1
|
Peluso MJ, Ryder D, Flavell R, Wang Y, Levi J, LaFranchi BH, Deveau TM, Buck AM, Munter SE, Asare KA, Aslam M, Koch W, Szabo G, Hoh R, Deswal M, Rodriguez A, Buitrago M, Tai V, Shrestha U, Lu S, Goldberg SA, Dalhuisen T, Durstenfeld MS, Hsue PY, Kelly JD, Kumar N, Martin JN, Gambir A, Somsouk M, Seo Y, Deeks SG, Laszik ZG, VanBrocklin HF, Henrich TJ. Multimodal Molecular Imaging Reveals Tissue-Based T Cell Activation and Viral RNA Persistence for Up to 2 Years Following COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.27.23293177. [PMID: 37577714 PMCID: PMC10418298 DOI: 10.1101/2023.07.27.23293177] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The etiologic mechanisms of post-acute medical morbidities and unexplained symptoms (Long COVID) following SARS-CoV-2 infection are incompletely understood. There is growing evidence that viral persistence and immune dysregulation may play a major role. We performed whole-body positron emission tomography (PET) imaging in a cohort of 24 participants at time points ranging from 27 to 910 days following acute SARS-CoV-2 infection using a novel radiopharmaceutical agent, [18F]F-AraG, a highly selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the post-acute COVID group, which included those with and without Long COVID symptoms, was significantly higher compared to pre-pandemic controls in many anatomical regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. Although T cell activation tended to be higher in participants imaged closer to the time of the acute illness, tracer uptake was increased in participants imaged up to 2.5 years following SARS-CoV-2 infection. We observed that T cell activation in spinal cord and gut wall was associated with the presence of Long COVID symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms. Notably, increased T cell activation in these tissues was also observed in many individuals without Long COVID. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization SARS-CoV-2 RNA and immunohistochemical studies in a subset of participants with Long COVID symptoms. We identified cellular SARS-CoV-2 RNA in rectosigmoid lamina propria tissue in all these participants, ranging from 158 to 676 days following initial COVID-19 illness, suggesting that tissue viral persistence could be associated with long-term immunological perturbations.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Dylan Ryder
- Division of Experimental Medicine, University of California San Francisco
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Yingbing Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | | | - Brian H. LaFranchi
- Division of Experimental Medicine, University of California San Francisco
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco
| | - Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco
| | - Sadie E. Munter
- Division of Experimental Medicine, University of California San Francisco
| | - Kofi A. Asare
- Division of Experimental Medicine, University of California San Francisco
| | - Maya Aslam
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Wally Koch
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Gyula Szabo
- Department of Pathology, University of California San Francisco
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Antonio Rodriguez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Melissa Buitrago
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Uttam Shrestha
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Thomas Dalhuisen
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | | | | | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Nitasha Kumar
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | | | - Ma Somsouk
- Division of Gastroenterology, University of California San Francisco
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | | | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco
| |
Collapse
|
2
|
Martínez M, Inestrosa NC. The transcriptional landscape of Alzheimer's disease and its association with Wnt signaling pathway. Neurosci Biobehav Rev 2021; 128:454-466. [PMID: 34224789 DOI: 10.1016/j.neubiorev.2021.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/31/2021] [Accepted: 06/20/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a neurological disorder primarily affecting the elderly. The disease manifests as progressive deterioration in cognitive functions, leading to a loss of autonomy. The identification of transcriptional changes in susceptible signaling pathways has provided clues to the origin and progression of AD and has pinpointed synapse loss as the prominent event in early stages of the disease. Synapse failure represents a key pathological correlate of cognitive decline in patients. Genetics and transcriptomics studies have also identified novel genes, processes, and pathways associated with AD. This evidence suggests that a deficiency in Wnt signaling pathway contributes to AD pathogenesis by inducing synaptic dysfunction and neuronal degeneration. In the adult nervous system, Wnt signaling plays a crucial role in synaptic physiology, modulating the synaptic vesicle cycle, trafficking neurotransmitter receptors, and modulating the expression of different genes associated with these processes. In this review, we describe the general transcriptional landscape associated with AD, specifically transcriptional changes associated with the Wnt signaling pathway and their effects in the context of disease.
