1
|
Epremyan KK, Mamaev DV, Zvyagilskaya RA. Alzheimer's Disease: Significant Benefit from the Yeast-Based Models. Int J Mol Sci 2023; 24:9791. [PMID: 37372938 DOI: 10.3390/ijms24129791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related, multifaceted neurological disorder associated with accumulation of aggregated proteins (amyloid Aβ and hyperphosphorylated tau), loss of synapses and neurons, and alterations in microglia. AD was recognized by the World Health Organization as a global public health priority. The pursuit of a better understanding of AD forced researchers to pay attention to well-defined single-celled yeasts. Yeasts, despite obvious limitations in application to neuroscience, show high preservation of basic biological processes with all eukaryotic organisms and offer great advantages over other disease models due to the simplicity, high growth rates on low-cost substrates, relatively simple genetic manipulations, the large knowledge base and data collections, and availability of an unprecedented amount of genomic and proteomic toolboxes and high-throughput screening techniques, inaccessible to higher organisms. Research reviewed above clearly indicates that yeast models, together with other, more simple eukaryotic models including animal models, C. elegans and Drosophila, significantly contributed to understanding Aβ and tau biology. These models allowed high throughput screening of factors and drugs that interfere with Aβ oligomerization, aggregation and toxicity, and tau hyperphosphorylation. In the future, yeast models will remain relevant, with a focus on creating novel high throughput systems to facilitate the identification of the earliest AD biomarkers among different cellular networks in order to achieve the main goal-to develop new promising therapeutic strategies to treat or prevent the disease.
Collapse
Affiliation(s)
- Khoren K Epremyan
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Dmitry V Mamaev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Renata A Zvyagilskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
2
|
Uvdal P, Shashkova S. The Effect of Calorie Restriction on Protein Quality Control in Yeast. Biomolecules 2023; 13:biom13050841. [PMID: 37238710 DOI: 10.3390/biom13050841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Initially, protein aggregates were regarded as a sign of a pathological state of the cell. Later, it was found that these assemblies are formed in response to stress, and that some of them serve as signalling mechanisms. This review has a particular focus on how intracellular protein aggregates are related to altered metabolism caused by different glucose concentrations in the extracellular environment. We summarise the current knowledge of the role of energy homeostasis signalling pathways in the consequent effect on intracellular protein aggregate accumulation and removal. This covers regulation at different levels, including elevated protein degradation and proteasome activity mediated by the Hxk2 protein, the enhanced ubiquitination of aberrant proteins through Torc1/Sch9 and Msn2/Whi2, and the activation of autophagy mediated through ATG genes. Finally, certain proteins form reversible biomolecular aggregates in response to stress and reduced glucose levels, which are used as a signalling mechanism in the cell, controlling major primary energy pathways related to glucose sensing.
Collapse
Affiliation(s)
- Petter Uvdal
- Department of Physics, University of Gothenburg, 405 30 Göteborg, Sweden
| | | |
Collapse
|
3
|
Zhu J, Ma R, Li G. Drug repurposing: Clemastine fumarate and neurodegeneration. Biomed Pharmacother 2023; 157:113904. [PMID: 36370521 DOI: 10.1016/j.biopha.2022.113904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Neurodegenerative diseases have been a weighty problem in elder people who might be stricken with motor or/and cognition defects with lower life quality urging for effective treatment. Drugs are costly from development to market, so that drug repurposing, exploration of existing drugs for novel therapeutic purposes, becomes a wise and popular strategy to raise new treatment options. Clemastine fumarate, different from anti-allergic effect as H1 histamine antagonist, was screened and identified as promising drug for remyelination and autophagy enhancement. Surprisingly, fumarate salt also has similar effect. Hence, whether clemastine fumarate would make a protective impact on neurodegenerative diseases and what contribution fumarate probably makes are intriguing to us. In this review, we summarize the potential mechanism surrounding clemastine fumarate in current literature, and try to distinguish independent or synergistic effect between clemastine and fumarate, aiming to find worthwhile research direction for neurodegeneration diseases.
Collapse
Affiliation(s)
- Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Dhakal S, Macreadie I. The Use of Yeast in Biosensing. Microorganisms 2022; 10:1772. [PMID: 36144374 PMCID: PMC9505958 DOI: 10.3390/microorganisms10091772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Yeast has been used as a model for several diseases as it is the simplest unicellular eukaryote, safe and easy to culture and harbors most of the fundamental processes that are present in almost all higher eukaryotes, including humans. From understanding the pathogenesis of disease to drug discovery studies, yeast has served as an important biosensor. It is not only due to the conservation of genetics, amenable modification of its genome and easily accessible analytical methods, but also some characteristic features such as its ability to survive with defective mitochondria, making it a highly flexible microbe for designing whole-cell biosensing systems. The aim of this review is to report on how yeasts have been utilized as biosensors, reporting on responses to various stimuli.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
5
|
|
6
|
Deng Z, Dong Y, Zhou X, Lu JH, Yue Z. Pharmacological modulation of autophagy for Alzheimer’s disease therapy: Opportunities and obstacles. Acta Pharm Sin B 2021; 12:1688-1706. [PMID: 35847516 PMCID: PMC9279633 DOI: 10.1016/j.apsb.2021.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent and deleterious neurodegenerative disorder characterized by an irreversible and progressive impairment of cognitive abilities as well as the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. By far, the precise mechanisms of AD are not fully understood and no interventions are available to effectively slow down progression of the disease. Autophagy is a conserved degradation pathway that is crucial to maintain cellular homeostasis by targeting damaged organelles, pathogens, and disease-prone protein aggregates to lysosome for degradation. Emerging evidence suggests dysfunctional autophagy clearance pathway as a potential cellular mechanism underlying the pathogenesis of AD in affected neurons. Here we summarize the current evidence for autophagy dysfunction in the pathophysiology of AD and discuss the role of autophagy in the regulation of AD-related protein degradation and neuroinflammation in neurons and glial cells. Finally, we review the autophagy modulators reported in the treatment of AD models and discuss the obstacles and opportunities for potential clinical application of the novel autophagy activators for AD therapy.
Collapse
Affiliation(s)
- Zhiqiang Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Xiaoting Zhou
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
- Corresponding authors.
| | - Zhenyu Yue
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding authors.
| |
Collapse
|
7
|
Guo M, Xu J, Wang S, Dong B. Asiaticoside reduces autophagy and improves memory in a rat model of dementia through mTOR signaling pathway regulation. Mol Med Rep 2021; 24:645. [PMID: 34278477 DOI: 10.3892/mmr.2021.12284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 05/14/2021] [Indexed: 11/06/2022] Open
Abstract
Vascular dementia (VD) is one of the leading causes of neurological disorder following Alzheimer's disease. The present study evaluated the possible role of asiaticoside in the treatment of rats with VD and its inhibitory effects on autophagy in hippocampal tissues. Double ligation was used for permanent occlusion of the arteries, and spatial memory was assessed using the T‑maze test. Western blotting was used for determination of protein expression levels and H&E staining for histological analysis. Treatment of rats with VD with asiaticoside significantly alleviated the impairment in spontaneously altered behaviors and significantly reduced escape latency. VD mediated a decrease in distance travelled, swim time and number of platform crossings, whereas this was alleviated by asiaticoside. Furthermore, VD‑mediated hippocampal tissue damage was significantly alleviated by asiaticoside treatment (P<0.05), and asiaticoside alleviated formation of autophagosomes and markedly suppressed the number of primary lysosomes. In asiaticoside‑treated rats, VD‑mediated increases in Beclin 1 and microtubule‑associated protein light chain 3 (LC3) II expression in the hippocampal tissues were alleviated. Asiaticoside treatment also prevented suppression of mammalian target of rapamycin (mTOR) phosphorylation in VD rat hippocampal tissues. Notably, the rapamycin‑mediated suppression of phosphorylated‑mTOR, and elevation of Beclin 1 and LC3II expression in the rat hippocampus could not be alleviated by asiaticoside treatment. In conclusion, asiaticoside effectively prevented cerebral ischemia‑mediated cognitive impairment and neuronal damage in the rats. Moreover, autophagy was inhibited and the mTOR pathway was activated in rats with cerebral ischemia by asiaticoside treatment. Therefore, asiaticoside may warrant further study as a therapeutic agent for the treatment of dementia.
