1
|
Wertman E. Essential New Complexity-Based Themes for Patient-Centered Diagnosis and Treatment of Dementia and Predementia in Older People: Multimorbidity and Multilevel Phenomenology. J Clin Med 2024; 13:4202. [PMID: 39064242 PMCID: PMC11277671 DOI: 10.3390/jcm13144202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Dementia is a highly prevalent condition with devastating clinical and socioeconomic sequela. It is expected to triple in prevalence by 2050. No treatment is currently known to be effective. Symptomatic late-onset dementia and predementia (SLODP) affects 95% of patients with the syndrome. In contrast to trials of pharmacological prevention, no treatment is suggested to remediate or cure these symptomatic patients. SLODP but not young onset dementia is intensely associated with multimorbidity (MUM), including brain-perturbating conditions (BPCs). Recent studies showed that MUM/BPCs have a major role in the pathogenesis of SLODP. Fortunately, most MUM/BPCs are medically treatable, and thus, their treatment may modify and improve SLODP, relieving suffering and reducing its clinical and socioeconomic threats. Regrettably, the complex system features of SLODP impede the diagnosis and treatment of the potentially remediable conditions (PRCs) associated with them, mainly due to failure of pattern recognition and a flawed diagnostic workup. We suggest incorporating two SLODP-specific conceptual themes into the diagnostic workup: MUM/BPC and multilevel phenomenological themes. By doing so, we were able to improve the diagnostic accuracy of SLODP components and optimize detecting and favorably treating PRCs. These revolutionary concepts and their implications for remediability and other parameters are discussed in the paper.
Collapse
Affiliation(s)
- Eli Wertman
- Department of Neurology, Hadassah University Hospital, The Hebrew University, Jerusalem 9190500, Israel;
- Section of Neuropsychology, Department of Psychology, The Hebrew University, Jerusalem 9190500, Israel
- Or’ad: Organization for Cognitive and Behavioral Changes in the Elderly, Jerusalem 9458118, Israel
- Merhav Neuropsychogeriatric Clinics, Nehalim 4995000, Israel
| |
Collapse
|
2
|
Dai XJ, Liao JH, Jia Y, Cao R, Zhou MN. Noise Exposure Promotes Alzheimer's Disease-Like Lesions and DNA Damage. Noise Health 2024; 26:287-293. [PMID: 39345066 DOI: 10.4103/nah.nah_26_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE This study aimed to explore the mechanism by which noise contributes to the development of Alzheimer's disease (AD)-like lesions. METHOD Male Wistar rats (24 months) were allocated into two groups (n = 6 per groups): a noise group exposed to 98 dB sound pressure-level white noise for 4 hours daily from 8:00 to 12:00 for 30 days, and a control group without noise exposure. The cognitive functions of the rats were assessed using new-object recognition and Morris water maze tests. Then, hippocampal tissues were collected, and the levels of amyloid β 1-42 (Aβ1-42), Aβ1-40, brain-derived neurotrophic factor (BDNF), and tropomyosin receptor kinase B (TrkB) were measured using enzyme-linked immunosorbent assay (ELISA). Protein expression was evaluated through Western blot. RESULTS Noise exposure significantly impaired cognitive and recognition abilities, increased the escape latency, and decreased the number of crossings through the platform quadrant intersection and the time spent in the target quadrant (P < 0.01). The new-object exploration and recognition index of the rats in the noise group markedly decreased (P < 0.01). ELISA results indicated increases in Aβ1-40 and Aβ1-42 levels and decreases in BDNF and TrkB levels in the rat hippocampus in the noise group (P < 0.01). Western blot analyses revealed that beta-site amyloid precursor protein (APP) cleaving enzyme 1, phosphorylated tau protein, gamma-H2A histone family, member X, checkpoint kinase 2, p53, and p21 were remarkably elevated in the noise group (P < 0.01). CONCLUSION Chronic noise exposure can cause hippocampal genetic damage in aged rats, leading to cognitive disorders and the development of lesions similar to those observed in AD. Thus, noise is a potential risk factor for neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiao-Jie Dai
- Internal Medicine-Neurology, Xi'an Gaoxin Hospital, Shaanxi 710075, China
| | - Jun-Hua Liao
- Guangzhou Yujia Biotechnology Co. Ltd, Guangzhou 510300, Guangdong, China
| | - Yi Jia
- Internal Medicine-Neurology, Xi'an Gaoxin Hospital, Shaanxi 710075, China
| | - Rui Cao
- Internal Medicine-Neurology, Qingyang People's Hospital, Qingyang, Gansu 745000, China
| | - Mei-Ning Zhou
- The Third Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, China
| |
Collapse
|
3
|
