominantly target the cholinergic system, remain insufficient at reversing pathology and act simply to slow the inevitable progression of the disease. The most recent neurotransmitter-targeting drug for AD was approved in 2003, strongly suggesting that targeting neurotransmitter systems alone is unlikely to be sufficient, and that research into alternate treatment avenues is urgently required. Neuromodulators are substances released by neurons which influence neurotransmitter release and signal transmission across synapses. Neuromodulators including neuropeptides, hormones, neurotrophins, ATP and metal ions display altered function in AD, which underlies aberrant neuronal activity and pathology. However, research into how the manipulation of neuromodulators may be useful in the treatment of AD is relatively understudied. Combining neuromodulator targeting with more novel methods of drug delivery, such as the use of multi-targeted directed ligands, combinatorial drugs and encapsulated nanoparticle delivery systems, may help to overcome limitations of conventional treatments. These include difficulty crossing the blood-brain-barrier and the exertion of effects on a single target only. This review aims to highlight the ways in which neuromodulator functions are altered in AD and investigate how future therapies targeting such substances, which act upstream to classical neurotransmitter systems, may be of potential therapeutic benefit in the sustained search for more effective treatments.
Collapse
Affiliation(s)
- Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Faculty of Science, National University of Singapore, Singapore 117546, Singapore
| | - Woori Chae
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
15
|
Pal A, Cerchiaro G, Rani I, Ventriglia M, Rongioletti M, Longobardi A, Squitti R. Iron in Alzheimer's Disease: From Physiology to Disease Disabilities. Biomolecules 2022; 12:1248. [PMID: 36139084 PMCID: PMC9496246 DOI: 10.3390/biom12091248] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
Reactive oxygen species (ROS) play a key role in the neurodegeneration processes. Increased oxidative stress damages lipids, proteins, and nucleic acids in brain tissue, and it is tied to the loss of biometal homeostasis. For this reason, attention has been focused on transition metals involved in several biochemical reactions producing ROS. Even though a bulk of evidence has uncovered the role of metals in the generation of the toxic pathways at the base of Alzheimer's disease (AD), this matter has been sidelined by the advent of the Amyloid Cascade Hypothesis. However, the link between metals and AD has been investigated in the last two decades, focusing on their local accumulation in brain areas known to be critical for AD. Recent evidence revealed a relation between iron and AD, particularly in relation to its capacity to increase the risk of the disease through ferroptosis. In this review, we briefly summarize the major points characterizing the function of iron in our body and highlight why, even though it is essential for our life, we have to monitor its dysfunction, particularly if we want to control our risk of AD.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, West Bengal, India
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André 09210-580, SP, Brazil
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar University (MMU), Mullana, Ambala 133203, Haryana, India
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, 00186 Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
| | - Antonio Longobardi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Rosanna Squitti
- Department of Laboratory Medicine, Research and Development Division, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
| |
Collapse
|
16
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
17
|
Repac Antić D, Parčina M, Gobin I, Petković Didović M. Chelation in Antibacterial Drugs: From Nitroxoline to Cefiderocol and Beyond. Antibiotics (Basel) 2022; 11:1105. [PMID: 36009974 PMCID: PMC9405089 DOI: 10.3390/antibiotics11081105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
In the era of escalating antimicrobial resistance, the need for antibacterial drugs with novel or improved modes of action (MOAs) is a health concern of utmost importance. Adding or improving the chelating abilities of existing drugs or finding new, nature-inspired chelating agents seems to be one of the major ways to ensure progress. This review article provides insight into the modes of action of antibacterial agents, class by class, through the perspective of chelation. We covered a wide scope of antibacterials, from a century-old quintessential chelating agent nitroxoline, currently unearthed due to its newly discovered anticancer and antibiofilm activities, over the commonly used antibacterial classes, to new cephalosporin cefiderocol and a potential future class of tetramates. We show the impressive spectrum of roles that chelation plays in antibacterial MOAs. This, by itself, demonstrates the importance of understanding the fundamental chemistry behind such complex processes.
Collapse
Affiliation(s)
- Davorka Repac Antić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Clinical Microbiology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, Bonn University Hospital, 53127 Bonn, Germany
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Mirna Petković Didović
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
18
|
Whitmore CA, Haynes JR, Behof WJ, Rosenberg AJ, Tantawy MN, Hachey BC, Wadzinski BE, Spiller BW, Peterson TE, Paffenroth KC, Harrison FE, Beelman RB, Wijesinghe P, Matsubara JA, Pham W. Longitudinal Consumption of Ergothioneine Reduces Oxidative Stress and Amyloid Plaques and Restores Glucose Metabolism in the 5XFAD Mouse Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2022; 15:ph15060742. [PMID: 35745661 PMCID: PMC9228400 DOI: 10.3390/ph15060742] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Ergothioneine (ERGO) is a unique antioxidant and a rare amino acid available in fungi and various bacteria but not in higher plants or animals. Substantial research data indicate that ERGO is a physiological antioxidant cytoprotectant. Different from other antioxidants that need to breach the blood-brain barrier to enter the brain parenchyma, a specialized transporter called OCTN1 has been identified for transporting ERGO to the brain. Purpose: To assess whether consumption of ERGO can prevent the progress of Alzheimer's disease (AD) on young (4-month-old) 5XFAD mice. Methods and materials: Three cohorts of mice were tested in this study, including ERGO-treated 5XFAD, non-treated 5XFAD, and WT mice. After the therapy, the animals went through various behavioral experiments to assess cognition. Then, mice were scanned with PET imaging to evaluate the biomarkers associated with AD using [11C]PIB, [11C]ERGO, and [18F]FDG radioligands. At the end of imaging, the animals went through cardiac perfusion, and the brains were isolated for immunohistology. Results: Young (4-month-old) 5XFAD mice did not show a cognitive deficit, and thus, we observed modest improvement in the treated counterparts. In contrast, the response to therapy was clearly detected at the molecular level. Treating 5XFAD mice with ERGO resulted in reduced amyloid plaques, oxidative stress, and rescued glucose metabolism. Conclusions: Consumption of high amounts of ERGO benefits the brain. ERGO has the potential to prevent AD. This work also demonstrates the power of imaging technology to assess response during therapy.