Collapse
Affiliation(s)
- Milka Martínez
- Centro de Envejecimiento y Regeneración (CARE UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
3
|
Canchi S, Raao B, Masliah D, Rosenthal SB, Sasik R, Fisch KM, De Jager PL, Bennett DA, Rissman RA. Integrating Gene and Protein Expression Reveals Perturbed Functional Networks in Alzheimer's Disease. Cell Rep 2020; 28:1103-1116.e4. [PMID: 31340147 PMCID: PMC7503200 DOI: 10.1016/j.celrep.2019.06.073] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/20/2019] [Accepted: 06/19/2019] [Indexed: 12/23/2022] Open
Abstract
Asymptomatic and symptomatic Alzheimer’s disease (AD) subjects may present with equivalent neuropathological burdens but have significantly different antemortem cognitive decline rates. Using the transcriptome as a proxy for functional state, we selected 414 expression profiles of symptomatic AD subjects and age-matched non-demented controls from a community-based neuropathological study. By combining brain tissue-specific protein interactomes with gene networks, we identified functionally distinct composite clusters of genes that reveal extensive changes in expression levels in AD. Global expression for clusters broadly corresponding to synaptic transmission, metabolism, cell cycle, survival, and immune response were downregulated, while the upregulated cluster included largely uncharacterized processes. We propose that loss of EGR3 regulation mediates synaptic deficits by targeting the synaptic vesicle cycle. Our results highlight the utility of integrating protein interactions with gene perturbations to generate a comprehensive framework for characterizing alterations in the molecular network as applied to AD. Canchi et al. reveal the transcriptomic dynamics of clinically and neuropathologically confirmed Alzheimer’s disease subjects by integrating brain tissue-specific proteome data with gene network analysis. They identify perturbed biological processes and provide insights into the interactions between molecular mechanisms in symptomatic Alzheimer’s disease.
Collapse
Affiliation(s)
- Saranya Canchi
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Balaji Raao
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Deborah Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Roman Sasik
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
4
|
Pathological Implications of Receptor for Advanced Glycation End-Product ( AGER) Gene Polymorphism. DISEASE MARKERS 2019; 2019:2067353. [PMID: 30863465 PMCID: PMC6378764 DOI: 10.1155/2019/2067353] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/01/2019] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) is a cell surface transmembrane multiligand receptor, encoded by the AGER gene. RAGE presents many transcripts, is expressed mainly in the lung, and involves multiple pathways (such as NFκB, Akt, p38, and MAP kinases) that initiate and perpetuate an unfavorable proinflammatory state. Due to these numerous functional activities, RAGE is implicated in multiple diseases. AGER is a highly polymorphic gene, with polymorphisms or SNP (single-nucleotide polymorphism) that could be responsible or co-responsible for disease development. This review was designed to shed light on the pathological implications of AGER polymorphisms. Five polymorphisms are described: rs2070600, rs1800624, rs1800625, rs184003, and a 63 bp deletion. The rs2070600 SNP may be associated with the development of human autoimmune disease, diabetes complications, cancer, and lung diseases such as chronic obstructive pulmonary disease and acute respiratory distress syndrome. The rs1800624 SNP involves AGER gene regulation and may be related to reduced risk of heart disease, cancer, Crohn's disease, and type 1 diabetes complications. The rs1800625 SNP may be associated with the development of diabetic retinopathy, cancer, and lupus but may be protective against cardiovascular risk. The rs184003 SNP seems related to coronary artery disease, breast cancer, and diabetes. The 63 bp deletion may be associated with reduced survival from heart diseases during diabetic nephropathy. Here, these potential associations between AGER polymorphisms and the development of diseases are discussed, as there have been conflicting findings on the pathological impact of AGER SNPs in the literature. These contradictory results might be explained by distinct AGER SNP frequencies depending on ethnicity.