Collapse
Affiliation(s)
- Min Guo
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, P.R. China
| | - Jianmeng Xu
- Department of Neurosurgery, Dongying District People's Hospital of Dongying City, Dongying, Shandong 257000, P.R. China
| | - Shiwei Wang
- Department of Traditional Chinese Medicine, Dongying District People's Hospital of Dongying City, Dongying, Shandong 257000, P.R. China
| | - Baohua Dong
- Department of Neurology, Dongying District People's Hospital of Dongying City, Dongying, Shandong 257000, P.R. China
| |
Collapse
|
8
|
Ajoolabady A, Aslkhodapasandhokmabad H, Henninger N, Demillard LJ, Nikanfar M, Nourazarian A, Ren J. Targeting autophagy in neurodegenerative diseases: From molecular mechanisms to clinical therapeutics. Clin Exp Pharmacol Physiol 2021; 48:943-953. [PMID: 33752254 PMCID: PMC8204470 DOI: 10.1111/1440-1681.13500] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Many neurodegenerative diseases are associated with pathological aggregation of proteins in neurons. Autophagy is a natural self-cannibalization process that can act as a powerful mechanism to remove aged and damaged organelles as well as protein aggregates. It has been shown that promoting autophagy can attenuate or delay neurodegeneration by removing protein aggregates. In this paper, we will review the role of autophagy in Alzheimer's disease (AD), Parkinson's Disease (PD), and Huntington's Disease (HD) and discuss opportunities and challenges of targeting autophagy as a potential therapeutic avenue for treatment of these common neurodegenerative diseases.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, MA 01655, USA
- Department of Psychiatry, University of Massachusetts, Worcester, MA 01655, USA
| | - Laurie J. Demillard
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
| | - Masoud Nikanfar
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jun Ren
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195 USA
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
9
|
Surasiang T, Noree C. Effects of A6E Mutation on Protein Expression and Supramolecular Assembly of Yeast Asparagine Synthetase. BIOLOGY 2021; 10:biology10040294. [PMID: 33916846 PMCID: PMC8065433 DOI: 10.3390/biology10040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Certain mutations causing extremely low abundance of asparagine synthetase (the enzyme responsible for producing asparagine, one of the amino acids required for normal growth and development) have been identified in humans with neurological problems and small head and brain size. Currently, yeast is becoming more popular in modeling many human diseases. In this study, we incorporate a mutation, associated with human asparagine synthetase deficiency, into the yeast asparagine synthetase gene to demonstrate that this mutation can also show similar effects as those observed in humans, leading to very low abundance of yeast asparagine synthetase and slower yeast growth rate. This suggests that our yeast system can be alternatively used to initially screen for any drugs that can help rescue the protein levels of asparagine synthetase before applying them to further studies in mammals and humans. Furthermore, this mutation might specifically be introduced into the asparagine synthetase gene of the target cancer cells in order to suppress the overproduction of asparagine synthetase within these abnormal cells, therefore inhibiting the growth of cancer, which might be helpful for patients with blood cancer to prevent them developing any resistance to the conventional asparaginase treatment. Abstract Asparagine synthetase deficiency (ASD) has been found to be caused by certain mutations in the gene encoding human asparagine synthetase (ASNS). Among reported mutations, A6E mutation showed the greatest reduction in ASNS abundance. However, the effect of A6E mutation has not yet been tested with yeast asparagine synthetase (Asn1/2p). Here, we constructed a yeast strain by deleting ASN2 from its genome, introducing the A6E mutation codon to ASN1, along with GFP downstream of ASN1. Our mutant yeast construct showed a noticeable decrease of Asn1p(A6E)-GFP levels as compared to the control yeast expressing Asn1p(WT)-GFP. At the stationary phase, the A6E mutation also markedly lowered the assembly frequency of the enzyme. In contrast to Asn1p(WT)-GFP, Asn1p(A6E)-GFP was insensitive to changes in the intracellular energy levels upon treatment with sodium azide during the log phase or fresh glucose at the stationary phase. Our study has confirmed that the effect of A6E mutation on protein expression levels of asparagine synthetase is common in both unicellular and multicellular eukaryotes, suggesting that yeast could be a model of ASD. Furthermore, A6E mutation could be introduced to the ASNS gene of acute lymphoblastic leukemia patients to inhibit the upregulation of ASNS by cancer cells, reducing the risk of developing resistance to the asparaginase treatment.
Collapse
|
10
|
Dhakal S. ‘The awesome power of yeast’ in Alzheimer’s disease research. MICROBIOLOGY AUSTRALIA 2021. [DOI: 10.1071/ma21034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The difficulties in performing experimental studies related to diseases of the human brain have fostered a range of disease models from highly expensive and complex animal models to simple, robust, unicellular yeast models. Yeast models have been used in numerous studies to understand Alzheimer’s disease (AD) pathogenesis and to search for drugs targeting AD. Thanks to the conservation of fundamental eukaryotic processes including ageing and the availability of appropriate technological platforms, budding yeast are a simple model eukaryote to assist with understanding human cell biology, offering a platform to study human diseases. This article aims to provide insights from yeast models on the contributions of amyloid beta, a causative agent in AD, and recent research findings on AD chemoprevention.
Collapse
|
11
|
Activate or Inhibit? Implications of Autophagy Modulation as a Therapeutic Strategy for Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21186739. [PMID: 32937909 PMCID: PMC7554997 DOI: 10.3390/ijms21186739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases result in a range of conditions depending on the type of proteinopathy, genes affected or the location of the degeneration in the brain. Proteinopathies such as senile plaques and neurofibrillary tangles in the brain are prominent features of Alzheimer’s disease (AD). Autophagy is a highly regulated mechanism of eliminating dysfunctional organelles and proteins, and plays an important role in removing these pathogenic intracellular protein aggregates, not only in AD, but also in other neurodegenerative diseases. Activating autophagy is gaining interest as a potential therapeutic strategy for chronic diseases featuring protein aggregation and misfolding, including AD. Although autophagy activation is a promising intervention, over-activation of autophagy in neurodegenerative diseases that display impaired lysosomal clearance may accelerate pathology, suggesting that the success of any autophagy-based intervention is dependent on lysosomal clearance being functional. Additionally, the effects of autophagy activation may vary significantly depending on the physiological state of the cell, especially during proteotoxic stress and ageing. Growing evidence seems to favour a strategy of enhancing the efficacy of autophagy by preventing or reversing the impairments of the specific processes that are disrupted. Therefore, it is essential to understand the underlying causes of the autophagy defect in different neurodegenerative diseases to explore possible therapeutic approaches. This review will focus on the role of autophagy during stress and ageing, consequences that are linked to its activation and caveats in modulating this pathway as a treatment.
Collapse
|
12
|
Bharadwaj P, Solomon T, Sahoo BR, Ignasiak K, Gaskin S, Rowles J, Verdile G, Howard MJ, Bond CS, Ramamoorthy A, Martins RN, Newsholme P. Amylin and beta amyloid proteins interact to form amorphous heterocomplexes with enhanced toxicity in neuronal cells. Sci Rep 2020; 10:10356. [PMID: 32587390 PMCID: PMC7316712 DOI: 10.1038/s41598-020-66602-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/10/2020] [Indexed: 01/09/2023] Open
Abstract
Human pancreatic islet amyloid polypeptide (hIAPP) and beta amyloid (Aβ) can accumulate in Type 2 diabetes (T2D) and Alzheimer's disease (AD) brains and evidence suggests that interaction between the two amyloidogenic proteins can lead to the formation of heterocomplex aggregates. However, the structure and consequences of the formation of these complexes remains to be determined. The main objective of this study was to characterise the different types and morphology of Aβ-hIAPP heterocomplexes and determine if formation of such complexes exacerbate neurotoxicity. We demonstrate that hIAPP promotes Aβ oligomerization and formation of small oligomer and large aggregate heterocomplexes. Co-oligomerized Aβ42-hIAPP mixtures displayed distinct amorphous structures and a 3-fold increase in neuronal cell death as compared to Aβ and hIAPP alone. However, in contrast to hIAPP, non-amyloidogenic rat amylin (rIAPP) reduced oligomer Aβ-mediated neuronal cell death. rIAPP exhibited reductions in Aβ induced neuronal cell death that was independent of its ability to interact with Aβ and form heterocomplexes; suggesting mediation by other pathways. Our findings reveal distinct effects of IAPP peptides in modulating Aβ aggregation and toxicity and provide new insight into the potential pathogenic effects of Aβ-IAPP hetero-oligomerization and development of IAPP based therapies for AD and T2D.
Collapse
Affiliation(s)
- Prashant Bharadwaj
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA, 6107, Australia.