Collapse
Affiliation(s)
- Clayton A. Whitmore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin R. Haynes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - William J. Behof
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Adam J. Rosenberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mohammed N. Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brian C. Hachey
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA;
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37233, USA; (B.E.W.); (B.W.S.); (K.C.P.)
| | - Benjamin W. Spiller
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37233, USA; (B.E.W.); (B.W.S.); (K.C.P.)
| | - Todd E. Peterson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Krista C. Paffenroth
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37233, USA; (B.E.W.); (B.W.S.); (K.C.P.)
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA;
| | - Fiona E. Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA;
- Department of Medicine, Diabetes, Endocrinology & Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Robert B. Beelman
- Department of Food Science, Center for Plant and Mushroom Foods for Health, Penn State University, University Park, PA 16802, USA;
| | - Printha Wijesinghe
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada; (P.W.); (J.A.M.)
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada; (P.W.); (J.A.M.)
| | - Wellington Pham
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA;
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Correspondence:
| |
Collapse
|
19
|
Singh SK, Balendra V, Obaid AA, Esposto J, Tikhonova MA, Gautam NK, Poeggeler B. Copper-Mediated β-Amyloid Toxicity and its Chelation Therapy in Alzheimer's Disease. Metallomics 2022; 14:6554256. [PMID: 35333348 DOI: 10.1093/mtomcs/mfac018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/08/2022] [Indexed: 01/10/2023]
Abstract
The link between bio-metals, Alzheimer's disease (AD), and its associated protein, amyloid-β (Aβ) is very complex and one of the most studied aspects currently. Alzheimer's disease, a progressive neurodegenerative disease, is proposed to occurs due to the misfolding and aggregation of Aβ. Dyshomeostasis of metal ions and their interaction with Aβ has largely been implicated in AD. Copper plays a crucial role in amyloid-β toxicity and AD development potentially occurs through direct interaction with the copper-binding motif of APP and different amino acid residues of Aβ. Previous reports suggest that high levels of copper accumulation in the AD brain result in modulation of toxic Aβ peptide levels, implicating the role of copper in the pathophysiology of AD. In this review, we explore the possible mode of copper ion interaction with Aβ which accelerates the kinetics of fibril formation and promote amyloid-β mediated cell toxicity in Alzheimer's disease and the potential use of various copper chelators in the prevention of copper-mediated Aβ toxicity.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow-226002, India
| | - Vyshnavy Balendra
- Saint James School of Medicine, Park Ridge, Illinois, United States of America 60068
| | - Ahmad A Obaid
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Josephine Esposto
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, CanadaK9L 0G2
| | - Maria A Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Scientific Research Institute of Neurosciences and Medicine; Timakov st., 4, Novosibirsk, 630117, Russia
| | - Naveen Kumar Gautam
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology & Anthropology, Faculty of Biology and Psychology, Georg-August-University of Göttingen, Am Türmchen 3,33332 Gütersloh, Germany
| |
Collapse
|
20
|
Abstract
Copper ions bind to biomolecules (e.g., peptides and proteins) playing an essential role in many biological and physiological pathways in the human body. The resulting complexes may contribute to the initiation of neurodegenerative diseases, cancer, and bacterial and viral diseases, or act as therapeutics. Some compounds can chemically damage biological macromolecules and initiate the development of pathogenic states. Conversely, a number of these compounds may have antibacterial, antiviral, and even anticancer properties. One of the most significant current discussions in Cu biochemistry relates to the mechanisms of the positive and negative actions of Cu ions based on the generation of reactive oxygen species, including radicals that can interact with DNA molecules. This review aims to analyze various peptide–copper complexes and the mechanism of their action.
Collapse
|
21
|
Zhang X, Zhang J, Wang Y, Wang M, Tang M, Lin Y, Liu Q. Epigenetic Modifications and Neurodegenerative Disorders: A Biochemical Perspective. ACS Chem Neurosci 2022; 13:177-184. [PMID: 35000390 DOI: 10.1021/acschemneuro.1c00701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Methylations in living cells are methyl groups attached to amino acids, DNA, RNA, and so on. However, their biochemical roles have not been fully defined. A theory has been postulated that methylation leads to hyperconjugation, and the electron-donating feature weakens a nearby chemical bond, which increases the bond length of C4-N4 of 5-methylcytosine, therefore weakening the C4-N4 bond and resulting in stronger protonation or hydrogen bonding of the N4 nitrogen atom. Protonation can give rise to the generation of mutagenic and carcinogenic strong acids such as HCl, which are also capable of solubilizing stressful, insoluble, and stiff salts. Insoluble and rigid salts such as calcium oxalate and/or calcium phosphate were recently proposed as a primary cause of some neurodegenerative disorders. Protonation of nitrogen atoms in 5-methylcytosine enhances the interaction with negatively charged phosphate groups and contributes to the formation of compact heterochromatin. The electronegativity of the oxygen atoms in the modifications of 5-hydroxymethylcytosine or 5-formylcytosine can shorten the lengths of adjacent bonds with no increase of cation affinity in N4. The carboxyl group in 5-carboxylcytosine is a weak acid capable of antagonizing mutagenic HCl and modestly helping solubilize insoluble salts. Electron delocalization of the methyl group in N4-methylcytosine results in a lower affinity of N4 to cations. The positive charge at N3 in the resonance structure of 3-methylcytosine is lessened by the electron-donating attribute of the methyl group attached to the N3 atom, consequently reducing acid formation. The electron delocalization of three methyl groups decreases the positive charge in the amino nitrogen in the side group of lysine 4 in histone H3, weakening interactions with phosphate groups and consequently activating gene expression. The carbonyl oxygen in 8-oxo-7,8-dihydroguanine draws protons and accumulates HCl, accounting for its moderate mutation propensity and potential capacity to solubilize stiff salts. The biochemical insight will further our understanding on the crosstalk of genetics and epigenetics in the etiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Jiaming Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Minji Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Minhang Campus, 3663 Zhongshan Rd North, Shanghai 200062, China
| | - Man Tang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuhan Lin
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiuyun Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
22
|
Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO, Whitworth AJ, Aschner M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: Limitations, and current and future perspectives. J Trace Elem Med Biol 2021; 67:126779. [PMID: 34034029 DOI: 10.1016/j.jtemb.2021.126779] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent cause of cognitive impairment and dementia worldwide. The pathobiology of the disease has been studied in the form of several hypotheses, ranging from oxidative stress, amyloid-beta (Aβ) aggregation, accumulation of tau forming neurofibrillary tangles (NFT) through metal dysregulation and homeostasis, dysfunction of the cholinergic system, and to inflammatory and autophagic mechanism. However, none of these hypotheses has led to confirmed diagnostics or approved cure for the disease. OBJECTIVE This review is aimed as a basic and an encyclopedic short course into metals in AD and discusses the advances in chelation strategies and developments adopted in the treatment of the disease. Since there is accumulating evidence of the role of both biometal dyshomeostasis (iron (Fe), copper (Cu), and zinc (Zn)) and metal-amyloid interactions that lead to the pathogenesis of AD, this review focuses on unraveling therapeutic chelation strategies that have been considered in the treatment of the disease, aiming to sequester free and protein-bound metal ions and reducing cerebral metal burden. Promising compounds possessing chemically modified moieties evolving as multi-target ligands used as anti-AD drug candidates are also covered. RESULTS AND CONCLUSION Several multidirectional and multifaceted studies on metal chelation therapeutics show the need for improved synthesis, screening, and analysis of compounds to be able to effectively present chelating anti-AD drugs. Most drug candidates studied have limitations in their physicochemical properties; some enhance redistribution of metal ions, while others indirectly activate signaling pathways in AD. The metal chelation process in vivo still needs to be established and the design of potential anti-AD compounds that bi-functionally sequester metal ions as well as inhibit the Aβ aggregation by competing with the metal ions and reducing metal-induced oxidative damage and neurotoxicity may signal a bright end in chelation-based therapeutics of AD.