Collapse
|
5
|
Lemche E. Early Life Stress and Epigenetics in Late-onset Alzheimer's Dementia: A Systematic Review. Curr Genomics 2018; 19:522-602. [PMID: 30386171 PMCID: PMC6194433 DOI: 10.2174/1389202919666171229145156] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
Involvement of life stress in Late-Onset Alzheimer's Disease (LOAD) has been evinced in longitudinal cohort epidemiological studies, and endocrinologic evidence suggests involvements of catecholamine and corticosteroid systems in LOAD. Early Life Stress (ELS) rodent models have successfully demonstrated sequelae of maternal separation resulting in LOAD-analogous pathology, thereby supporting a role of insulin receptor signalling pertaining to GSK-3beta facilitated tau hyper-phosphorylation and amyloidogenic processing. Discussed are relevant ELS studies, and findings from three mitogen-activated protein kinase pathways (JNK/SAPK pathway, ERK pathway, p38/MAPK pathway) relevant for mediating environmental stresses. Further considered were the roles of autophagy impairment, neuroinflammation, and brain insulin resistance. For the meta-analytic evaluation, 224 candidate gene loci were extracted from reviews of animal studies of LOAD pathophysiological mechanisms, of which 60 had no positive results in human LOAD association studies. These loci were combined with 89 gene loci confirmed as LOAD risk genes in previous GWAS and WES. Of the 313 risk gene loci evaluated, there were 35 human reports on epigenomic modifications in terms of methylation or histone acetylation. 64 microRNA gene regulation mechanisms were published for the compiled loci. Genomic association studies support close relations of both noradrenergic and glucocorticoid systems with LOAD. For HPA involvement, a CRHR1 haplotype with MAPT was described, but further association of only HSD11B1 with LOAD found; however, association of FKBP1 and NC3R1 polymorphisms was documented in support of stress influence to LOAD. In the brain insulin system, IGF2R, INSR, INSRR, and plasticity regulator ARC, were associated with LOAD. Pertaining to compromised myelin stability in LOAD, relevant associations were found for BIN1, RELN, SORL1, SORCS1, CNP, MAG, and MOG. Regarding epigenetic modifications, both methylation variability and de-acetylation were reported for LOAD. The majority of up-to-date epigenomic findings include reported modifications in the well-known LOAD core pathology loci MAPT, BACE1, APP (with FOS, EGR1), PSEN1, PSEN2, and highlight a central role of BDNF. Pertaining to ELS, relevant loci are FKBP5, EGR1, GSK3B; critical roles of inflammation are indicated by CRP, TNFA, NFKB1 modifications; for cholesterol biosynthesis, DHCR24; for myelin stability BIN1, SORL1, CNP; pertaining to (epi)genetic mechanisms, hTERT, MBD2, DNMT1, MTHFR2. Findings on gene regulation were accumulated for BACE1, MAPK signalling, TLR4, BDNF, insulin signalling, with most reports for miR-132 and miR-27. Unclear in epigenomic studies remains the role of noradrenergic signalling, previously demonstrated by neuropathological findings of childhood nucleus caeruleus degeneration for LOAD tauopathy.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
6
|
Van Horn JD, Irimia A, Torgerson CM, Bhattrai A, Jacokes Z, Vespa PM. Mild cognitive impairment and structural brain abnormalities in a sexagenarian with a history of childhood traumatic brain injury. J Neurosci Res 2017; 96:652-660. [PMID: 28543689 DOI: 10.1002/jnr.24084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/30/2022]
Abstract
In this report, we present a case study involving an older, female patient with a history of pediatric traumatic brain injury (TBI). Magnetic resonance imaging and diffusion tensor imaging volumes were acquired from the volunteer in question, her brain volumetrics and morphometrics were extracted, and these were then systematically compared against corresponding metrics obtained from a large sample of older healthy control (HC) subjects as well as from subjects in various stages of mild cognitive impairment (MCI) and Alzheimer disease (AD). Our analyses find the patient's brain morphometry and connectivity most similar to those of patients classified as having early-onset MCI, in contrast to HC, late MCI, and AD samples. Our examination will be of particular interest to those interested in assessing the clinical course in older patients having suffered TBI earlier in life, in contradistinction to those who experience incidents of head injury during aging.
