1
|
Davis MR, Robinson E, Koronyo Y, Salobrar-Garcia E, Rentsendorj A, Gaire BP, Mirzaei N, Kayed R, Sadun AA, Ljubimov AV, Schneider LS, Hawes D, Black KL, Fuchs DT, Koronyo-Hamaoui M. Retinal ganglion cell vulnerability to pathogenic tau in Alzheimer's disease. Acta Neuropathol Commun 2025; 13:31. [PMID: 39955563 PMCID: PMC11829413 DOI: 10.1186/s40478-025-01935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/25/2025] [Indexed: 02/17/2025] Open
Abstract
Pathological tau isoforms, including hyperphosphorylated tau at serine 396 (pS396-tau) and tau oligomers (Oligo-tau), are elevated in the retinas of patients with mild cognitive impairment (MCI) due to Alzheimer's disease (AD) and AD dementia. These patients exhibit significant retinal ganglion cell (RGC) loss, however the presence of tau isoforms in RGCs and their impact on RGC integrity, particularly in early AD, have not been studied. Here, we analyzed retinal superior temporal cross-sections from 25 MCI or AD patients and 16 age- and sex-matched cognitively normal controls. Using the RGC marker ribonucleic acid binding protein with multiple splicing (RBPMS) and Nissl staining, we found a 46-56% reduction in RBPMS+ RGCs and Nissl+ neurons in the ganglion cell layer (GCL) of MCI and AD retinas (P < 0.05-0.001). RGC loss was accompanied by soma hypertrophy (10-50% enlargement, P < 0.05-0.0001), nuclear displacement, apoptosis (30-50% increase, P < 0.05-0.01), and prominent expression of granulovacuolar degeneration (GVD) bodies and GVD-necroptotic markers. Both pS396-tau and Oligo-tau were identified in RGCs, including in hypertrophic cells. PS396-tau+ and Oligo-tau+ RGC counts were significantly increased by 2.1-3.5-fold in MCI and AD retinas versus control retinas (P < 0.05-0.0001). Tauopathy-laden RGCs strongly inter-correlated (rP=0.85, P < 0.0001) and retinal tauopathy associated with RGC reduction (rP=-0.40-(-0.64), P < 0.05-0.01). Their abundance correlated with brain pathology and cognitive deficits, with higher tauopathy-laden RGCs in patients with Braak stages (V-VI), clinical dementia ratings (CDR = 3), and mini-mental state examination (MMSE ≤ 26) scores. PS396-tau+ RGCs in the central and mid-periphery showed the closest associations with disease status, while Oligo-tau+ RGCs in the mid-periphery exhibited the strongest correlations with brain pathology (NFTs, Braak stages, ABC scores; rS=0.78-0.81, P < 0.001-0.0001) and cognitive decline (MMSE; rS=-0.79, P = 0.0019). Overall, these findings identify a link between pathogenic tau in RGCs and RGC degeneration in AD, involving apoptotic and GVD-necroptotic cell death pathways. Future research should validate these results in larger and more diverse cohorts and develop RGC tauopathy as a potential noninvasive biomarker for early detection and monitoring of AD progression.
Collapse
Affiliation(s)
- Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Edward Robinson
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Elena Salobrar-Garcia
- Institute of Ophthalmologic Research Ramón Castroviejo, Complutense University of Madrid, Madrid, 28040, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute, Clinico San Carlos Hospital (IdISSC), Madrid, 28040, Spain
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Bhakta P Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Doheny Eye Institute, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars- Sinai Medical Center, Los Angeles, CA, USA
| | - Lon S Schneider
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Debra Hawes
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA.