- Centre of Excellence for Alzheimer's disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
| | - Tanya Solomon
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA, 6107, Australia
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Katarzyna Ignasiak
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Scott Gaskin
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA, 6107, Australia
| | - Joanne Rowles
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA, 6107, Australia
| | - Giuseppe Verdile
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA, 6107, Australia
- Centre of Excellence for Alzheimer's disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mark J Howard
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA, 6009, Australia
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
- School of Biomedical Science, Macquarie University, Sydney, NSW, Australia
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA, 6107, Australia
| |
Collapse
|
13
|
Biophysical studies of protein misfolding and aggregation in in vivo models of Alzheimer's and Parkinson's diseases. Q Rev Biophys 2020; 49:e22. [PMID: 32493529 DOI: 10.1017/s0033583520000025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disorders, including Alzheimer's (AD) and Parkinson's diseases (PD), are characterised by the formation of aberrant assemblies of misfolded proteins. The discovery of disease-modifying drugs for these disorders is challenging, in part because we still have a limited understanding of their molecular origins. In this review, we discuss how biophysical approaches can help explain the formation of the aberrant conformational states of proteins whose neurotoxic effects underlie these diseases. We discuss in particular models based on the transgenic expression of amyloid-β (Aβ) and tau in AD, and α-synuclein in PD. Because biophysical methods have enabled an accurate quantification and a detailed understanding of the molecular mechanisms underlying protein misfolding and aggregation in vitro, we expect that the further development of these methods to probe directly the corresponding mechanisms in vivo will open effective routes for diagnostic and therapeutic interventions.
Collapse
|
14
|
Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. ADVANCES IN GENETICS 2020; 105:293-380. [PMID: 32560789 PMCID: PMC7527210 DOI: 10.1016/bs.adgen.2020.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia.
| | - Anastasia V Grizel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew A Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
15
|
Schmukler E, Pinkas‐Kramarski R. Autophagy induction in the treatment of Alzheimer's disease. Drug Dev Res 2020; 81:184-193. [DOI: 10.1002/ddr.21605] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Eran Schmukler
- Department of NeurobiologySchool of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel‐Aviv University Ramat‐Aviv Israel
| | - Ronit Pinkas‐Kramarski
- Department of NeurobiologySchool of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel‐Aviv University Ramat‐Aviv Israel
| |
Collapse
|
16
|
Suresh SN, Chakravorty A, Giridharan M, Garimella L, Manjithaya R. Pharmacological Tools to Modulate Autophagy in Neurodegenerative Diseases. J Mol Biol 2020; 432:2822-2842. [PMID: 32105729 DOI: 10.1016/j.jmb.2020.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
Considerable evidences suggest a link between autophagy dysfunction, protein aggregation, and neurodegenerative diseases. Given that autophagy is a conserved intracellular housekeeping process, modulation of autophagy flux in various model organisms have highlighted its importance for maintaining proteostasis. In postmitotic cells such as neurons, compromised autophagy is sufficient to cause accumulation of ubiquitinated aggregates, neuronal dysfunction, degeneration, and loss of motor coordination-all hallmarks of neurodegenerative diseases. Reciprocally, enhanced autophagy flux augments cellular and organismal health, in addition to extending life span. These genetic studies not-withstanding a plethora of small molecule modulators of autophagy flux have been reported that alleviate disease symptoms in models of neurodegenerative diseases. This review summarizes the potential of such molecules to be, perhaps, one of the first autophagy drugs for treating these currently incurable diseases.
Collapse
Affiliation(s)
- S N Suresh
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Anushka Chakravorty
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Mridhula Giridharan
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Lakshmi Garimella
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India; Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India.
| |
Collapse
|
17
|
Autophagy modulates Aβ accumulation and formation of aggregates in yeast. Mol Cell Neurosci 2020; 104:103466. [PMID: 31962153 DOI: 10.1016/j.mcn.2020.103466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 11/20/2022] Open
Abstract
Intracellular accumulation of amyloid-β protein (Aβ) is an early event in Alzheimer's disease (AD). The autophagy-lysosomal pathway is an important pathway for maintaining cellular proteostasis and for the removal of damaged organelles and protein aggregates in all eukaryotes. Despite mounting evidence showing that modulating autophagy promotes clearance of Aβ aggregates, the regulatory mechanisms and signalling pathways underlying this process remain poorly understood. In order to gain better insight we used our previously characterised yeast model expressing GFP-Aβ42 to identify genes that regulate the removal of Aβ42 aggregates by autophagy. We report that GFP-Aβ42 is sequestered and is selectively transported to vacuole for degradation and that autophagy is the prominent pathway for clearance of aggregates. Next, to identify genes that selectively promote the removal of Aβ42 aggregates, we screened levels of GFP-Aβ42 and non-aggregating GFP-Aβ42 (19:34) proteins in a panel of 192 autophagy mutants lacking genes involved in regulation and initiation of the pathway, cargo selection and degradation processes. The nutrient and stress signalling genes RRD1, SNF4, GCN4 and SSE1 were identified. Deletion of these genes impaired GFP-Aβ42 clearance and their overexpression reduced GFP-Aβ42 levels in yeast. Overall, our findings identify a novel role for these nutrient and stress signalling genes in the targeted elimination of Aβ42 aggregates, which offer a promising avenue for developing autophagy based therapies to suppress amyloid deposition in AD.
Collapse
|
18
|
Bharadwaj P, Martins R. A rapid absorbance-based growth assay to screen the toxicity of oligomer Aβ 42 and protect against cell death in yeast. Neural Regen Res 2020; 15:1931-1936. [PMID: 32246642 PMCID: PMC7513978 DOI: 10.4103/1673-5374.280318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Multiple lines of evidence show that soluble oligomer forms of amyloid β protein (Aβ42) are the most neurotoxic species in the brain and correlates with the degree of neuronal loss and cognitive deficit in Alzheimer’s disease. Although many studies have used mammalian cells to investigate oligomer Aβ42 toxicity, the use of more simple eukaryotic cellular systems offers advantages for large-scale screening studies. We have previously established and validated budding yeast, Saccharomyces cerevisiae to be a simple and a robust model to study the toxicity of Aβ. Using colony counting based methods, oligomeric Aβ42 was shown to induce dose-dependent cell death in yeast. We have adapted this method for high throughput screening by developing an absorbance-based growth assay. We further validated the assay with treatments previously shown to protect oligomer Aβ42 induced cell death in mammalian and yeast cells. This assay offers a platform for studying underlying mechanisms of oligomer Aβ42 induced cell death using gene deletion/overexpression libraries and developing novel agents that alleviate Aβ42 induced cell death.
Collapse
Affiliation(s)
- Prashant Bharadwaj
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University; School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Western Australia, Australia
| | - Ralph Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University; School of Psychiatry and Clinical Neuroscience, University of Western Australia, Western Australia; School of Biomedical Science, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
19
|
Tian A, Ma X, Li H, Zhang R. Dl-3n-butylphthalide improves spatial learning and memory in rats with vascular dementia by reducing autophagy via regulation of the mTOR signaling pathway. Exp Ther Med 2019; 19:1940-1946. [PMID: 32104252 DOI: 10.3892/etm.2019.8402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Dl-3n-butylphthalide (NBP) has been reported to be a beneficial and promising drug for the treatment and prevention of vascular dementia (VD). NBP has been demonstrated to improve learning and memory in rats with vascular cognitive impairment by activating the silent information regulator 1/brain-derived neurotrophic factor pathway. However, NBP is a multi-target drug. Therefore, the present study aimed to determine whether the protective effects of NBP on learning deficits in a rat model of VD were due to the inhibition of autophagy via the phosphorylated mammalian target of rapamycin (p-mTOR) pathway. NBP treatment attenuated memory damage in rats with VD, as demonstrated by T-maze and Morris water maze tests. NBP administration also significantly reduced the levels of the characteristic autophagic proteins Beclin 1 and LC3II and upregulated phosphorylation levels of mTOR at Ser-2448 compared with the VD group. However, treatment of rats with VD with NBP plus the mTOR inhibitor rapamycin failed to significantly suppress Beclin 1 and LC3II expression. These results suggested that the beneficial effects of NBP on learning deficits in a rat model of VD were due to the suppression of ischemia-induced autophagy via the p-mTOR signaling pathway.
Collapse
Affiliation(s)
- Ayong Tian
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaochuan Ma
- Department of Gerontology and Geriatrics, The Third Hospital of Shenyang, Shenyang, Liaoning 110001, P.R. China
| | - Hui Li
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Rongwei Zhang
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
20
|
Yeast Models for Amyloids and Prions: Environmental Modulation and Drug Discovery. Molecules 2019; 24:molecules24183388. [PMID: 31540362 PMCID: PMC6767215 DOI: 10.3390/molecules24183388] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Amyloids are self-perpetuating protein aggregates causing neurodegenerative diseases in mammals. Prions are transmissible protein isoforms (usually of amyloid nature). Prion features were recently reported for various proteins involved in amyloid and neural inclusion disorders. Heritable yeast prions share molecular properties (and in the case of polyglutamines, amino acid composition) with human disease-related amyloids. Fundamental protein quality control pathways, including chaperones, the ubiquitin proteasome system and autophagy are highly conserved between yeast and human cells. Crucial cellular proteins and conditions influencing amyloids and prions were uncovered in the yeast model. The treatments available for neurodegenerative amyloid-associated diseases are few and their efficiency is limited. Yeast models of amyloid-related neurodegenerative diseases have become powerful tools for high-throughput screening for chemical compounds and FDA-approved drugs that reduce aggregation and toxicity of amyloids. Although some environmental agents have been linked to certain amyloid diseases, the molecular basis of their action remains unclear. Environmental stresses trigger amyloid formation and loss, acting either via influencing intracellular concentrations of the amyloidogenic proteins or via heterologous inducers of prions. Studies of environmental and physiological regulation of yeast prions open new possibilities for pharmacological intervention and/or prophylactic procedures aiming on common cellular systems rather than the properties of specific amyloids.