Collapse
Affiliation(s)
- Kehinde D Fasae
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria.
| | - Tolulope R Faloye
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Atinuke Y Odunsi
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Bolaji O Oyetayo
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Joseph I Enya
- Department of Anatomy, University of Ilorin, Kwara State, Nigeria
| | - Joshua A Rotimi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
23
|
Nobahar A, Carlier JD, Miguel MG, Costa MC. A review of plant metabolites with metal interaction capacity: a green approach for industrial applications. Biometals 2021; 34:761-793. [PMID: 33961184 DOI: 10.1007/s10534-021-00315-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/28/2021] [Indexed: 01/20/2023]
Abstract
Rapid industrial development is responsible for severe problems related to environmental pollution. Many human and industrial activities require different metals and, as a result, great amounts of metals/heavy metals are discharged into the water and soil making them dangerous for both human and ecosystems and this is being aggravated by intensive demand and utilization. In addition, compounds with metal binding capacities are needed to be used for several purposes including in activities related to the removal and/or recovery of metals from effluents and soils, as metals' corrosion inhibitors, in the synthesis of metallic nanoparticles and as metal related pharmaceuticals, preferably a with minimum risks associated to the environment. Plants are able to synthesize an uncountable number of compounds with numerous functions, including compounds with metal binding capabilities. In fact, some of the plants' secondary metabolites can bind to various metals through different mechanisms, as such they are excellent sources of such compounds due to their high availability and vast diversity. In addition, the use of plant-based compounds is desirable from an environmental and economical point of view, thus being potential candidates for utilization in different industrial activities, replacing conventional physiochemical methods. This review focuses on the ability of some classes of compounds that can be found in relatively high concentrations in plants, having good metal binding capacities and thus with potential utilization in metal based industrial activities and that can be involved in the progressive development of new environmentally friendly strategies.
Collapse
Affiliation(s)
- Amir Nobahar
- Centre of Marine Sciences (CCMAR), University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal.,Faculty of Sciences and Technology, University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Jorge Dias Carlier
- Centre of Marine Sciences (CCMAR), University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Maria Graça Miguel
- Faculty of Sciences and Technology, University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Maria Clara Costa
- Centre of Marine Sciences (CCMAR), University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal. .,Faculty of Sciences and Technology, University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal.
| |
Collapse
|
24
|
Liu C, Luo X. Potential molecular and graphene oxide chelators to dissolve amyloid-β plaques in Alzheimer's disease: a density functional theory study. J Mater Chem B 2021; 9:2736-2746. [PMID: 33688880 DOI: 10.1039/d0tb02985h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The onset of Alzheimer's disease (AD) is caused by amyloid-β (Aβ) aggregation. Elevated levels of metals, specifically copper, zinc, iron, and aluminum, accumulate in senile Aβ; plaque deposits, disrupting normal brain homeostasis and cognitive functions. In this investigation, we studied the potential of several molecular and graphene oxide chelators to be used for future AD research and chelation therapy. To understand the interactions between selected metals (Cu, Zn, Fe, and Al), the Aβ peptide, and various potential metal chelating compounds, we implemented the density functional theory (DFT) method to calculate the binding energies of each metal-molecule complex. The binding energy of each metal-chelator complex was compared with that of the metal-Aβ compound to determine the chelation potential of the selected chelator. The potential chelating agents studied were 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone (INNHQ), 8-hydroxyquinoline-2-carboxaldehyde 2-furoyl hydrazone (HQFUH), quercetin, and graphene oxide (GO). Our calculated binding energies revealed that the HQFUH molecule holds direct ability to chelate copper, zinc, iron, and aluminum. In addition, the GO complex with a 12.5% oxygen concentration demonstrates aluminum chelation ability. Our results demonstrate that HQFUH and GO can be used in future AD drug development research and therapy to target toxic metal-Aβ interactions and reduce Aβ aggregation.
Collapse
Affiliation(s)
- Christina Liu
- National Graphene Research and Development Center, Springfield, Virginia 22151, USA.
| | | |
Collapse
|
25
|
Kamecki F, Marcucci C, Ferreira-Gomes M, Sabatier L, Knez D, Gobec S, Monti JLE, Rademacher M, Marcos A, de Tezanos Pinto F, Gavernet L, Colettis N, Marder M. 2’-Hydroxy-4’,5’-dimethyl-4-dimethylaminochalcone, a novel fluorescent flavonoid with capacity to detect aluminium in cells and modulate Alzheimer’s disease targets. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Van Trang N, Thuy PT, Mai Thanh DT, Son NT. Benzofuran–stilbene hybrid compounds: an antioxidant assessment – a DFT study. RSC Adv 2021. [DOI: 10.1039/d1ra01076j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The kinetic reaction of the benzofuran–stilbene hybrid compound 5-(2-(2-(4-hydroxyphenyl)benzofuran-5-yl)vinyl)benzene-1,3-diol captures the HOO˙ free radical.