Zhi W, Li Y, Wang Y, Zou Y, Wang H, Xu X, Ma L, Ren Y, Qiu Y, Hu X, Wang L. Effects of 90 dB pure tone exposure on auditory and cardio-cerebral system functions in macaque monkeys. ENVIRONMENTAL RESEARCH 2024; 249:118236. [PMID: 38266893 DOI: 10.1016/j.envres.2024.118236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Excessive noise exposure presents significant health risks to humans, affecting not just the auditory system but also the cardiovascular and central nervous systems. This study focused on three male macaque monkeys as subjects. 90 dB sound pressure level (SPL) pure tone exposure (frequency: 500Hz, repetition rate: 40Hz, 1 min per day, continuously exposed for 5 days) was administered. Assessments were performed before exposure, during exposure, immediately after exposure, and at 7-, 14-, and 28-days post-exposure, employing auditory brainstem response (ABR) tests, electrocardiograms (ECG), and electroencephalograms (EEG). The study found that the average threshold for the Ⅴ wave in the right ear increased by around 30 dB SPL right after exposure (P < 0.01) compared to pre-exposure. This elevation returned to normal within 7 days. The ECG results indicated that one of the macaque monkeys exhibited an RS-type QRS wave, and inverted T waves from immediately after exposure to 14 days, which normalized at 28 days. The other two monkeys showed no significant changes in their ECG parameters. Changes in EEG parameters demonstrated that main brain regions exhibited significant activation at 40Hz during noise exposure. After noise exposure, the power spectral density (PSD) in main brain regions, particularly those represented by the temporal lobe, exhibited a decreasing trend across all frequency bands, with no clear recovery over time. In summary, exposure to 90 dB SPL noise results in impaired auditory systems, aberrant brain functionality, and abnormal electrocardiographic indicators, albeit with individual variations. It has implications for establishing noise protection standards, although the precise mechanisms require further exploration by integrating pathological and behavioral indicators.
Collapse
Affiliation(s)
- Weijia Zhi
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Ying Li
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Yuchen Wang
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Lizhen Ma
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Yanling Ren
- Animal Center of the Academy of Military Medical Sciences, Beijing, China.
| | - Yefeng Qiu
- Animal Center of the Academy of Military Medical Sciences, Beijing, China.
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Lifeng Wang
- Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
4
|
Basner M, Smith MG. The effects on sleep play a critical role in the long-term health consequences of noise exposure. Sleep 2024; 47:zsad314. [PMID: 38079452 PMCID: PMC10851844 DOI: 10.1093/sleep/zsad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Affiliation(s)
- Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael G Smith
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Huang L, Ma J, Jiang F, Zhang S, Lan Y, Zhang Y. Relationship Between Work-Related Noise Exposure and Cognitive Impairment: A Cross-Sectional Study in China. J Alzheimers Dis 2024; 100:151-161. [PMID: 38848172 DOI: 10.3233/jad-240061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Background Noise exposure and the risk of cognitive impairment are currently major public health issues. Objective This study aimed to analyze the relationship between noise exposure and early impairment of cognitive function from the perspective of occupational epidemiology and to provide evidence for the long-term prevention and treatment of dementia in the context of aging. Methods This study was conducted in China between May and August 2021. The independent variables were the type of hazardous factors, duration of noise exposure, perceived noise intensity, and cumulative noise exposure (CNE). The dependent variable was cognitive function, which was measured using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Multiple linear and logistic regression were used to analyze the relationship between noise exposure and cognitive function and to establish an effect curve. Results The detection rates of cognitive dysfunction using the MMSE and MoCA were 1.1% and 36.2%, respectively. The predicted MMSE and MoCA scores showed a downward trend within the CNE value ranging from 90-140 dB.time. Each unit increase in CNE decreased cognitive function scores by 0.025 (0.037, 0.013) and 0.020 (0.037, 0.003) points,respectively. Conclusions From the perspective of occupational epidemiology, these findings reveal a potential link between long-term noise exposure and early cognitive impairment.