Collapse
Affiliation(s)
- John Darrell Van Horn
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Andrei Irimia
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Carinna M Torgerson
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Avnish Bhattrai
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Zachary Jacokes
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Paul M Vespa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
7
|
Merid SK, Goranskaya D, Alexeyenko A. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis. BMC Bioinformatics 2014; 15:308. [PMID: 25236784 PMCID: PMC4262241 DOI: 10.1186/1471-2105-15-308] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/02/2014] [Indexed: 01/09/2023] Open
Abstract
Background In somatic cancer genomes, delineating genuine driver mutations against a background of multiple passenger events is a challenging task. The difficulty of determining function from sequence data and the low frequency of mutations are increasingly hindering the search for novel, less common cancer drivers. The accumulation of extensive amounts of data on somatic point and copy number alterations necessitates the development of systematic methods for driver mutation analysis. Results We introduce a framework for detecting driver mutations via functional network analysis, which is applied to individual genomes and does not require pooling multiple samples. It probabilistically evaluates 1) functional network links between different mutations in the same genome and 2) links between individual mutations and known cancer pathways. In addition, it can employ correlations of mutation patterns in pairs of genes. The method was used to analyze genomic alterations in two TCGA datasets, one for glioblastoma multiforme and another for ovarian carcinoma, which were generated using different approaches to mutation profiling. The proportions of drivers among the reported de novo point mutations in these cancers were estimated to be 57.8% and 16.8%, respectively. The both sets also included extended chromosomal regions with synchronous duplications or losses of multiple genes. We identified putative copy number driver events within many such segments. Finally, we summarized seemingly disparate mutations and discovered a functional network of collagen modifications in the glioblastoma. In order to select the most efficient network for use with this method, we used a novel, ROC curve-based procedure for benchmarking different network versions by their ability to recover pathway membership. Conclusions The results of our network-based procedure were in good agreement with published gold standard sets of cancer genes and were shown to complement and expand frequency-based driver analyses. On the other hand, three sequence-based methods applied to the same data yielded poor agreement with each other and with our results. We review the difference in driver proportions discovered by different sequencing approaches and discuss the functional roles of novel driver mutations. The software used in this work and the global network of functional couplings are publicly available at http://research.scilifelab.se/andrej_alexeyenko/downloads.html. Electronic supplementary material The online version of this article (doi:10.1186/1471-2105-15-308) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Andrey Alexeyenko
- Department of Microbiology, Tumour and Cell biology, Bioinformatics Infrastructure for Life Sciences, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
8
|
Cipriani V, Leung HT, Plagnol V, Bunce C, Khan JC, Shahid H, Moore AT, Harding SP, Bishop PN, Hayward C, Campbell S, Armbrecht AM, Dhillon B, Deary IJ, Campbell H, Dunlop M, Dominiczak AF, Mann SS, Jenkins SA, Webster AR, Bird AC, Lathrop M, Zelenika D, Souied EH, Sahel JA, Léveillard T, Cree AJ, Gibson J, Ennis S, Lotery AJ, Wright AF, Clayton DG, Yates JRW. Genome-wide association study of age-related macular degeneration identifies associated variants in the TNXB-FKBPL-NOTCH4 region of chromosome 6p21.3. Hum Mol Genet 2012; 21:4138-50. [PMID: 22694956 DOI: 10.1093/hmg/dds225] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual loss in Western populations. Susceptibility is influenced by age, environmental and genetic factors. Known genetic risk loci do not account for all the heritability. We therefore carried out a genome-wide association study of AMD in the UK population with 893 cases of advanced AMD and 2199 controls. This showed an association with the well-established AMD risk loci ARMS2 (age-related maculopathy susceptibility 2)-HTRA1 (HtrA serine peptidase 1) (P =2.7 × 10(-72)), CFH (complement factor H) (P =2.3 × 10(-47)), C2 (complement component 2)-CFB (complement factor B) (P =5.2 × 10(-9)), C3 (complement component 3) (P =2.2 × 10(-3)) and CFI (P =3.6 × 10(-3)) and with more recently reported risk loci at VEGFA (P =1.2 × 10(-3)) and LIPC (hepatic lipase) (P =0.04). Using a replication sample of 1411 advanced AMD cases and 1431 examined controls, we confirmed a novel association between AMD and single-nucleotide polymorphisms on chromosome 6p21.3 at TNXB (tenascin XB)-FKBPL (FK506 binding protein like) [rs12153855/rs9391734; discovery P =4.3 × 10(-7), replication P =3.0 × 10(-4), combined P =1.3 × 10(-9), odds ratio (OR) = 1.4, 95% confidence interval (CI) = 1.3-1.6] and the neighbouring gene NOTCH4 (Notch 4) (rs2071277; discovery P =3.2 × 10(-8), replication P =3.8 × 10(-5), combined P =2.0 × 10(-11), OR = 1.3, 95% CI = 1.2-1.4). These associations remained significant in conditional analyses which included the adjacent C2-CFB locus. TNXB, FKBPL and NOTCH4 are all plausible AMD susceptibility genes, but further research will be needed to identify the causal variants and determine whether any of these genes are involved in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Valentina Cipriani
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|