Collapse
Affiliation(s)
| | - Phan Thi Thuy
- School of Natural Sciences Education
- Vinh University
- Vietnam
| | - Dinh Thi Mai Thanh
- University of Science and Technology of Hanoi
- Vietnam Academy of Science and Technology (VAST)
- Hanoi
- Vietnam
| | - Ninh The Son
- Institute of Chemistry
- Vietnam Academy of Science and Technology (VAST)
- Hanoi
- Vietnam
| |
Collapse
|
27
|
Lakey-Beitia J, Burillo AM, Penna GL, Hegde ML, Rao K. Polyphenols as Potential Metal Chelation Compounds Against Alzheimer's Disease. J Alzheimers Dis 2021; 82:S335-S357. [PMID: 32568200 PMCID: PMC7809605 DOI: 10.3233/jad-200185] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 50 million people worldwide. The pathology of this multifactorial disease is primarily characterized by the formation of amyloid-β (Aβ) aggregates; however, other etiological factors including metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), play critical role in disease progression. Because these transition metal ions are important for cellular function, their imbalance can cause oxidative stress that leads to cellular death and eventual cognitive decay. Importantly, these transition metal ions can interact with the amyloid-β protein precursor (AβPP) and Aβ42 peptide, affecting Aβ aggregation and increasing its neurotoxicity. Considering how metal dyshomeostasis may substantially contribute to AD, this review discusses polyphenols and the underlying chemical principles that may enable them to act as natural chelators. Furthermore, polyphenols have various therapeutic effects, including antioxidant activity, metal chelation, mitochondrial function, and anti-amyloidogenic activity. These combined therapeutic effects of polyphenols make them strong candidates for a moderate chelation-based therapy for AD.
Collapse
Affiliation(s)
- Johant Lakey-Beitia
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Andrea M. Burillo
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Giovanni La Penna
- National Research Council, Institute of Chemistry of Organometallic Compounds, Sesto Fiorentino (FI), Italy
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Weill Medical College of Cornell University, New York, NY, USA
| | - K.S. Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
- Zhongke Jianlan Medical Institute, Hangzhou, Republic of China
| |
Collapse
|
28
|
Gleason A, Bush AI. Iron and Ferroptosis as Therapeutic Targets in Alzheimer's Disease. Neurotherapeutics 2021; 18:252-264. [PMID: 33111259 PMCID: PMC8116360 DOI: 10.1007/s13311-020-00954-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD), one of the most common neurodegenerative diseases worldwide, has a devastating personal, familial, and societal impact. In spite of profound investment and effort, numerous clinical trials targeting amyloid-β, which is thought to have a causative role in the disease, have not yielded any clinically meaningful success to date. Iron is an essential cofactor in many physiological processes in the brain. An extensive body of work links iron dyshomeostasis with multiple aspects of the pathophysiology of AD. In particular, regional iron load appears to be a risk factor for more rapid cognitive decline. Existing iron-chelating agents have been in use for decades for other indications, and there are preliminary data that some of these could be effective in AD. Many novel iron-chelating compounds are under development, some with in vivo data showing potential Alzheimer's disease-modifying properties. This heretofore underexplored therapeutic class has considerable promise and could yield much-needed agents that slow neurodegeneration in AD.
Collapse
Affiliation(s)
- Andrew Gleason
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
29
|
Zhang X, Ma X, Gan T, Shi Y, Wang Y, Liu Q. Secondary Chemical Bonding between Insoluble Calcium Oxalate and Carbonyl Oxygen Atoms of GLY and VAL Residues Triggers the Formation of Aβ Aggregates and Their Deposition in the Brain. ACS Chem Neurosci 2020; 11:4007-4011. [PMID: 33271013 DOI: 10.1021/acschemneuro.0c00662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite intense efforts, the cause of Alzheimer's disease is still not fully understood. A chemical and biochemical perspective could shed light on this disorder. Secondary chemical bonding between calcium and carbonyl oxygen atoms of glycine and valine might give rise to aggregates in the brain, which may later result in cell senescence. The decrease of solubility caused by amino acid substitutions in specific risk factors compounds insolubility issue and likely triggers early-onset Alzheimer's disease. Occasionally the enhancement of hydrogen bonding by amino acid replacements can reinforce the aggregates. Therefore, secondary chemical bonding to cations can generate cellular stresses in patients with Alzheimer's disease in addition to other chemical and biochemical interactions such as salt bridge. The distinction between early-onset and late-onset Alzheimer's disease risk factors may lie in the total capacity of a protein or local potency of a protein fragment to bind calcium or/and oxalate as calcium oxalate is highly insoluble and stressful.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Xiaoqian Ma
- The Third Xiang Ya Hospital of Central South University, Changsha 410006, China
| | - Tao Gan
- School of Basic Medicine, Gannan Medical University, Ganzhou 34100, Jiangxi, China
| | - Yunfan Shi
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuan Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiuyun Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
30
|
Porchia M, Pellei M, Del Bello F, Santini C. Zinc Complexes with Nitrogen Donor Ligands as Anticancer Agents. Molecules 2020; 25:E5814. [PMID: 33317158 PMCID: PMC7763991 DOI: 10.3390/molecules25245814] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
The search for anticancer metal-based drugs alternative to platinum derivatives could not exclude zinc derivatives due to the importance of this metal for the correct functioning of the human body. Zinc, the second most abundant trace element in the human body, is one of the most important micro-elements essential for human physiology. Its ubiquity in thousands of proteins and enzymes is related to its chemical features, in particular its lack of redox activity and its ability to support different coordination geometries and to promote fast ligands exchange. Analogously to other trace elements, the impairment of its homeostasis can lead to various diseases and in some cases can be also related to cancer development. However, in addition to its physiological role, zinc can have beneficial therapeutic and preventive effects on infectious diseases and, compared to other metal-based drugs, Zn(II) complexes generally exert lower toxicity and offer few side effects. Zinc derivatives have been proposed as antitumor agents and, among the great number of zinc coordination complexes which have been described so far, this review focuses on the design, synthesis and biological studies of zinc complexes comprising N-donor ligands and that have been reported within the last five years.