Collapse
Affiliation(s)
- Lei Huang
- Department of Postgraduate Students, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, China
| | - Jingxuan Ma
- Department of Environmental Health and Occupational Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Fugui Jiang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Shushan Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yajia Lan
- Department of Environmental Health and Occupational Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Weaver DF. Thirty Risk Factors for Alzheimer's Disease Unified by a Common Neuroimmune-Neuroinflammation Mechanism. Brain Sci 2023; 14:41. [PMID: 38248256 PMCID: PMC10813027 DOI: 10.3390/brainsci14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
One of the major obstacles confronting the formulation of a mechanistic understanding for Alzheimer's disease (AD) is its immense complexity-a complexity that traverses the full structural and phenomenological spectrum, including molecular, macromolecular, cellular, neurological and behavioural processes. This complexity is reflected by the equally complex diversity of risk factors associated with AD. However, more than merely mirroring disease complexity, risk factors also provide fundamental insights into the aetiology and pathogenesis of AD as a neurodegenerative disorder since they are central to disease initiation and subsequent propagation. Based on a systematic literature assessment, this review identified 30 risk factors for AD and then extended the analysis to further identify neuroinflammation as a unifying mechanism present in all 30 risk factors. Although other mechanisms (e.g., vasculopathy, proteopathy) were present in multiple risk factors, dysfunction of the neuroimmune-neuroinflammation axis was uniquely central to all 30 identified risk factors. Though the nature of the neuroinflammatory involvement varied, the activation of microglia and the release of pro-inflammatory cytokines were a common pathway shared by all risk factors. This observation provides further evidence for the importance of immunopathic mechanisms in the aetiopathogenesis of AD.
Collapse
Affiliation(s)
- Donald F Weaver
- Krembil Research Institute, University Health Network, Departments of Medicine, Chemistry, Pharmaceutical Sciences, University of Toronto, Toronto, ON M5T 0S8, Canada
| |
Collapse
|
7
|
Liu W, Liu H, Gao W, Xie L, Cao Y. Physiological Effects of Co-exposure to Ionizing Radiation and Noise within Occupational Exposure Limits. HEALTH PHYSICS 2023; 125:332-337. [PMID: 37552111 DOI: 10.1097/hp.0000000000001722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
ABSTRACT Workers are frequently exposed to the occupational hazards of ionizing radiation and noise. Co-exposure to these hazards is not well understood in terms of their physiological effects. The aim of this study was to investigate the physiological effects of co-exposure to ionizing radiation and noise within the occupational limit. This study extracted the physical examination parameters of workers who met the screening criteria from the occupational health surveillance database. The workers were divided into three groups: the co-exposure (COE) group, the ionizing radiation exposure (ION) group, and the non-exposure (NON) group. The age and sex of the three groups were matched with a sample size ratio of 1:3:3. The physical examination parameters of the three groups of workers were compared. The results showed that there was no significant difference in blood pressure and blood biochemical parameters among the three groups. The COE group had higher levels of free triiodothyronine than the ION group, but there was no difference with the NON group. Moreover, the COE group had lower levels of free tetraiodothyronine than the ION group and the NON group. There was no significant difference in thyroid stimulating hormone, total triiodothyronine, and total tetraiodothyronine among the three groups. Additionally, the number of white blood cells of the COE group was lower than that of ION group and NON group. This study suggests that co-exposure to low-dose ionizing radiation and noise can cause alterations in thyroid hormone and peripheral white blood cells. These alterations are different from those observed after single exposure to low-dose ionizing radiation and require further research.