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars- Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Sukreet S, Goodwill VS, Ngolab J, Kim HY, Leisher S, Salehi S, Rafii MS, Hiniker A, Rissman RA. Clinical and neuropathological analysis of Down syndrome over 7 decades of life. J Neuropathol Exp Neurol 2025; 84:168-173. [PMID: 39471466 PMCID: PMC11747220 DOI: 10.1093/jnen/nlae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024] Open
Affiliation(s)
- Sonal Sukreet
- Department of Physiology and Neurosciences, Keck School of Medicine of the University of Southern California, San Diego, CA, United States
| | - Vanessa S Goodwill
- Department of Pathology, UC San Diego School of Medicine, La Jolla, CA, United States
| | - Jennifer Ngolab
- Department of Physiology and Neurosciences, Keck School of Medicine of the University of Southern California, San Diego, CA, United States
| | - Ha Y Kim
- Department of Physiology and Neurosciences, Keck School of Medicine of the University of Southern California, San Diego, CA, United States
| | - Solana Leisher
- Department of Neurology, Keck School of Medicine of the University of Southern California, San Diego, CA, United States
| | - Sahar Salehi
- Department of Physiology and Neurosciences, Keck School of Medicine of the University of Southern California, San Diego, CA, United States
| | - Michael S Rafii
- Department of Neurology, Keck School of Medicine of the University of Southern California, San Diego, CA, United States
| | - Annie Hiniker
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Robert A Rissman
- Department of Physiology and Neurosciences, Keck School of Medicine of the University of Southern California, San Diego, CA, United States
| |
Collapse
|
3
|
Kaštelan S, Gverović Antunica A, Puzović V, Didović Pavičić A, Čanović S, Kovačević P, Vučemilović PAF, Konjevoda S. Non-Invasive Retinal Biomarkers for Early Diagnosis of Alzheimer's Disease. Biomedicines 2025; 13:283. [PMID: 40002697 PMCID: PMC11852429 DOI: 10.3390/biomedicines13020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the brain associated with ageing and is the most prevalent form of dementia, affecting an estimated 55 million people worldwide, with projections suggesting this number will exceed 150 million by 2050. With its increasing prevalence, AD represents a significant global health challenge with potentially serious social and economic consequences. Diagnosing AD is particularly challenging as it requires timely recognition. Currently, there is no effective therapy for AD; however, certain medications may help slow its progression. Existing diagnostic methods such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and biomarker analysis in cerebrospinal fluid tend to be expensive and invasive, making them impractical for widespread use. Consequently, research into non-invasive biomarkers that enable early detection and screening for AD is a crucial area of contemporary clinical investigation. One promising approach for the early diagnosis of AD may be retinal imaging. As an extension of the central nervous system, the retina offers a distinctive opportunity for non-invasive brain structure and function assessment. Considering their shared embryological origins and the vascular and immunological similarities between the eye and brain, alterations in the retina may indicate pathological changes in the brain, including those specifically related to AD. Studies suggest that structural and vascular changes in the retina, particularly within the neuronal network and blood vessels, may act as markers of cerebral changes caused by AD. These retinal alterations have the potential to act as biomarkers for early diagnosis. Since AD is typically diagnosed only after a significant neuronal loss has occurred, identifying early diagnostic markers could enable timely intervention and help prevent disease progression. Non-invasive retinal imaging techniques, such as optical coherence tomography (OCT) and OCT angiography, provide accessible methods for the early detection of changes linked to AD. This review article focuses on the potential of retinal imaging as a non-invasive biomarker for early diagnosis of AD. Investigating the ageing of the retina and its connections to neurodegenerative processes could significantly enhance the diagnosis, monitoring, and treatment of AD, paving the way for new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Snježana Kaštelan
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Ophthalmology, Clinical Hospital Dubrava, 10000 Zagreb, Croatia
| | | | - Velibor Puzović
- Department of Pathology, General Hospital Dubrovnik, 20000 Dubrovnik, Croatia
| | | | - Samir Čanović
- Department of Ophthalmology, Zadar General Hospital, 23000 Zadar, Croatia
- Department of Health Studies, University of Zadar, 23000 Zadar, Croatia
| | - Petra Kovačević
- Department of Ophthalmology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | | | - Suzana Konjevoda
- Department of Ophthalmology, Zadar General Hospital, 23000 Zadar, Croatia
- Department of Health Studies, University of Zadar, 23000 Zadar, Croatia
| |
Collapse
|
4
|