Collapse
Affiliation(s)
| | - Maura Pellei
- Chemistry Division, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy;
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy;
| | - Carlo Santini
- Chemistry Division, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy;
| |
Collapse
|
31
|
Gromadzka G, Tarnacka B, Flaga A, Adamczyk A. Copper Dyshomeostasis in Neurodegenerative Diseases-Therapeutic Implications. Int J Mol Sci 2020; 21:E9259. [PMID: 33291628 PMCID: PMC7730516 DOI: 10.3390/ijms21239259] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Copper is one of the most abundant basic transition metals in the human body. It takes part in oxygen metabolism, collagen synthesis, and skin pigmentation, maintaining the integrity of blood vessels, as well as in iron homeostasis, antioxidant defense, and neurotransmitter synthesis. It may also be involved in cell signaling and may participate in modulation of membrane receptor-ligand interactions, control of kinase and related phosphatase functions, as well as many cellular pathways. Its role is also important in controlling gene expression in the nucleus. In the nervous system in particular, copper is involved in myelination, and by modulating synaptic activity as well as excitotoxic cell death and signaling cascades induced by neurotrophic factors, copper is important for various neuronal functions. Current data suggest that both excess copper levels and copper deficiency can be harmful, and careful homeostatic control is important. This knowledge opens up an important new area for potential therapeutic interventions based on copper supplementation or removal in neurodegenerative diseases including Wilson's disease (WD), Menkes disease (MD), Alzheimer's disease (AD), Parkinson's disease (PD), and others. However, much remains to be discovered, in particular, how to regulate copper homeostasis to prevent neurodegeneration, when to chelate copper, and when to supplement it.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland;
| | - Beata Tarnacka
- Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Rehabilitation Clinic, Medical University of Warsaw, Spartańska 1 Street, 02-637 Warsaw, Poland;
| | - Anna Flaga
- Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland;
| |
Collapse
|
32
|
Complexation of environmentally and biologically relevant metals with bifunctional 3-hydroxy-4-pyridinones. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
The Function of Transthyretin Complexes with Metallothionein in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21239003. [PMID: 33256250 PMCID: PMC7730073 DOI: 10.3390/ijms21239003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most frequently diagnosed types of dementia in the elderly. An important pathological feature in AD is the aggregation and deposition of the β-amyloid (Aβ) in extracellular plaques. Transthyretin (TTR) can cleave Aβ, resulting in the formation of short peptides with less activity of amyloid plaques formation, as well as being able to degrade Aβ peptides that have already been aggregated. In the presence of TTR, Aβ aggregation decreases and toxicity of Aβ is abolished. This may prevent amyloidosis but the malfunction of this process leads to the development of AD. In the context of Aβplaque formation in AD, we discuss metallothionein (MT) interaction with TTR, the effects of which depend on the type of MT isoform. In the brains of patients with AD, the loss of MT-3 occurs. On the contrary, MT-1/2 level has been consistently reported to be increased. Through interaction with TTR, MT-2 reduces the ability of TTR to bind to Aβ, while MT-3 causes the opposite effect. It increases TTR-Aβ binding, providing inhibition of Aβ aggregation. The protective effect, assigned to MT-3 against the deposition of Aβ, relies also on this mechanism. Additionally, both Zn7MT-2 and Zn7MT-3, decrease Aβ neurotoxicity in cultured cortical neurons probably because of a metal swap between Zn7MT and Cu(II)Aβ. Understanding the molecular mechanism of metals transfer between MT and other proteins as well as cognition of the significance of TTR interaction with different MT isoforms can help in AD treatment and prevention.
Collapse
|
34
|
Ramli NZ, Yahaya MF, Tooyama I, Damanhuri HA. A Mechanistic Evaluation of Antioxidant Nutraceuticals on Their Potential against Age-Associated Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E1019. [PMID: 33092139 PMCID: PMC7588884 DOI: 10.3390/antiox9101019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Nutraceuticals have been extensively studied worldwide due to its neuroprotective effects in in vivo and in vitro studies, attributed by the antioxidative properties. Alzheimer (AD) and Parkinson disease (PD) are the two main neurodegenerative disorders that are discussed in this review. Both AD and PD share the similar involvement of oxidative stress in their pathophysiology. Nutraceuticals exert their antioxidative effects via direct scavenging of free radicals, prevent damage to biomolecules, indirectly stimulate the endogenous antioxidative enzymes and gene expressions, inhibit activation of pro-oxidant enzymes, and chelate metals. In addition, nutraceuticals can act as modulators of pro-survival, pro-apoptotic, and inflammatory signaling pathways. They have been shown to be effective particularly in preclinical stages, due to their multiple mechanisms of action in attenuating oxidative stress underlying AD and PD. Natural antioxidants from food sources and natural products such as resveratrol, curcumin, green tea polyphenols, and vitamin E are promising therapeutic agents in oxidative stress-mediated neurodegenerative disease as they have fewer adverse effects, more tolerable, cheaper, and sustainable for long term consumption.
Collapse
Affiliation(s)
- Nur Zuliani Ramli
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ikuo Tooyama
- Molecular Neuroscience Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu 520-2192, Shiga, Japan;
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
35
|
Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020; 21:E7660. [PMID: 33081348 PMCID: PMC7589751 DOI: 10.3390/ijms21207660] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology. Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase and decrease its levels in animal models, respectively, to study which one is the cause. For more than twenty years, many in vitro studies have been devoted to identifying metals' roles in Aβ accumulation, oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is an effective strategy for AD remains popular. However, some recent reports of genetic-regulating copper transporters in AD models have shed light on treating this refractory disease. This review aims to succinctly present a better understanding of Cu ions' current status in several AD features, and some conflicting reports are present herein.
Collapse
Affiliation(s)
- Hafza Wajeeha Ejaz
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth WA6027, Australia;
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
36
|
Zubčić K, Hof PR, Šimić G, Jazvinšćak Jembrek M. The Role of Copper in Tau-Related Pathology in Alzheimer's Disease. Front Mol Neurosci 2020; 13:572308. [PMID: 33071757 PMCID: PMC7533614 DOI: 10.3389/fnmol.2020.572308] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
All tauopathies, including Alzheimer's disease (AD), are characterized by the intracellular accumulation of abnormal forms of tau protein in neurons and glial cells, which negatively affect microtubule stability. Under physiological conditions, tubulin-associated unit (Tau) protein is intrinsically disordered, almost without secondary structure, and is not prone to aggregation. In AD, it assembles, and forms paired helical filaments (PHFs) that further build-up neurofibrillary tangles (NFTs). Aggregates are composed of hyperphosphorylated tau protein that is more prone to aggregation. The pathology of AD is also linked to disturbed copper homeostasis, which promotes oxidative stress (OS). Copper imbalance is widely observed in AD patients. Deregulated copper ions may initiate and exacerbate tau hyperphosphorylation and formation of β-sheet-rich tau fibrils that ultimately contribute to synaptic failure, neuronal death, and cognitive decline observed in AD patients. The present review summarizes factors affecting the process of tau aggregation, conformational changes of small peptide sequences in the microtubule-binding domain required for these motifs to act as seeding sites in aggregation, and the role of copper in OS induction, tau hyperphosphorylation and tau assembly. A better understanding of the various factors that affect tau aggregation under OS conditions may reveal new targets and novel pharmacological approaches for the therapy of AD.