Collapse
Affiliation(s)
- Wenyi Liu
- Department of Health Policy Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, and Shanghai Bluecross Medical Science Institute, Shanghai, The People's Republic of China; Institute for Hospital Management, Tsing Hua University, Shenzhen Campus, The People's Republic of China
| | - Huaqing Liu
- Gusu District Health Supervision Institute, Suzhou, Jiangsu, The People's Republic of China
| | - Weimin Gao
- Department of Physical Examination Center, Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou, Jiangsu, The People's Republic of China
| | - Liangbin Xie
- Department of general family medicine, Baita Community Health Service Center of Suzhou, Suzhou, Jiangsu, The People's Republic of China
| | - Yanmei Cao
- Department of Occupational Disease, The Fifth People's Hospital of Suzhou, Suzhou, Jiangsu, The People's Republic of China
| |
Collapse
|
8
|
Cho I, Kim J, Jung S, Kim SY, Kim EJ, Choo S, Kam EH, Koo BN. The Impact of Persistent Noise Exposure under Inflammatory Conditions. Healthcare (Basel) 2023; 11:2067. [PMID: 37510508 PMCID: PMC10379677 DOI: 10.3390/healthcare11142067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to investigate the impact of noise exposure in an intensive care unit (ICU) environment on the development of postoperative delirium in a mouse model that mimics the ICU environment. Additionally, we aimed to identify the underlying mechanisms contributing to delirium and provide evidence for reducing the risk of delirium. In this study, to mimic an ICU environment, lipopolysaccharide (LPS)-injected sepsis mouse models were exposed to a 75 dB noise condition. Furthermore, we assessed neurobehavioral function and observed the level of neuroinflammatory response and blood-brain barrier (BBB) integrity in the hippocampal region. The LPS-injected sepsis mouse model exposed to noise exhibited increased anxiety-like behavior and cognitive impairment. Moreover, severe neuroinflammation and BBB disruption were detected in the hippocampal region. This study provides insights suggesting that persistent noise exposure under systemic inflammatory conditions may cause cognitive dysfunction and anxiety- like behavior via the mediation of BBB disruption and neuroinflammation. As a result, we suggest that the detailed regulation of noise exposure may be required to prevent the development of postoperative delirium.
Collapse
Affiliation(s)
- Inja Cho
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeongmin Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seungho Jung
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - So Yeon Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eun Jung Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sungji Choo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eun Hee Kam
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
9
|
Anastasios G, Magioula G, Konstantinos K, Ioannis A. Noise and Health: Review. Indian J Otolaryngol Head Neck Surg 2022; 74:5482-5491. [PMID: 36742745 PMCID: PMC9895353 DOI: 10.1007/s12070-021-02797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023] Open
Abstract
Noise in human societies is unavoidable, but it tends to become a modern epidemic that induces various detrimental effects to several organs and functions in humans. Increased cardiovascular danger, anxiety and sleep disturbance are just few of these effects. It is noteworthy that children, even neonates and their developing organism are especially vulnerable to noise-related health problems. Noise is measured with special noise-meters. These devices express results in decibels by transforming random noise to a continuous sound. This sound is characterized by equivalent acoustic energy to the random noise for a defined time interval. Human auditory apparatus is principally endangered by acute noises but also by chronic noise exposure, in the context of both occupational and recreational activities. Various mechanisms are implicated in the pathogenesis of noise-induced hearing loss that can cause either temporary or permanent damage. Among them, emphasis is given to the impairment by free radicals and inflammatory mediators, to the activation of apoptotic molecular pathways, but also to glutamate excitotoxicity. A hidden hearing loss, synaptopathy, is attributed to the latter. The irreversible nature of hearing loss, as well as the idiosyncratic sensitivity of individuals, imposes the necessity of early diagnosis of auditory impairment by noise. Super high frequency audiograms, otoacoustic emissions and electrophysiological examinations can address diagnosis. Thankfully, there is extensive research on acoustic trauma therapeutic approaches. However, until we succeed in regenerating the sensory organ of hearing, chronic noise-induced hearing loss cannot be treated. Thus, it is fundamental that society protects people from noise, by laws and regulations.