Kashani AH, Koronyo-Hamaoui M, Koronyo Y, Shi H, Alluwimi M, Singer M, Sagare A, Hawes D, Tang A, Jiang X, Collazo Martinez A, Ross-Cisneros FN, Sadun AA, Ringman JM. Retinal and Optic Nerve Lesions Correspond to Amyloid in Autosomal Dominant Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.21.25319904. [PMID: 39974084 PMCID: PMC11838991 DOI: 10.1101/2025.01.21.25319904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Autosomal dominant Alzheimer's disease (ADAD) is a rare form of Alzheimer's disease (AD) in which the biology of the disease can be explored during the presymptomatic phase of the illness. The retina is an outgrowth of the central nervous system and therefore provides the opportunity for direct observation of neural tissue and its vasculature during life. Retinal thinning measured in vivo has been previously described in persons carrying ADAD mutations through fundoscopy but its pathologic correlates have not been reported. We describe retinal lesions detected using fundoscopy in vivo in a patient homozygous for the A431E mutation in PSEN1 and its pathological correlates. Retinal lesions seen with fundoscopy during life corresponded to intraretinal and prelaminar optic nerve head amyloid β 42 -protein that were surrounded by perivascular anti-11A50-B10-Aβ 40 and gliosis. We then performed a cross-sectional, observational study of forty-one Latinos in three cohorts consisting of (1) persons with ADAD causing mutations, (2) at 50% risk for, but testing negative for ADAD mutations, and (3) elderly subjects not at-risk for ADAD. Clinical exam demonstrated novel, yellow, intraretinal lesions in Cohort 1 in absence of drusen. Fifty-six percent of Cohort 1 subjects had >10 retinal lesions compared to 0% and 25% for Cohorts 2 and 3, respectively ( P < 0.04). There has been some controversy as to the detectability of Aβ in the retina of persons with AD during life and our findings verify the presence of intraretinal, prelaminar, and perivascular amyloidosis detectable during life in a subset of AD patients.
Collapse
|
5
|
Du X, Park J, Zhao R, Smith RT, Koronyo Y, Koronyo-Hamaoui M, Gao L. Hyperspectral retinal imaging in Alzheimer's disease and age-related macular degeneration: a review. Acta Neuropathol Commun 2024; 12:157. [PMID: 39363330 PMCID: PMC11448307 DOI: 10.1186/s40478-024-01868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
While Alzheimer's disease and other neurodegenerative diseases have traditionally been viewed as brain disorders, there is growing evidence indicating their manifestation in the eyes as well. The retina, being a developmental extension of the brain, represents the only part of the central nervous system that can be noninvasively imaged at a high spatial resolution. The discovery of the specific pathological hallmarks of Alzheimer's disease in the retina of patients holds great promise for disease diagnosis and monitoring, particularly in the early stages where disease progression can potentially be slowed. Among various retinal imaging methods, hyperspectral imaging has garnered significant attention in this field. It offers a label-free approach to detect disease biomarkers, making it especially valuable for large-scale population screening efforts. In this review, we discuss recent advances in the field and outline the current bottlenecks and enabling technologies that could propel this field toward clinical translation.
Collapse
Affiliation(s)
- Xiaoxi Du
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jongchan Park
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Ruixuan Zhao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - R Theodore Smith
- Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Davis MR, Robinson E, Koronyo Y, Salobrar-Garcia E, Rentsendorj A, Gaire BP, Mirzaei N, Kayed R, Sadun AA, Ljubimov AV, Schneider LS, Hawes D, Black KL, Fuchs DT, Koronyo-Hamaoui M. Retinal ganglion cell vulnerability to pathogenic tau in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613293. [PMID: 39345568 PMCID: PMC11430098 DOI: 10.1101/2024.09.17.613293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Accumulation of pathological tau isoforms, especially hyperphosphorylated tau at serine 396 (pS396-tau) and tau oligomers, has been demonstrated in the retinas of patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Previous studies have noted a decrease in retinal ganglion cells (RGCs) in AD patients, but the presence and impact of pathological tau isoforms in RGCs and RGC integrity, particularly in early AD stages, have not been explored. To investigate this, we examined retinal superior temporal cross-sections from 25 patients with MCI (due to AD) or AD dementia and 16 cognitively normal (CN) controls, matched for age and gender. We utilized the RGC marker ribonucleic acid binding protein with multiple splicing (RBPMS) and Nissl staining to assess neuronal density in the ganglion cell layer (GCL). Our study found that hypertrophic RGCs containing pS396-tau and T22-positive tau oligomers were more frequently observed in MCI and AD patients compared to CN subjects. Quantitative analyses indicated a decline in RGC integrity, with 46-55% and 55-56% reductions of RBPMS+ RGCs (P<0.01) and Nissl+ GCL neurons (P<0.01-0.001), respectively, in MCI and AD patients. This decrease in RGC count was accompanied by increases in necroptotic-like morphology and the cleaved caspase-3 apoptotic marker in RGCs of AD patients. Furthermore, there was a 2.1 to 3.1-fold increase (P<0.05-0.0001) in pS396-tau-laden RGCs in MCI and AD patients, with a greater abundance observed in individuals with higher Braak stages (V-VI), more severe clinical dementia ratings (CDR=3), and lower mini-mental state examination (MMSE) scores. Strong correlations were noted between the decline in RGCs and the total amount of retinal pS396-tau and pS396-tau+ RGCs, with pS396-tau+ RGC counts correlating significantly with brain neurofibrillary tangle scores (r= 0.71, P= 0.0001), Braak stage (r= 0.65, P= 0.0009), and MMSE scores (r= -0.76, P= 0.0004). These findings suggest that retinal tauopathy, characterized by pS396-tau and oligomeric tau in hypertrophic RGCs, is associated with and may contribute to RGC degeneration in AD. Future research should validate these findings in larger cohorts and explore noninvasive retinal imaging techniques that target tau pathology in RGCs to improve AD detection and monitor disease progression.