Collapse
Affiliation(s)
- Klara Zubčić
- Laboratory for Developmental Neuropathology, Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goran Šimić
- Laboratory for Developmental Neuropathology, Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.,Department of Psychology, Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
37
|
Gorantla NV, Das R, Balaraman E, Chinnathambi S. Transition metal nickel prevents Tau aggregation in Alzheimer's disease. Int J Biol Macromol 2020; 156:1359-1365. [DOI: 10.1016/j.ijbiomac.2019.11.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/24/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
|
38
|
El-Naggar SA, El-Said KS, Elwan M, Mobasher M, Mansour F, Elbakry M, Kabil DI. Toxicity of bean cooking media containing EDTA in mice. Toxicol Ind Health 2020; 36:436-445. [PMID: 32564678 DOI: 10.1177/0748233719893178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The possible renal and hepatic toxicities of ethylenediaminetetraacetic acid (EDTA) in bean cooking media were studied using 100 male albino mice. Two sublethal doses of EDTA were used to explore their toxic effects; 20 mg/kg and 200 mg/kg, which corresponded to 1/100th and 1/10th of LD50, respectively. Accordingly, the toxicity study was performed using 50 mice, divided into five groups (n = 10/group) as follows: group 1 (Gp1) served as a negative control and was orally administered normal saline; group 2 (Gp2) was administered the bean cooking medium; group 3 (Gp3) was administered EDTA (200 mg/kg); group 4 (Gp4) was administered bean cooking medium containing 20 mg/kg of EDTA; and group 5 (Gp5) was administered bean cooking medium containing 200 mg/kg of EDTA. The results showed no significant changes in liver and kidney functions in Gp2 while Gp3, Gp4, and Gp5 exhibited significant increases in adverse liver and kidney function markers. Hematocrit values were significantly decreased in Gp3 and Gp5, while the total white blood cells counts were significantly decreased in Gp3 and significantly increased in Gp5. The number of platelets was decreased in Gp3, Gp4, and Gp5. The blood levels of sodium (Na+), iron (Fe2+), and calcium (Ca2+) were decreased in Gp3, Gp4, and Gp5 due to the chelating effects of EDTA. The hepatic and renal architectures were disorganized in Gp3, Gp4, and Gp5 with some hemorrhagic manifestations in livers and kidneys of mice. These results demonstrate that EDTA in bean cooking is harmful in mice under the conditions of this study, and the potentially harmful effects in humans supports restricting its use.
Collapse
Affiliation(s)
- Sabry Ali El-Naggar
- Department of Zoology, Faculty of Science, 68781Tanta University, Tanta, Egypt
| | - Karim Samy El-Said
- Division of Biochemistry, Department of Chemistry, Faculty of Science, 68781Tanta University, Tanta, Egypt
| | - Mona Elwan
- Department of Zoology, Faculty of Science, 68781Tanta University, Tanta, Egypt
| | - Maysa Mobasher
- Department of Pathology, Faculty of Medicine, Jouf University, Sakaka, Saudi Arabia.,Department of Clinical Pathology, Ministry of Health, El Ahrar Educational Hospital, Zagazig, Egypt
| | - Fotouh Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, 68781Tanta University, Tanta, Egypt
| | - Mohamed Elbakry
- Division of Biochemistry, Department of Chemistry, Faculty of Science, 68781Tanta University, Tanta, Egypt
| | - Doaa Ibrahim Kabil
- Department of Home Economics, Faculty of Specific Education, 68781Tanta University, Tanta, Egypt
| |
Collapse
|
39
|
Importance of Biometals as Targets in Medicinal Chemistry: An Overview about the Role of Zinc (II) Chelating Agents. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zinc (II) is an important biometal in human physiology. Moreover, in the last two decades, it was deeply studied for its involvement in several pathological states. In particular, the regulation of its concentration in synaptic clefts can be fundamental for the treatment of neurodegenerative diseases, such as Alzheimer’s disease (AD). Zinc (II) is also a constituent of metalloenzymes (i.e., matrix metalloproteinases, MMPs, and carbonic anhydrases, CAs) with catalytic function; therefore, it can be an important target for the inhibition of these proteins, frequently involved in cancer onset. This review is focused on the significance of zinc (II) chelating agents in past and future medicinal chemistry research, and on the importance of selectivity in order to revamp the possibility of their use in therapy, often hindered by possible side effects.
Collapse
|
40
|
Dharmalingam P, Talakatta G, Mitra J, Wang H, Derry PJ, Nilewski LG, McHugh EA, Fabian RH, Mendoza K, Vasquez V, Hegde PM, Kakadiaris E, Roy T, Boldogh I, Hegde VL, Mitra S, Tour JM, Kent TA, Hegde ML. Pervasive Genomic Damage in Experimental Intracerebral Hemorrhage: Therapeutic Potential of a Mechanistic-Based Carbon Nanoparticle. ACS NANO 2020; 14:2827-2846. [PMID: 32049495 PMCID: PMC7850811 DOI: 10.1021/acsnano.9b05821] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Therapy for intracerebral hemorrhage (ICH) remains elusive, in part dependent on the severity of the hemorrhage itself as well as multiple deleterious effects of blood and its breakdown products such as hemin and free iron. While oxidative injury and genomic damage have been seen following ICH, the details of this injury and implications remain unclear. Here, we discovered that, while free iron produced mostly reactive oxygen species (ROS)-related single-strand DNA breaks, hemin unexpectedly induced rapid and persistent nuclear and mitochondrial double-strand breaks (DSBs) in neuronal and endothelial cell genomes and in mouse brains following experimental ICH comparable to that seen with γ radiation and DNA-complexing chemotherapies. Potentially as a result of persistent DSBs and the DNA damage response, hemin also resulted in senescence phenotype in cultured neurons and endothelial cells. Subsequent resistance to ferroptosis reported in other senescent cell types was also observed here in neurons. While antioxidant therapy prevented senescence, cells became sensitized to ferroptosis. To address both senescence and resistance to ferroptosis, we synthesized a modified, catalytic, and rapidly internalized carbon nanomaterial, poly(ethylene glycol)-conjugated hydrophilic carbon clusters (PEG-HCC) by covalently bonding the iron chelator, deferoxamine (DEF). This multifunctional nanoparticle, DEF-HCC-PEG, protected cells from both senescence and ferroptosis and restored nuclear and mitochondrial genome integrity in vitro and in vivo. We thus describe a potential molecular mechanism of hemin/iron-induced toxicity in ICH that involves a rapid induction of DSBs, senescence, and the consequent resistance to ferroptosis and provide a mechanistic-based combinatorial therapeutic strategy.