Collapse
Affiliation(s)
- Goulioumis Anastasios
- Department of Otorhinolaryngology, Pediatric Hospital “Karamandanio”, Patras, Greece
| | | | - Kourelis Konstantinos
- Department of Otorhinolaryngology, Pediatric Hospital “Karamandanio”, Patras, Greece
| | - Athanasopoulos Ioannis
- Department of Otorhinolaryngology, Pediatric Center of “Iatriko Athinon” Hospital, Athens, Greece
| |
Collapse
|
10
|
Occupational hazards and the onset of natural menopause. Maturitas 2022; 167:46-52. [DOI: 10.1016/j.maturitas.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
|
11
|
Meng L, Zhang Y, Zhang S, Jiang F, Sha L, Lan Y, Huang L. Chronic Noise Exposure and Risk of Dementia: A Systematic Review and Dose-Response Meta-Analysis. Front Public Health 2022; 10:832881. [PMID: 35795699 PMCID: PMC9251202 DOI: 10.3389/fpubh.2022.832881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveEvidence is scarce about the effect of noise exposure on the risk of dementia. We conducted a systematic review and dose-response meta-analysis, aiming to explore the association between noise exposure and the risk of dementia.MethodsWe searched PubMed, EMBASE and the Cochrane Library to collect studies on chronic noise exposure and the risk of dementia from database inception to September 18, 2021 without language limitations. Two authors independently screened the literature, extracted data and assessed the risk of bias of the included studies. A dose-response meta-analysis and subgroup analysis were then conducted to detect the association between noise exposure and the risk of dementia by using Stata 14.0 software. This study is registered on PROSPERO (CRD42021249243).ResultsA total of 11 studies were eligible for qualitative synthesis, and nine were eligible for quantitative data synthesis. All of them showed moderate to high quality scores in the assessment of risk of bias. We found a positive linear association between the noise increment and dementia risk (R2 = 0.58). When noise exposure increased 57 dB, the RR of dementia was 1.47 (95% CI: 1.21–1.78). From the outcome subgroup of AD, AD and dementia, VaD and NAD, we also found a positive association (R2 = 0.68, 0.68, 0.58, respectively). When noise exposure increased by 25 dB, the RRs were 1.18 (95% CI: 1.14–1.23), 1.19 (95% CI: 1.14–1.23) and 1.17 (95% CI: 1.06–1.30), respectively. We found a nonlinear association between the noise increment and dementia risk when only cohort studies were included (R2 = 0.58). When noise exposure increased by 25 dB, the RR of dementia was 1.16 (95% CI: 1.12–1.20). From the subgroup of AD, AD and dementia, VaD and NAD of cohort studies, the regression curve showed a nonlinear positive association (R2 = 0.74, 0.71, 0.43, respectively). When noise exposure increased by 25 dB, the RRs were 1.17 (95% CI: 1.12–1.21), 1.17 (95% CI: 1.12–1.22) and 1.13 (95% CI: 0.99–1.28), respectively.ConclusionBased on the current evidence, exposure to noise may be a specific risk factor for dementia. To better prevent dementia, more rigorously designed studies are needed to explore the etiological mechanism of noise and dementia.
Collapse
Affiliation(s)
- Linghao Meng
- Department of Urology, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Yang Zhang
- Cochrane China Center, Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shushan Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Fugui Jiang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Leihao Sha
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yajia Lan
- Department of Environmental Health and Occupational Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lei Huang
- Department of Environmental Health and Occupational Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Occupational Hazard Assessment, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lei Huang
| |
Collapse
|
12
|
Tran Y, Tang D, Lo C, McMahon C, Mitchell P, Gopinath B. Co-occurring Hearing Loss and Cognitive Decline in Older Adults: A Dual Group-Based Trajectory Modeling Approach. Front Aging Neurosci 2021; 13:794787. [PMID: 35002682 PMCID: PMC8740280 DOI: 10.3389/fnagi.2021.794787] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/06/2021] [Indexed: 12/05/2022] Open
Abstract
Hearing loss and cognitive impairments are both highly prevalent neurological complications for older adults. While there is growing evidence to suggest that these two conditions are interrelated, little research has been conducted that directly examines the progression and developmental trajectories of these complications contemporaneously. The aim of the study is to identify the distinct trajectory profiles for hearing loss and cognitive function in an older population over a 10-year period. Through dual trajectory modeling, the interrelationship, co-occurring movements, and overlaps between these two complications were examined. We also investigated the influence of hearing aid ownership on cognitive function trajectories. We utilized longitudinal data from 1,445 participants in the Blue Mountains Hearing Study (aged 55+ years) involving repeated measures from a population-based survey with audiometric hearing assessments. Cognitive function was assessed using the Mini-Mental State Examination (MMSE). The group-based trajectory modeling (GBTM) identified three trajectory profiles for both hearing loss and cognitive function in two older age groups (55-69 years and 70+ years). The outputs from the dual trajectories models showed the conditional probability for "no hearing loss" trajectories to be around 90% more likely to have "high-normal" cognitive function, demonstrating co-occurring overlap. In contrast, for "moderate to severe hearing loss" trajectories, the conditional probability drops to 65% and 79% for the 55-69 age group and 70+ age group respectively. There was also an increasing probability for "cognitive decline" conditional on the severity of hearing loss with 6.7%, 7.5%, and 8.7% for no hearing loss, mild hearing loss, and moderate to severe hearing loss trajectory groups. While we did not find any statistically significant difference in the influence of hearing aid use in the cognitive function trajectories, there was a consistent greater representation of non-hearing aid users in the trajectories with poorer cognitive function. This study found GBTM to identify trajectories that were in agreement with our current understanding of hearing loss and cognitive impairment in older adults. This study also adds to the existing evidence-base as dual trajectories demonstrated co-occurrence in developmental changes in these two common neurological complications for the older population.