Collapse
Affiliation(s)
- Miyah R. Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edward Robinson
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elena Salobrar-Garcia
- Institute of Ophthalmologic Research Ramón Castroviejo, Complutense University of Madrid, 28040 Madrid, Spain. Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain. Health Research Institute, Clinico San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bhakta P. Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, TX, USA
- Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfredo A. Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
- Doheny Eye Institute, Los Angeles, CA, USA
| | - Alexander V. Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lon S. Schneider
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Debra Hawes
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
7
|
Shi H, Mirzaei N, Koronyo Y, Davis MR, Robinson E, Braun GM, Jallow O, Rentsendorj A, Ramanujan VK, Fert-Bober J, Kramerov AA, Ljubimov AV, Schneider LS, Tourtellotte WG, Hawes D, Schneider JA, Black KL, Kayed R, Selenica MLB, Lee DC, Fuchs DT, Koronyo-Hamaoui M. Identification of retinal oligomeric, citrullinated, and other tau isoforms in early and advanced AD and relations to disease status. Acta Neuropathol 2024; 148:3. [PMID: 38980423 PMCID: PMC11233395 DOI: 10.1007/s00401-024-02760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
This study investigates various pathological tau isoforms in the retina of individuals with early and advanced Alzheimer's disease (AD), exploring their connection with disease status. Retinal cross-sections from predefined superior-temporal and inferior-temporal subregions and corresponding brains from neuropathologically confirmed AD patients with a clinical diagnosis of either mild cognitive impairment (MCI) or dementia (n = 45) were compared with retinas from age- and sex-matched individuals with normal cognition (n = 30) and non-AD dementia (n = 4). Retinal tau isoforms, including tau tangles, paired helical filament of tau (PHF-tau), oligomeric-tau (Oligo-tau), hyperphosphorylated-tau (p-tau), and citrullinated-tau (Cit-tau), were stereologically analyzed by immunohistochemistry and Nanostring GeoMx digital spatial profiling, and correlated with clinical and neuropathological outcomes. Our data indicated significant increases in various AD-related pretangle tau isoforms, especially p-tau (AT8, 2.9-fold, pS396-tau, 2.6-fold), Cit-tau at arginine residue 209 (CitR209-tau; 4.1-fold), and Oligo-tau (T22+, 9.2-fold), as well as pretangle and mature tau tangle forms like MC-1-positive (1.8-fold) and PHF-tau (2.3-fold), in AD compared to control retinas. MCI retinas also exhibited substantial increases in Oligo-tau (5.2-fold), CitR209-tau (3.5-fold), and pS396-tau (2.2-fold). Nanostring GeoMx analysis confirmed elevated retinal p-tau at epitopes: Ser214 (2.3-fold), Ser396 (2.6-fold), Ser404 (2.4-fold), and Thr231 (1.8-fold), particularly in MCI patients. Strong associations were found between retinal tau isoforms versus brain pathology and cognitive status: a) retinal Oligo-tau vs. Braak stage, neurofibrillary tangles (NFTs), and CDR cognitive scores (ρ = 0.63-0.71), b) retinal PHF-tau vs. neuropil threads (NTs) and ABC scores (ρ = 0.69-0.71), and c) retinal pS396-tau vs. NTs, NFTs, and ABC scores (ρ = 0.67-0.74). Notably, retinal Oligo-tau strongly correlated with retinal Aβ42 and arterial Aβ40 forms (r = 0.76-0.86). Overall, this study identifies and quantifies diverse retinal tau isoforms in MCI and AD patients, underscoring their link to brain pathology and cognition. These findings advocate for further exploration of retinal tauopathy biomarkers to facilitate AD detection and monitoring via noninvasive retinal imaging.