Collapse
|
21
|
Mputhia Z, Hone E, Tripathi T, Sargeant T, Martins R, Bharadwaj P. Autophagy Modulation as a Treatment of Amyloid Diseases. Molecules 2019; 24:E3372. [PMID: 31527516 PMCID: PMC6766836 DOI: 10.3390/molecules24183372] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
Amyloids are fibrous proteins aggregated into toxic forms that are implicated in several chronic disorders. More than 30 diseases show deposition of fibrous amyloid proteins associated with cell loss and degeneration in the affected tissues. Evidence demonstrates that amyloid diseases result from protein aggregation or impaired amyloid clearance, but the connection between amyloid accumulation and tissue degeneration is not clear. Common examples of amyloid diseases are Alzheimer's disease (AD), Parkinson's disease (PD) and tauopathies, which are the most common forms of neurodegenerative diseases, as well as polyglutamine disorders and certain peripheral metabolic diseases. In these diseases, increased accumulation of toxic amyloid proteins is suspected to be one of the main causative factors in the disease pathogenesis. It is therefore important to more clearly understand how these toxic amyloid proteins accumulate as this will aide in the development of more effective preventive and therapeutic strategies. Protein homeostasis, or proteostasis, is maintained by multiple cellular pathways-including protein synthesis, quality control, and clearance-which are collectively responsible for preventing protein misfolding or aggregation. Modulating protein degradation is a very complex but attractive treatment strategy used to remove amyloid and improve cell survival. This review will focus on autophagy, an important clearance pathway of amyloid proteins, and strategies for using it as a potential therapeutic target for amyloid diseases. The physiological role of autophagy in cells, pathways for its modulation, its connection with apoptosis, cell models and caveats in developing autophagy as a treatment and as a biomarker is discussed.
Collapse
Affiliation(s)
- Zoe Mputhia
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Nedlands, WA 6009, Australia.
| | - Eugene Hone
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Nedlands, WA 6009, Australia.
| | - Timir Tripathi
- Department of Biochemistry, North-Eastern Hill University, Meghalaya 793022, India.
| | - Tim Sargeant
- Hopwood Centre for Neurobiology, SAHMRI, Adelaide, SA 5000, Australia.
| | - Ralph Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Nedlands, WA 6009, Australia.
- School of Biomedical Science, Macquarie University, Sydney, NSW 2109, Australia.
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Nedlands, WA 6009, Australia.
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia.
| |
Collapse
|
22
|
Simvastatin Efficiently Reduces Levels of Alzheimer's Amyloid Beta in Yeast. Int J Mol Sci 2019; 20:ijms20143531. [PMID: 31330953 PMCID: PMC6678968 DOI: 10.3390/ijms20143531] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 11/17/2022] Open
Abstract
A large-scale epidemiology study on statins previously showed that simvastatin was unique among statins in reducing the incidence of dementia. Since amyloid beta (Aβ42) is the protein that is most associated with Alzheimer's disease, this study has focused on how simvastatin influences the turnover of native Aβ42 and Aβ42 fused with green fluorescent protein (GFP), in the simplest eukaryotic model organism, Saccharomyces cerevisiae. Previous studies have established that yeast constitutively producing Aβ42 fused to GFP offer a convenient means of analyzing yeast cellular responses to Aβ42. Young cells clear the GFP fusion protein and do not have green fluorescence while the older population of cells retains the fusion protein and exhibits green fluorescence, offering a fast and convenient means of studying factors that affect Aβ42 turnover. In this study the proportion of cells having GFP fused to Aβ after exposure to simvastatin, atorvastatin and lovastatin was analyzed by flow cytometry. Simvastatin effectively reduced levels of the cellular Aβ42 protein in a dose-dependent manner. Simvastatin promoted the greatest reduction as compared to the other two statins. A comparison with fluconazole, which targets that same pathway of ergosterol synthesis, suggests that effects on ergosterol synthesis do not account for the reduced amounts of Aβ42 fused to GFP. The levels of native Aβ42 following treated with simvastatin were also examined using a more laborious approach, quantitative MALDI TOF mass spectrometry. Simvastatin efficiently reduced levels of native Aβ42 from the population. This work indicates a novel action of simvastatin in reducing levels of Aβ42 providing new insights into how simvastatin exerts its neuroprotective role. We hypothesize that this reduction may be due to protein clearance.
Collapse
|
23
|
Rencus-Lazar S, DeRowe Y, Adsi H, Gazit E, Laor D. Yeast Models for the Study of Amyloid-Associated Disorders and Development of Future Therapy. Front Mol Biosci 2019; 6:15. [PMID: 30968029 PMCID: PMC6439353 DOI: 10.3389/fmolb.2019.00015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022] Open
Abstract
First described almost two decades ago, the pioneering yeast models of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases, have become well-established research tools, providing both basic mechanistic insights as well as a platform for the development of therapeutic agents. These maladies are associated with the formation of aggregative amyloid protein structures showing common characteristics, such as the assembly of soluble oligomeric species, binding of indicative dyes, and apoptotic cytotoxicity. The canonical yeast models have recently been expanded by the establishment of a model for type II diabetes, a non-neurological amyloid-associated disease. While these model systems require the exogenous expression of mammalian proteins in yeast, an additional amyloid-associated disease model, comprising solely mutations of endogenous yeast genes, has been recently described. Mutated in the adenine salvage pathway, this yeast model exhibits adenine accumulation, thereby recapitulating adenine inborn error of metabolism disorders. Moreover, in line with the recent extension of the amyloid hypothesis to include metabolite amyloids, in addition to protein-associated ones, the intracellular assembly of adenine amyloid-like structures has been demonstrated using this yeast model. In this review, we describe currently available yeast models of diverse amyloid-associated disorders, as well as their impact on our understanding of disease mechanisms and contribution to future potential drug development.
Collapse
Affiliation(s)
- Sigal Rencus-Lazar
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yasmin DeRowe
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hanaa Adsi
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv, Israel.,Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dana Laor
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Xia D, Sui R, Min L, Zhang L, Zhang Z. Fastigial nucleus stimulation ameliorates cognitive impairment via modulating autophagy and inflammasomes activation in a rat model of vascular dementia. J Cell Biochem 2018; 120:5108-5117. [PMID: 30552710 DOI: 10.1002/jcb.27787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Dongjian Xia
- Department of Neurosurgery The First Affiliated Hospital to Jinzhou Medical University Jinzhou China
| | - Rubo Sui
- Department of Neurology The First Affiliated Hospital to Jinzhou Medical University Jinzhou China
| | - Lianqiu Min
- Department of Neurology The First Affiliated Hospital to Jinzhou Medical University Jinzhou China
| | - Ling Zhang
- Department of Neurology The First Affiliated Hospital to Jinzhou Medical University Jinzhou China
| | - Zhuang Zhang
- Department of Neurology The First Affiliated Hospital to Jinzhou Medical University Jinzhou China
| |
Collapse
|
25
|
Skvortsova VI, Bachurin SO, Ustyugov AA, Kukharsky MS, Deikin AV, Buchman VL, Ninkina NN. Gamma-Carbolines Derivatives As Promising Agents for the Development of Pathogenic Therapy for Proteinopathy. Acta Naturae 2018; 10:59-62. [PMID: 30713762 PMCID: PMC6351039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 11/07/2022] Open
Abstract
Uncontrolled protein aggregation, accompanied by the formation of specific inclusions, is a major component of the pathogenesis of many common neurodegenerative diseases known as proteinopathies. The intermediate products of this aggregation are toxic to neurons and may be lethal. The development strategy of pathogenic therapy for proteinopathy is based on the design of drugs capable of both inhibiting proteinopathy progression and increasing the survival of affected neurons. The results of a decade-long research effort at leading Russian and international laboratories have demonstrated that Dimebon (Latrepirdine), as well as a number of its derivatives from a gamma-carboline group, show a strong neuroprotective effect and can modulate the course of a neurodegenerative process in both in vitro and in vivo model systems. The accumulated data indicate that gamma-carbolines are promising compounds for the development of pathogenic therapy for proteinopathies.