Collapse
Affiliation(s)
- Yvonne Tran
- MU Hearing, Department of Linguistics, Macquarie University, Sydney, NSW, Australia
| | - Diana Tang
- MU Hearing, Department of Linguistics, Macquarie University, Sydney, NSW, Australia
| | - Charles Lo
- Management Disciplinary Group, Wentworth Institute for Higher Education, Sydney, NSW, Australia
| | - Catherine McMahon
- MU Hearing, Department of Linguistics, Macquarie University, Sydney, NSW, Australia
| | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology and Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Bamini Gopinath
- MU Hearing, Department of Linguistics, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
13
|
Falcón C, Gascon M, Molinuevo JL, Operto G, Cirach M, Gotsens X, Fauria K, Arenaza‐Urquijo EM, Pujol J, Sunyer J, Nieuwenhuijsen MJ, Gispert JD, Crous‐Bou M. Brain correlates of urban environmental exposures in cognitively unimpaired individuals at increased risk for Alzheimer's disease: A study on Barcelona's population. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12205. [PMID: 34258378 PMCID: PMC8256622 DOI: 10.1002/dad2.12205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/09/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Urban environmental exposures might contribute to the incidence of Alzheimer's disease (AD). Our aim was to identify structural brain imaging correlates of urban environmental exposures in cognitively unimpaired individuals at increased risk of AD. METHODS Two hundred twelve participants with brain scans and residing in Barcelona, Spain, were included. Land use regression models were used to estimate residential exposure to air pollutants. The daily average noise level was obtained from noise maps. Residential green exposure indicators were also generated. A cerebral 3D-T1 was acquired to obtain information on brain morphology. Voxel-based morphometry statistical analyses were conducted to determine the areas of the brain in which regional gray matter (GM) and white matter (WM) volumes were associated with environmental exposures. RESULTS Exposure to nitrogen dioxide was associated with lower GM volume in the precuneus and greater WM volume in the splenium of the corpus callosum and inferior longitudinal fasciculus. In contrast, exposure to fine particulate matter was associated with greater GM in cerebellum and WM in the splenium of corpus callosum, the superior longitudinal fasciculus, and cingulum cingulate gyrus. Noise was positively associated with WM volume in the body of the corpus callosum. Exposure to greenness was associated with greater GM volume in the middle frontal, precentral, and the temporal pole. DISCUSSION In cognitively unimpaired adults with increased risk of AD, exposure to air pollution, noise, and green areas are associated with GM and WM volumes of specific brain areas known to be affected in AD, thus potentially conferring a higher vulnerability to the disease.
Collapse
Affiliation(s)
- Carles Falcón
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN)MadridSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Mireia Gascon
- ISGlobalBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Marta Cirach
- ISGlobalBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - Xavier Gotsens
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Eider M. Arenaza‐Urquijo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Jesús Pujol
- MRI Research Unit, Department of RadiologyHospital del MarBarcelonaSpain
- CIBER Salud Mental (CIBERSAM G21)MadridSpain
| | - Jordi Sunyer
- ISGlobalBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - Mark J. Nieuwenhuijsen
- ISGlobalBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN)MadridSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Marta Crous‐Bou
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Unit of Nutrition and Cancer, Cancer Epidemiology Research ProgramCatalan Institute of Oncology (ICO)–Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de LlobregatBarcelonaSpain
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | | |
Collapse
|