Collapse
Affiliation(s)
- Prakash Dharmalingam
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Girish Talakatta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Paul J Derry
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | | | - Emily A McHugh
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Roderic H Fabian
- Department of Neurology, Baylor College of Medicine, and Michael E. DeBakey VA Medical Center, Houston, Texas 77030, United States
| | - Kimberly Mendoza
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Velmarini Vasquez
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Eugenia Kakadiaris
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Trenton Roy
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Venkatesh L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Weill Medical College of Cornell University, New York, New York 10065, United States
| | - James M Tour
- Departments of Chemistry, Computer Science, Materials Science and NanoEngineering, Smalley-Curl Institute and the NanoCarbon Center, Rice University, Houston, Texas 77005, United States
| | - Thomas A Kent
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, Texas 77030, United States
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Weill Medical College of Cornell University, New York, New York 10065, United States
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist, Houston, Texas 77030, United States
| |
Collapse
|
41
|
Bjørklund G, Peana M, Dadar M, Chirumbolo S, Aaseth J, Martins N. Mercury-induced autoimmunity: Drifting from micro to macro concerns on autoimmune disorders. Clin Immunol 2020; 213:108352. [PMID: 32032765 DOI: 10.1016/j.clim.2020.108352] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
Mercury (Hg) is widely recognized as a neurotoxic metal, besides it can also act as a proinflammatory agent and immunostimulant, depending on individual exposure and susceptibility. Mercury exposure may arise from internal body pathways, such as via dental amalgams, preservatives in drugs and vaccines, and seafood consumption, or even from external pathways, i.e., occupational exposure, environmental pollution, and handling of metallic items and cosmetics containing Hg. In susceptible individuals, chronic low Hg exposure may trigger local and systemic inflammation, even exacerbating the already existing autoimmune response in patients with autoimmunity. Mercury exposure can trigger dysfunction of the autoimmune responses and aggravate immunotoxic effects associated with elevated serum autoantibodies titers. The purpose of the present review is to provide a critical overview of the many issues associated with Hg exposure and autoimmunity. In addition, the paper focuses on individual susceptibility and other health effects of Hg.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal
| |
Collapse
|
42
|
Patwa J, Thakur A, Sharma A, Flora SJS. Monoisoamyl DMSA reduced copper-induced neurotoxicity by lowering 8-OHdG level, amyloid beta and Tau protein expressions in Sprague-Dawley rats. Metallomics 2020; 12:1428-1448. [DOI: 10.1039/d0mt00083c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper dyshomeostasis has long been linked with several neurodegenerative disorders.
Collapse
Affiliation(s)
- Jayant Patwa
- Department of Pharmacology and Toxicology
- National Institute of Pharmaceutical Education and Research (NIPER-R)
- Transit Campus
- Near CRPF Camp
- Lucknow
| | - Ashima Thakur
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER-R)
- Transit Campus
- Lucknow
- India
| | - Abha Sharma
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER-R)
- Transit Campus
- Lucknow
- India
| | - S. J. S. Flora
- Department of Pharmacology and Toxicology
- National Institute of Pharmaceutical Education and Research (NIPER-R)
- Transit Campus
- Near CRPF Camp
- Lucknow
| |
Collapse
|
43
|
Derry PJ, Hegde ML, Jackson GR, Kayed R, Tour JM, Tsai AL, Kent TA. Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer's disease from a ferroptosis perspective. Prog Neurobiol 2020; 184:101716. [PMID: 31604111 PMCID: PMC7850812 DOI: 10.1016/j.pneurobio.2019.101716] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/12/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
The complexity of Alzheimer's disease (AD) complicates the search for effective treatments. While the key roles of pathologically modified proteins has occupied a central role in hypotheses of the pathophysiology, less attention has been paid to the potential role for transition metals overload, subsequent oxidative stress, and tissue injury. The association of transition metals, the major focus heretofore iron and amyloid, the same can now be said for the likely pathogenic microtubular associated tau (MAPT). This review discusses the interplay between iron, pathologically modified tau and oxidative stress, and connects many related discoveries. Basic principles of the transition to pathological MAPT are discussed. Iron, its homeostatic mechanisms, the recently described phenomenon of ferroptosis and purported, although still controversial roles in AD are reviewed as well as considerations to overcome existing hurdles of iron-targeted therapeutic avenues that have been attempted in AD. We summarize the involvement of multiple pathological pathways at different disease stages of disease progression that supports the potential for a combinatorial treatment strategy targeting multiple factors.
Collapse
Affiliation(s)
- Paul J Derry
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Muralidhar L Hegde
- Institute for Academic Medicine, Houston Methodist, Weill Cornell Medical College, Houston, TX, United States
| | - George R Jackson
- Department of Neurology Baylor College of Medicine, Houston, TX, United States; Parkinson's Disease Research, Education and Clinical Center (PADRECC), Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disorders, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - James M Tour
- Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, TX, United States
| | - Ah-Lim Tsai
- Department of Biochemistry and Hematology, McGovern School of Medicine, UT Health Science Center, Houston, TX, United States
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States; Department of Chemistry, Rice University, Houston, TX, United States; Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States.