Collapse
Affiliation(s)
- V. I. Skvortsova
- Pirogov Russian National Research Medical University, Ostrovitianov Str., 1, Moscow, 117997, Russia
| | - S. O. Bachurin
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Severny Dr., Chernogolovka, 1142432, Russia
| | - A. A. Ustyugov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Severny Dr., Chernogolovka, 1142432, Russia
| | - M. S. Kukharsky
- Pirogov Russian National Research Medical University, Ostrovitianov Str., 1, Moscow, 117997, Russia
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Severny Dr., Chernogolovka, 1142432, Russia
| | - A. V. Deikin
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334 , Russia
| | - V. L. Buchman
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Severny Dr., Chernogolovka, 1142432, Russia
- Cardiff University, School of Biosciences, Sir Martin Evans Building, Museum Ave., Cardiff, CF10 3AX
| | - N. N. Ninkina
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Severny Dr., Chernogolovka, 1142432, Russia
- Cardiff University, School of Biosciences, Sir Martin Evans Building, Museum Ave., Cardiff, CF10 3AX
| |
Collapse
|
26
|
Seynnaeve D, Vecchio MD, Fruhmann G, Verelst J, Cools M, Beckers J, Mulvihill DP, Winderickx J, Franssens V. Recent Insights on Alzheimer's Disease Originating from Yeast Models. Int J Mol Sci 2018; 19:E1947. [PMID: 29970827 PMCID: PMC6073265 DOI: 10.3390/ijms19071947] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 01/28/2023] Open
Abstract
In this review article, yeast model-based research advances regarding the role of Amyloid-β (Aβ), Tau and frameshift Ubiquitin UBB+1 in Alzheimer’s disease (AD) are discussed. Despite having limitations with regard to intercellular and cognitive AD aspects, these models have clearly shown their added value as complementary models for the study of the molecular aspects of these proteins, including their interplay with AD-related cellular processes such as mitochondrial dysfunction and altered proteostasis. Moreover, these yeast models have also shown their importance in translational research, e.g., in compound screenings and for AD diagnostics development. In addition to well-established Saccharomyces cerevisiae models, new upcoming Schizosaccharomyces pombe, Candida glabrata and Kluyveromyces lactis yeast models for Aβ and Tau are briefly described. Finally, traditional and more innovative research methodologies, e.g., for studying protein oligomerization/aggregation, are highlighted.
Collapse
Affiliation(s)
- David Seynnaeve
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Mara Del Vecchio
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Gernot Fruhmann
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Joke Verelst
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Melody Cools
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Jimmy Beckers
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Daniel P Mulvihill
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK.
| | - Joris Winderickx
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Vanessa Franssens
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| |
Collapse
|
27
|
Goyal D, Kaur A, Goyal B. Benzofuran and Indole: Promising Scaffolds for Drug Development in Alzheimer's Disease. ChemMedChem 2018; 13:1275-1299. [DOI: 10.1002/cmdc.201800156] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Amandeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry; Thapar Institute of Engineering & Technology; Patiala 147004 Punjab India
| |
Collapse
|
28
|
Tardiff DF, Brown LE, Yan X, Trilles R, Jui NT, Barrasa MI, Caldwell KA, Caldwell GA, Schaus SE, Lindquist S. Dihydropyrimidine-Thiones and Clioquinol Synergize To Target β-Amyloid Cellular Pathologies through a Metal-Dependent Mechanism. ACS Chem Neurosci 2017; 8:2039-2055. [PMID: 28628299 PMCID: PMC5705239 DOI: 10.1021/acschemneuro.7b00187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The lack of therapies for neurodegenerative diseases arises from our incomplete understanding of their underlying cellular toxicities and the limited number of predictive model systems. It is critical that we develop approaches to identify novel targets and lead compounds. Here, a phenotypic screen of yeast proteinopathy models identified dihydropyrimidine-thiones (DHPM-thiones) that selectively rescued the toxicity caused by β-amyloid (Aβ), the peptide implicated in Alzheimer's disease. Rescue of Aβ toxicity by DHPM-thiones occurred through a metal-dependent mechanism of action. The bioactivity was distinct, however, from that of the 8-hydroxyquinoline clioquinol (CQ). These structurally dissimilar compounds strongly synergized at concentrations otherwise not competent to reduce toxicity. Cotreatment ameliorated Aβ toxicity by reducing Aβ levels and restoring functional vesicle trafficking. Notably, these low doses significantly reduced deleterious off-target effects caused by CQ on mitochondria at higher concentrations. Both single and combinatorial treatments also reduced death of neurons expressing Aβ in a nematode, indicating that DHPM-thiones target a conserved protective mechanism. Furthermore, this conserved activity suggests that expression of the Aβ peptide causes similar cellular pathologies from yeast to neurons. Our identification of a new cytoprotective scaffold that requires metal-binding underscores the critical role of metal phenomenology in mediating Aβ toxicity. Additionally, our findings demonstrate the valuable potential of synergistic compounds to enhance on-target activities, while mitigating deleterious off-target effects. The identification and prosecution of synergistic compounds could prove useful for developing AD therapeutics where combination therapies may be required to antagonize diverse pathologies.
Collapse
Affiliation(s)
- Daniel F. Tardiff
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Lauren E. Brown
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Xiaohui Yan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Richard Trilles
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Nathan T. Jui
- Department of Chemistry, MIT, Cambridge, Massachusetts 02139, United States
| | - M. Inmaculada Barrasa
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Scott E. Schaus
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
- Department of Biology, MIT, Cambridge, Massachusetts 02139, United States
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Carija A, Navarro S, de Groot NS, Ventura S. Protein aggregation into insoluble deposits protects from oxidative stress. Redox Biol 2017; 12:699-711. [PMID: 28410533 PMCID: PMC5390671 DOI: 10.1016/j.redox.2017.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
Protein misfolding and aggregation have been associated with the onset of neurodegenerative disorders. Recent studies demonstrate that the aggregation process can result in a high diversity of protein conformational states, however the identity of the specific species responsible for the cellular damage is still unclear. Here, we use yeast as a model to systematically analyse the intracellular effect of expressing 21 variants of the amyloid-ß-peptide, engineered to cover a continuous range of intrinsic aggregation propensities. We demonstrate the existence of a striking negative correlation between the aggregation propensity of a given variant and the oxidative stress it elicits. Interestingly, each variant generates a specific distribution of protein assemblies in the cell. This allowed us to identify the aggregated species that remain diffusely distributed in the cytosol and are unable to coalesce into large protein inclusions as those causing the highest levels of oxidative damage. Overall, our results indicate that the formation of large insoluble aggregates may act as a protective mechanism to avoid cellular oxidative stress.
Collapse
Affiliation(s)
- Anita Carija
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Natalia Sanchez de Groot
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
30
|
Moors TE, Hoozemans JJM, Ingrassia A, Beccari T, Parnetti L, Chartier-Harlin MC, van de Berg WDJ. Therapeutic potential of autophagy-enhancing agents in Parkinson's disease. Mol Neurodegener 2017; 12:11. [PMID: 28122627 PMCID: PMC5267440 DOI: 10.1186/s13024-017-0154-3] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/18/2017] [Indexed: 01/07/2023] Open
Abstract
Converging evidence from genetic, pathological and experimental studies have increasingly suggested an important role for autophagy impairment in Parkinson’s Disease (PD). Genetic studies have identified mutations in genes encoding for components of the autophagy-lysosomal pathway (ALP), including glucosidase beta acid 1 (GBA1), that are associated with increased risk for developing PD. Observations in PD brain tissue suggest an aberrant regulation of autophagy associated with the aggregation of α-synuclein (α-syn). As autophagy is one of the main systems involved in the proteolytic degradation of α-syn, pharmacological enhancement of autophagy may be an attractive strategy to combat α-syn aggregation in PD. Here, we review the potential of autophagy enhancement as disease-modifying therapy in PD based on preclinical evidence. In particular, we provide an overview of the molecular regulation of autophagy and targets for pharmacological modulation within the ALP. In experimental models, beneficial effects on multiple pathological processes involved in PD, including α-syn aggregation, cell death, oxidative stress and mitochondrial dysfunction, have been demonstrated using the autophagy enhancers rapamycin and lithium. However, selectivity of these agents is limited, while upstream ALP signaling proteins are involved in many other pathways than autophagy. Broad stimulation of autophagy may therefore cause a wide spectrum of dose-dependent side-effects, suggesting that its clinical applicability is limited. However, recently developed agents selectively targeting core ALP components, including Transcription Factor EB (TFEB), lysosomes, GCase as well as chaperone-mediated autophagy regulators, exert more specific effects on molecular pathogenetic processes causing PD. To conclude, the targeted manipulation of downstream ALP components, rather than broad autophagy stimulation, may be an attractive strategy for the development of novel pharmacological therapies in PD. Further characterization of dysfunctional autophagy in different stages and molecular subtypes of PD in combination with the clinical translation of downstream autophagy regulation offers exciting new avenues for future drug development.
Collapse
Affiliation(s)
- Tim E Moors
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands.
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Angela Ingrassia
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Department of Medicine, Section of Neurology, University of Perugia, Perugia, Italy
| | - Marie-Christine Chartier-Harlin
- UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, University of Lille, Lille, F-59000, France.,Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000, Lille, France
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Macreadie I. Yeast as a model organism for the pharmaceutical and nutraceutical industries. MICROBIOLOGY AUSTRALIA 2017. [DOI: 10.1071/ma17027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Considerable knowledge about how we function has come through the use of the unicellular microbe yeast. Yeasts are eukaryotes like us and the similarity between us and yeasts is readily visible at the molecular level. This places yeast as an important tool for industries involved in health research, including pharmaceutical and nutraceutical discovery.
Collapse
|
32
|
Porter T, Bharadwaj P, Groth D, Paxman A, Laws SM, Martins RN, Verdile G. The Effects of Latrepirdine on Amyloid-β Aggregation and Toxicity. J Alzheimers Dis 2016; 50:895-905. [PMID: 26836170 PMCID: PMC4927897 DOI: 10.3233/jad-150790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Latrepirdine (Dimebon) has been demonstrated to be a neuroprotective and cognition improving agent in neurodegenerative diseases that feature protein aggregation and deposition, such as Alzheimer's disease (AD). The accumulation of amyloid-β (Aβ) protein aggregates is a key event in the neurodegenerative process in AD. This study explores if latrepirdine modulation of protein aggregation contributes to its neuroprotective mechanism of action. Assessment of neuronal cell death showed that there was a significant reduction in lactate dehydrogenase release at an equimolar ratio of Aβ:latrepirdine and with lower concentrations of latrepirdine. The ability of latrepirdine to alter the formation of Aβ42 aggregates was assessed by thioflavin-T fluorescence, western immunoblotting and atomic force microscopy (AFM). Despite showing a reduction in thioflavin-T fluorescence with latrepirdine treatment, indicating a decrease in aggregation, immunoblotting and AFM showed a modest increase in both the formation and size of Aβ aggregates. The discrepancies between thioflavin-T and the other assays are consistent with previous evidence that cyclic molecules can interfere with thioflavin-T binding of amyloid protein preparations. The ability of latrepirdine to modulate Aβ aggregation appears to be independent of its neuroprotective effects, and is unlikely to be a mechanism by which latrepirdine offers protection. This study investigates the effect of latrepirdine on Aβ aggregation, and presents evidence suggesting that caution should be applied in the use of thioflavin-T fluorescence based assays as a method for screening compounds for protein aggregation altering properties.
Collapse
Affiliation(s)
- Tenielle Porter
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Western Australia, Australia
| | - Prashant Bharadwaj
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Western Australia, Australia
| | - David Groth
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Western Australia, Australia.,School of Psychiatry and Clinical Neuroscience, University of Western Australia, Western Australia, Australia
| | - Adrian Paxman
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Western Australia, Australia
| | - Simon M Laws
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Western Australia, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Western Australia, Australia.,School of Psychiatry and Clinical Neuroscience, University of Western Australia, Western Australia, Australia.,The Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Western Australia, Australia
| | - Giuseppe Verdile
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Western Australia, Australia.,School of Psychiatry and Clinical Neuroscience, University of Western Australia, Western Australia, Australia.,The Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Western Australia, Australia
| |
Collapse
|
33
|
Tsvetkov PO, Cheglakov IB, Ovsepyan AA, Mediannikov OY, Morozov AO, Telegin GB, Kozin SA. Peripherally Applied Synthetic Tetrapeptides HAEE and RADD Slow Down the Development of Cerebral β-Amyloidosis in AβPP/PS1 Transgenic Mice. J Alzheimers Dis 2016; 46:849-53. [PMID: 26402624 DOI: 10.3233/jad-150031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two tetrapeptides, HAEE and RADD, which are ionic-complementary to the primary zinc recognition site of amyloid-β (Aβ), have been reported to inhibit zinc-induced dimerization of the Aβ metal-binding domain and slow Aβ aggregation in vitro. In the present study, we investigate the impact of HAEE and RADD on the development of cerebral β-amyloidosis in a mouse model of Alzheimer's disease. We have found chronic intravenous administration of each peptide results in significant decrease of amyloid plaque burden in the treated mice.
Collapse
Affiliation(s)
- Philipp O Tsvetkov
- Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Faculté de Pharmacie, Marseille, France.,The Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Ivan B Cheglakov
- Branch of Shemyakin and Ovchinnikov Institute of bioorganic chemistry of Russian academy of sciences, Pushchino, Russia
| | - Armen A Ovsepyan
- Branch of Shemyakin and Ovchinnikov Institute of bioorganic chemistry of Russian academy of sciences, Pushchino, Russia
| | | | | | - Georgy B Telegin
- Branch of Shemyakin and Ovchinnikov Institute of bioorganic chemistry of Russian academy of sciences, Pushchino, Russia
| | | |
Collapse
|
34
|
Macreadie IG, Arvanitis C, Bharadwaj P. Finding chemopreventatives to reduce amyloid beta in yeast. Neural Regen Res 2016; 11:244-5. [PMID: 27073375 PMCID: PMC4810986 DOI: 10.4103/1673-5374.177729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ian G Macreadie
- School of Science and Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - Costa Arvanitis
- School of Science and Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer's disease Research and Care, School of Medical Sciences, Edith Cowan University; CHIRI Biosciences Research Precinct, School of Biomedical Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
35
|
Porzoor A, Macreadie I. Yeast as a Model for Studies on Aβ Aggregation Toxicity in Alzheimer's Disease, Autophagic Responses, and Drug Screening. Methods Mol Biol 2016; 1303:217-26. [PMID: 26235069 DOI: 10.1007/978-1-4939-2627-5_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Aβ peptide is widely considered a major cause of Alzheimer's disease since it causes neuronal death in an oligomerisation-dependent manner. In order to identify new inhibitors of Aβ that may be chemo preventative for Alzheimer's disease, a yeast assay that qualitatively determines the amounts and state of the human Aβ42 peptide has been developed. Yeast assays such as this can be applied to studies on aggregation toxicity, autophagic responses and drug screening in Alzheimer's disease.
Collapse
Affiliation(s)
- Afsaneh Porzoor
- School of Applied Sciences and Health Innovations Research Institute, RMIT University, Bundoora West Campus, 71, Melbourne, VIC, 3083, Australia
| | | |
Collapse
|
36
|
Castrillo JI, Oliver SG. Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks. Methods Mol Biol 2016; 1303:3-48. [PMID: 26235058 DOI: 10.1007/978-1-4939-2627-5_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), and many neurodegenerative disorders, are multifactorial in nature. They involve a combination of genomic, epigenomic, interactomic and environmental factors. Progress is being made, and these complex diseases are beginning to be understood as having their origin in altered states of biological networks at the cellular level. In the case of AD, genomic susceptibility and mechanisms leading to (or accompanying) the impairment of the central Amyloid Precursor Protein (APP) processing and tau networks are widely accepted as major contributors to the diseased state. The derangement of these networks may result in both the gain and loss of functions, increased generation of toxic species (e.g., toxic soluble oligomers and aggregates) and imbalances, whose effects can propagate to supra-cellular levels. Although well sustained by empirical data and widely accepted, this global perspective often overlooks the essential roles played by the main counteracting homeostatic networks (e.g., protein quality control/proteostasis, unfolded protein response, protein folding chaperone networks, disaggregases, ER-associated degradation/ubiquitin proteasome system, endolysosomal network, autophagy, and other stress-protective and clearance networks), whose relevance to AD is just beginning to be fully realized. In this chapter, an integrative perspective is presented. Alzheimer's disease is characterized to be a result of: (a) intrinsic genomic/epigenomic susceptibility and, (b) a continued dynamic interplay between the deranged networks and the central homeostatic networks of nerve cells. This interplay of networks will underlie both the onset and rate of progression of the disease in each individual. Integrative Systems Biology approaches are required to effect its elucidation. Comprehensive Systems Biology experiments at different 'omics levels in simple model organisms, engineered to recapitulate the basic features of AD may illuminate the onset and sequence of events underlying AD. Indeed, studies of models of AD in simple organisms, differentiated cells in culture and rodents are beginning to offer hope that the onset and progression of AD, if detected at an early stage, may be stopped, delayed, or even reversed, by activating or modulating networks involved in proteostasis and the clearance of toxic species. In practice, the incorporation of next-generation neuroimaging, high-throughput and computational approaches are opening the way towards early diagnosis well before irreversible cell death. Thus, the presence or co-occurrence of: (a) accumulation of toxic Aβ oligomers and tau species; (b) altered splicing and transcriptome patterns; (c) impaired redox, proteostatic, and metabolic networks together with, (d) compromised homeostatic capacities may constitute relevant 'AD hallmarks at the cellular level' towards reliable and early diagnosis. From here, preventive lifestyle changes and tailored therapies may be investigated, such as combined strategies aimed at both lowering the production of toxic species and potentiating homeostatic responses, in order to prevent or delay the onset, and arrest, alleviate, or even reverse the progression of the disease.