| |
Collapse
|
44
|
Debnath K, Jana NR, Jana NR. Quercetin Encapsulated Polymer Nanoparticle for Inhibiting Intracellular Polyglutamine Aggregation. ACS APPLIED BIO MATERIALS 2019; 2:5298-5305. [DOI: 10.1021/acsabm.9b00518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Koushik Debnath
- Centre for Advanced Materials and School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nihar R. Jana
- School of Bioscience, Indian Institute of Technology, Kharagpur 721302, India
| | - Nikhil R. Jana
- Centre for Advanced Materials and School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
45
|
Esmieu C, Guettas D, Conte-Daban A, Sabater L, Faller P, Hureau C. Copper-Targeting Approaches in Alzheimer’s Disease: How To Improve the Fallouts Obtained from in Vitro Studies. Inorg Chem 2019; 58:13509-13527. [DOI: 10.1021/acs.inorgchem.9b00995] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | | | - Peter Faller
- LCC−CNRS, Université de Toulouse, CNRS, Toulouse, France
| | | |
Collapse
|
46
|
Arumugam N, Almansour AI, Kumar RS, Kotresha D, Saiswaroop R, Venketesh S. Dispiropyrrolidinyl-piperidone embedded indeno[1,2-b]quinoxaline heterocyclic hybrids: Synthesis, cholinesterase inhibitory activity and their molecular docking simulation. Bioorg Med Chem 2019; 27:2621-2628. [DOI: 10.1016/j.bmc.2019.03.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
|
47
|
Yang J, Minkler P, Grove D, Wang R, Willard B, Dweik R, Hine C. Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B 6. Commun Biol 2019; 2:194. [PMID: 31123718 PMCID: PMC6529520 DOI: 10.1038/s42003-019-0431-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) plays important roles in metabolism and health. Its enzymatic generation from sulfur-containing amino acids (SAAs) is well characterized. However, the existence of non-enzymatic H2S production from SAAs, the chemical mechanism, and its biological implications remain unclear. Here we present non-enzymatic H2S production in vitro and in blood via a reaction specific for the SAA cysteine serving as substrate and requires coordinated catalysis by Vitamin B6, pyridoxal(phosphate), and iron under physiological conditions. An initial cysteine-aldimine is formed by nucleophilic attack of the cysteine amino group to the pyridoxal(phosphate) aldehyde group. Free or heme-bound iron drives the formation of a cysteine-quinonoid, thiol group elimination, and hydrolysis of the desulfurated aldimine back to pyridoxal(phosphate). The reaction ultimately produces pyruvate, NH3, and H2S. This work highlights enzymatic production is inducible and robust in select tissues, whereas iron-catalyzed production contributes underappreciated basal H2S systemically with pathophysiological implications in hemolytic, iron overload, and hemorrhagic disorders.
Collapse
Affiliation(s)
- Jie Yang
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195 USA
| | - Paul Minkler
- Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195 USA
| | - David Grove
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195 USA
| | - Rui Wang
- Faculty of Science, Department of Biology, York University, Toronto, Canada M3J 1P3
| | - Belinda Willard
- Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195 USA
| | - Raed Dweik
- Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195 USA
| |
Collapse
|
48
|
Trigo D, Nadais A, da Cruz e Silva OA. Unravelling protein aggregation as an ageing related process or a neuropathological response. Ageing Res Rev 2019; 51:67-77. [PMID: 30763619 DOI: 10.1016/j.arr.2019.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022]
Abstract
Protein aggregation is normally associated with amyloidosis, namely motor neurone, Alzheimer's, Parkinson's or prion diseases. However, recent results have unveiled a concept of gradual increase of protein aggregation associated with the ageing process, apparently not necessarily associated with pathological conditions. Given that protein aggregation is sufficient to activate stress-response and inflammation, impairing protein synthesis and quality control mechanisms, the former is assumed to negatively affect cellular metabolism and behaviour. In this review the state of the art in protein aggregation research is discussed, namely the relationship between pathology and proteostasis. The role of pathology and ageing in overriding protein quality-control mechanisms, and consequently, the effect of these faulty cellular processes on pathological and healthy ageing, are also addressed.
Collapse
|
49
|
Asili E, Yarahmadian S, Khani H, Sharify M. A Mathematical Model for Amyloid-𝜷 Aggregation in the Presence of Metal Ions: A Timescale Analysis for the Progress of Alzheimer Disease. Bull Math Biol 2019; 81:1943-1964. [PMID: 30809773 DOI: 10.1007/s11538-019-00583-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
Abstract
The aggregation of amyloid-𝛽 (A𝛽) proteins through their self-assembly into oligomers, fibrils, or senile plaques is advocated as a key process of Alzheimer's disease. Recent studies have revealed that metal ions play an essential role in modulating the aggregation rate of amyloid-𝛽 (A𝛽) into senile plaques because of high binding affinity between A𝛽 proteins and metal ions. In this paper, we proposed a mathematical model as a set of coupled kinetic equations that models the self-assembly of amyloid-𝛽 (A𝛽) proteins in the presence of metal ions. The numerical simulations capture four timescales in the A𝛽 dynamics associated with three important events which include the formation of the amyloid-metal complex, the homogeneous aggregation of the amyloid-metal complexes, and the non-homogeneous aggregation of the amyloid-metal complexes. The method of singular perturbation is used to identify these timescales in the framework of slow-fast systems.
Collapse
Affiliation(s)
- Eda Asili
- Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Shantia Yarahmadian
- Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Hadi Khani
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Meisam Sharify
- School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box:19395-5746, Tehran, Iran
| |
Collapse
|
50
|
Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R. Metal Toxicity Links to Alzheimer's Disease and Neuroinflammation. J Mol Biol 2019; 431:1843-1868. [PMID: 30664867 DOI: 10.1016/j.jmb.2019.01.018] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
As the median age of the population increases, the number of individuals with Alzheimer's disease (AD) and the associated socio-economic burden are predicted to worsen. While aging and inherent genetic predisposition play major roles in the onset of AD, lifestyle, physical fitness, medical condition, and social environment have emerged as relevant disease modifiers. These environmental risk factors can play a key role in accelerating or decelerating disease onset and progression. Among known environmental risk factors, chronic exposure to various metals has become more common among the public as the aggressive pace of anthropogenic activities releases excess amount of metals into the environment. As a result, we are exposed not only to essential metals, such as iron, copper, zinc and manganese, but also to toxic metals including lead, aluminum, and cadmium, which perturb metal homeostasis at the cellular and organismal levels. Herein, we review how these metals affect brain physiology and immunity, as well as their roles in the accumulation of toxic AD proteinaceous species (i.e., β-amyloid and tau). We also discuss studies that validate the disruption of immune-related pathways as an important mechanism of toxicity by which metals can contribute to AD. Our goal is to increase the awareness of metals as players in the onset and progression of AD.
Collapse
Affiliation(s)
- Tee Jong Huat
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia; Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, Australia.
| | - Judith Camats-Perna
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Estella A Newcombe
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Nicholas Valmas
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
| | - Rodrigo Medeiros
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|