Collapse
Affiliation(s)
- Juan I Castrillo
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK,
| | | |
Collapse
|
37
|
Autophagy-related protein expression in the substantia nigra and eldepryl intervention in rat models of Parkinson׳s disease. Brain Res 2015; 1625:180-8. [DOI: 10.1016/j.brainres.2015.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/18/2015] [Accepted: 08/25/2015] [Indexed: 01/09/2023]
|
38
|
Ustyugov A, Shevtsova E, Bachurin S. Novel Sites of Neuroprotective Action of Dimebon (Latrepirdine). Mol Neurobiol 2015; 52:970-8. [DOI: 10.1007/s12035-015-9249-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 12/14/2022]
|
39
|
Porzoor A, Alford B, Hügel HM, Grando D, Caine J, Macreadie I. Anti-amyloidogenic properties of some phenolic compounds. Biomolecules 2015; 5:505-27. [PMID: 25898401 PMCID: PMC4496683 DOI: 10.3390/biom5020505] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 12/23/2022] Open
Abstract
A family of 21 polyphenolic compounds consisting of those found naturally in danshen and their analogues were synthesized and subsequently screened for their anti-amyloidogenic activity against the amyloid beta peptide (Aβ42) of Alzheimer’s disease. After 24 h incubation with Aβ42, five compounds reduced thioflavin T (ThT) fluorescence, indicative of their anti-amyloidogenic propensity (p < 0.001). TEM and immunoblotting analysis also showed that selected compounds were capable of hindering fibril formation even after prolonged incubations. These compounds were also capable of rescuing the yeast cells from toxic changes induced by the chemically synthesized Aβ42. In a second assay, a Saccharomyces cerevisiae AHP1 deletant strain transformed with GFP fused to Aβ42 was treated with these compounds and analyzed by flow cytometry. There was a significant reduction in the green fluorescence intensity associated with 14 compounds. We interpret this result to mean that the compounds had an anti-amyloid-aggregation propensity in the yeast and GFP-Aβ42 was removed by proteolysis. The position and not the number of hydroxyl groups on the aromatic ring was found to be the most important determinant for the anti-amyloidogenic properties.
Collapse
Affiliation(s)
- Afsaneh Porzoor
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Benjamin Alford
- School of Applied Sciences, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Helmut M Hügel
- School of Applied Sciences, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Danilla Grando
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Joanne Caine
- Materials Science and Engineering, CSIRO Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052, Australia.
| | - Ian Macreadie
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
40
|
Huang LP, Deng MZ, He YP, Fang YQ. β-asarone and levodopa co-administration protects against 6-hydroxydopamine-induced damage in parkinsonian rat mesencephalon by regulating autophagy: down-expression Beclin-1 and light chain 3B and up-expression P62. Clin Exp Pharmacol Physiol 2015; 42:269-77. [PMID: 25424835 DOI: 10.1111/1440-1681.12344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Li-Ping Huang
- Experimental Center; The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Min-Zhen Deng
- Experimental Center; The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Yu-Ping He
- Experimental Center; The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Yong-Qi Fang
- Experimental Center; The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| |
Collapse
|
41
|
Asih PR, Chatterjee P, Verdile G, Gupta VB, Trengove RD, Martins RN. Clearing the amyloid in Alzheimer's: progress towards earlier diagnosis and effective treatments – an update for clinicians. Neurodegener Dis Manag 2014; 4:363-78. [DOI: 10.2217/nmt.14.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
SUMMARY A beta (Aβ or β-amyloid) is a key molecule in Alzheimer's disease (AD) pathogenesis. According to the ‘amyloid hypothesis’, the gradual accumulation of Aβ triggers events which results in neuronal loss in regions of the brain involved with memory and learning. Diverse agents have been developed to reduce brain Aβ accumulation or to enhance its clearance. Some have progressed to human trials, however all have failed to improve cognition in patients. This has led researchers to question whether Aβ is really the problem. However, the trials have been targeting end stages of AD, by which stage extensive irreversible neuronal damage has already occurred. Intervention is required preclinically, therefore preclinical AD biomarkers are needed. In this regard, amyloid imaging and cerebrospinal fluid biomarkers are leading the way, with plasma biomarkers and eye tests also being investigated. This review covers the current state of knowledge of Aβ as an early diagnostic biomarker and as a therapeutic target in AD.
Collapse
Affiliation(s)
- Prita R Asih
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- Separation Science & Metabolomics Laboratory, Murdoch University, Murdoch, WA 6150, Australia
| | - Pratishtha Chatterjee
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- School of Psychiatry & Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
- The Cooperative Research Centre for Mental Health, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- School of Psychiatry & Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
- School of Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Veer B Gupta
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- The Cooperative Research Centre for Mental Health, Australia
| | - Robert D Trengove
- Separation Science & Metabolomics Laboratory, Murdoch University, Murdoch, WA 6150, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- School of Psychiatry & Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
- The Cooperative Research Centre for Mental Health, Australia
| |
Collapse
|
42
|
Liu B, Tang J, Zhang J, Li S, Yuan M, Wang R. Autophagy activation aggravates neuronal injury in the hippocampus of vascular dementia rats. Neural Regen Res 2014; 9:1288-96. [PMID: 25221581 PMCID: PMC4160855 DOI: 10.4103/1673-5374.137576] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 12/20/2022] Open
Abstract
It remains unclear whether autophagy affects hippocampal neuronal injury in vascular dementia. In the present study, we investigated the effects of autophagy blockade on hippocampal neuronal injury in a rat model of vascular dementia. In model rats, hippocampal CA1 neurons were severely damaged, and expression of the autophagy-related proteins beclin-1, cathepsin B and microtubule-associated protein 1 light chain 3 was elevated compared with that in sham-operated animals. These responses were suppressed in animals that received a single intraperitoneal injection of wortmannin, an autophagy inhibitor, prior to model establishment. The present results confirm that autophagy and autophagy-related proteins are involved in the pathological changes of vascular dementia, and that inhibition of autophagy has neuroprotective effects.
Collapse
Affiliation(s)
- Bin Liu
- First Department of Neurology, the Affliated Hospital of Hebei United University, Tangshan, Hebei Province, China
| | - Jing Tang
- First Department of Neurology, the Affliated Hospital of Hebei United University, Tangshan, Hebei Province, China
| | - Jinxia Zhang
- First Department of Neurology, the Affliated Hospital of Hebei United University, Tangshan, Hebei Province, China
| | - Shiying Li
- First Department of Neurology, the Affliated Hospital of Hebei United University, Tangshan, Hebei Province, China
| | - Min Yuan
- First Department of Neurology, the Affliated Hospital of Hebei United University, Tangshan, Hebei Province, China
| | - Ruimin Wang
- First Department of Neurology, the Affliated Hospital of Hebei United University, Tangshan, Hebei Province, China
| |
Collapse
|
43
|
Silva T, Reis J, Teixeira J, Borges F. Alzheimer's disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Ageing Res Rev 2014; 15:116-45. [PMID: 24726823 DOI: 10.1016/j.arr.2014.03.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an incapacitating neurodegenerative disease that slowly destroys brain cells. This disease progressively compromises both memory and cognition, culminating in a state of full dependence and dementia. Currently, AD is the main cause of dementia in the elderly and its prevalence in the developed world is increasing rapidly. Classic drugs, such as acetylcholinesterase inhibitors (AChEIs), fail to decline disease progression and display several side effects that reduce patient's adhesion to pharmacotherapy. The past decade has witnessed an increasing focus on the search for novel AChEIs and new putative enzymatic targets for AD, like β- and γ-secretases, sirtuins, caspase proteins and glycogen synthase kinase-3 (GSK-3). In addition, new mechanistic rationales for drug discovery in AD that include autophagy and synaptogenesis have been discovered. Herein, we describe the state-of-the-art of the development of recent enzymatic inhibitors and enhancers with therapeutic potential on the treatment of AD.
Collapse
Affiliation(s)
- Tiago Silva
- Department of Chemistry and Biochemistry, Faculty of Sciences of Porto, Porto, Portugal
| | - Joana Reis
- Department of Chemistry and Biochemistry, Faculty of Sciences of Porto, Porto, Portugal
| | - José Teixeira
- Department of Chemistry and Biochemistry, Faculty of Sciences of Porto, Porto, Portugal
| | - Fernanda Borges
- Department of Chemistry and Biochemistry, Faculty of Sciences of Porto, Porto, Portugal.
| |
Collapse
|
44
|
Latrepirdine: molecular mechanisms underlying potential therapeutic roles in Alzheimer's and other neurodegenerative diseases. Transl Psychiatry 2013; 3:e332. [PMID: 24301650 PMCID: PMC4030329 DOI: 10.1038/tp.2013.97] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/19/2013] [Accepted: 09/26/2013] [Indexed: 02/06/2023] Open
Abstract
Latrepirdine (Dimebon(TM)) was originally marketed as a non-selective antihistamine in Russia. It was repurposed as an effective treatment for patients suffering from Alzheimer's disease (AD) and Huntington's disease (HD) following preliminary reports showing its neuroprotective functions and ability to enhance cognition in AD and HD models. However, latrepirdine failed to show efficacy in phase III trials in AD and HD patients following encouraging phase II trials. The failure of latrepirdine in the clinical trials has highlighted the importance of understanding the precise mechanism underlying its cognitive benefits in neurodegenerative diseases before clinical evaluation. Latrepirdine has shown to affect a number of cellular functions including multireceptor activity, mitochondrial function, calcium influx and intracellular catabolic pathways; however, it is unclear how these properties contribute to its clinical benefits. Here, we review the studies investigating latrepirdine in cellular and animal models to provide a complete evaluation of its mechanisms of action in the central nervous system. In addition, we review recent studies that demonstrate neuroprotective functions for latrepirdine-related class of molecules including the β-carbolines and aminopropyl carbazoles in AD, Parkinson's disease and amyotrophic lateral sclerosis models. Assessment of their neuroprotective effects and underlying biological functions presents obvious value for developing structural analogues of latrepirdine for dementia treatment.
Collapse
|
45
|
Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol Aging 2013; 35:941-57. [PMID: 24360503 DOI: 10.1016/j.neurobiolaging.2013.11.019] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/17/2013] [Accepted: 11/19/2013] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, share a common cellular and molecular pathogenetic mechanism involving aberrant misfolded protein or peptide aggregation and deposition. Autophagy represents a major route for degradation of aggregated cellular proteins and dysfunctional organelles. Emerging studies have demonstrated that up-regulation of autophagy can lead to decreased levels of these toxic aggregate-prone proteins, and is beneficial in the context of aging and various models of neurodegenerative diseases. Understanding the signaling pathways involved in the regulation of autophagy is crucial to the development of strategies for therapy. This review will discuss the cellular and molecular mechanisms of autophagy and its important role in the pathogenesis of aging and neurodegenerative diseases, and the ongoing drug discovery strategies for therapeutic modulation.
Collapse
|
46
|
Ashoor R, Yafawi R, Jessen B, Lu S. The contribution of lysosomotropism to autophagy perturbation. PLoS One 2013; 8:e82481. [PMID: 24278483 PMCID: PMC3838419 DOI: 10.1371/journal.pone.0082481] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/02/2013] [Indexed: 11/18/2022] Open
Abstract
Autophagy refers to the catabolic process in eukaryotic cells that delivers cytoplasmic material to lysosomes for degradation. This highly conserved process is involved in the clearance of long-lived proteins and damaged organelles. Consequently, autophagy is important in providing nutrients to maintain cellular function under starvation, maintaining cellular homeostasis, and promoting cell survival under certain conditions. Several pathways, including mTOR, have been shown to regulate autophagy. However, the impact of lysosomal function impairment on the autophagy process has not been fully explored. Basic lipophilic compounds can accumulate in lysosomes via pH partitioning leading to perturbation of lysosomal function. Our hypothesis is that these types of compounds can disturb the autophagy process. Eleven drugs previously shown to accumulate in lysosomes were selected and evaluated for their effects on cytotoxicity and autophagy using ATP depletion and LC3 assessment, respectively. All eleven drugs induced increased staining of endogenous LC3 and exogenous GFP-LC3, even at non toxic dose levels. In addition, an increase in the abundance of SQSTM1/p62 by all tested compounds denotes that the increase in LC3 is due to autophagy perturbation rather than enhancement. Furthermore, the gene expression profile resulting from in vitro treatment with these drugs revealed the suppression of plentiful long-lived proteins, including structural cytoskeletal and associated proteins, and extracellular matrix proteins. This finding indicates a retardation of protein turnover which further supports the notion of autophagy inhibition. Interestingly, upregulation of genes containing antioxidant response elements, e.g. glutathione S transferase and NAD(P)H dehydrogenase quinone 1 was observed, suggesting activation of Nrf2 transcription factor. These gene expression changes could be related to an increase in SQSTM1/p62 resulting from autophagy deficiency. In summary, our data indicate that lysosomal accumulation due to the basic lipophilic nature of xenobiotics could be a general mechanism contributing to the perturbation of the autophagy process.
Collapse
Affiliation(s)
- Roshan Ashoor
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
| | - Rolla Yafawi
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
| | - Bart Jessen
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
| | - Shuyan Lu
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Hao WJ, Wang SY, Ji SJ. Iodine-Catalyzed Cascade Formal [3 + 3] Cycloaddition Reaction of Indolyl Alcohol Derivatives with Enaminones: Constructions of Functionalized Spirodihydrocarbolines. ACS Catal 2013. [DOI: 10.1021/cs400703u] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Wen-Juan Hao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
48
|
Targeting the mTOR Signaling Network for Alzheimer’s Disease Therapy. Mol Neurobiol 2013; 49:120-35. [DOI: 10.1007/s12035-013-8505-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/01/2013] [Indexed: 12/29/2022]
|
49
|
Villar-Piqué A, Ventura S. Protein aggregation propensity is a crucial determinant of intracellular inclusion formation and quality control degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2714-2724. [PMID: 23856334 DOI: 10.1016/j.bbamcr.2013.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 01/13/2023]
Abstract
Protein aggregation is linked to many pathological conditions, including several neurodegenerative diseases. The aggregation propensities of proteins are thought to be controlled to a large extent by the physicochemical properties encoded in the primary sequence. We have previously exploited a set of amyloid β peptide (Aβ42) variants exhibiting a continuous gradient of intrinsic aggregation propensities to demonstrate that this rule applies in vivo in bacteria. In the present work we have characterized the behavior of these Aβ42 mutants when expressed in yeast. In contrast to bacteria, the intrinsic aggregation propensity is gated by yeast, in such a way that this property correlates with the formation of intracellular inclusions only above a specific aggregation threshold. Proteins displaying solubility levels above this threshold escape the inclusion formation pathway. In addition, the most aggregation-prone variants are selectively cleared by the yeast quality control degradation machinery. Thus, both inclusion formation and proteolysis target the same aggregation-prone variants and cooperate to minimize the presence of these potentially dangerous species in the cytosol. The demonstration that sorting to these pathways in eukaryotes is strongly influenced by protein primary sequence should facilitate the development of rational approaches to predict and hopefully prevent in vivo protein deposition.
Collapse
Affiliation(s)
- Anna Villar-Piqué
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Salvador Ventura
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| |
Collapse
|
50
|
Autophagy modulation for Alzheimer's disease therapy. Mol Neurobiol 2013; 48:702-14. [PMID: 23625314 DOI: 10.1007/s12035-013-8457-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/09/2013] [Indexed: 01/01/2023]
Abstract
Autophagy is an essential and conserved lysosomal degradation pathway that controls the quality of cytoplasm by eliminating the intracellular aggregated proteins and damaged organelles. Autophagy works in mammalian target of rapamycin (mTOR)-dependent pathway or mTOR-independent pathway to keep the neuronal homeostasis. Mounting evidence has implicated the importance of defective autophagy in the pathogenesis of aging and neurodegenerative diseases, especially in Alzheimer's disease (AD). It has also demonstrated a neuroprotective role of autophagy in mediating the degradation of amyloid beta and tau which are major factors of AD. Amounts of molecules function in either mTOR-dependent pathway or mTOR-independent pathway to induce autophagy, which maybe a potential treatment for AD. In this review, we summarize the latest studies concerning the role of autophagy in AD and explore autophagy modulation as a potential therapeutic strategy for AD. However, to date, little of the researches on autophagy have been performed to investigate the modulation in AD; more investigations need to be confirmed in the future.
Collapse
|