Collapse
Affiliation(s)
- Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Edward Robinson
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Gila M Braun
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - V Krishnan Ramanujan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Justyna Fert-Bober
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lon S Schneider
- Departments of Psychiatry and the Behavioral Sciences and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Warren G Tourtellotte
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Debra Hawes
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julie A Schneider
- Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maj-Linda B Selenica
- Sanders-Brown Center On Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Daniel C Lee
- Sanders-Brown Center On Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA.
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL, Koronyo-Hamaoui M. Alzheimer's disease pathophysiology in the Retina. Prog Retin Eye Res 2024; 101:101273. [PMID: 38759947 PMCID: PMC11285518 DOI: 10.1016/j.preteyeres.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Danziger
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Filippo Baldacci
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | | | - Ernesto Barron
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Dumitrascu OM, Doustar J, Fuchs DT, Koronyo Y, Sherman DS, Miller MS, Johnson KO, Carare RO, Verdooner SR, Lyden PD, Schneider JA, Black KL, Koronyo-Hamaoui M. Retinal peri-arteriolar versus peri-venular amyloidosis, hippocampal atrophy, and cognitive impairment: exploratory trial. Acta Neuropathol Commun 2024; 12:109. [PMID: 38943220 PMCID: PMC11212356 DOI: 10.1186/s40478-024-01810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/02/2024] [Indexed: 07/01/2024] Open
Abstract
The relationship between amyloidosis and vasculature in cognitive impairment and Alzheimer's disease (AD) pathogenesis is increasingly acknowledged. We conducted a quantitative and topographic assessment of retinal perivascular amyloid plaque (AP) distribution in individuals with both normal and impaired cognition. Using a retrospective dataset of scanning laser ophthalmoscopy fluorescence images from twenty-eight subjects with varying cognitive states, we developed a novel image processing method to examine retinal peri-arteriolar and peri-venular curcumin-positive AP burden. We further correlated retinal perivascular amyloidosis with neuroimaging measures and neurocognitive scores. Our study unveiled that peri-arteriolar AP counts surpassed peri-venular counts throughout the entire cohort (P < 0.0001), irrespective of the primary, secondary, or tertiary vascular branch location, with a notable increase among cognitively impaired individuals. Moreover, secondary branch peri-venular AP count was elevated in the cognitively impaired (P < 0.01). Significantly, peri-venular AP count, particularly in secondary and tertiary venules, exhibited a strong correlation with clinical dementia rating, Montreal cognitive assessment score, hippocampal volume, and white matter hyperintensity count. In conclusion, our exploratory analysis detected greater peri-arteriolar versus peri-venular amyloidosis and a marked elevation of amyloid deposition in secondary branch peri-venular regions among cognitively impaired subjects. These findings underscore the potential feasibility of retinal perivascular amyloid imaging in predicting cognitive decline and AD progression. Larger longitudinal studies encompassing diverse populations and AD-biomarker confirmation are warranted to delineate the temporal-spatial dynamics of retinal perivascular amyloid deposition in cognitive impairment and the AD continuum.
Collapse
Affiliation(s)
- Oana M Dumitrascu
- Departments of Neurology, Mayo Clinic, AZ, 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA.
| | - Jonah Doustar
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Dale S Sherman
- Department of Physical Medicine and Rehabilitation, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Michelle Shizu Miller
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
- Department of Neurosurgery, Tulane University School of Medicine, 1415 Tulane Ave, New Orleans, LA, 70112, USA
| | - Kenneth O Johnson
- NeuroVision Imaging LLC, 1395 Garden Hwy, Sacramento, CA, 95833, USA
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, University Road Southampton, Southampton, SO17 1BJ, UK
| | | | - Patrick D Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo St, Los Angeles, CA, 90033, USA
| | - Julie A Schneider
- Department of Pathology, Department of Neurological Sciences, Alzheimer's Disease Research Center, Rush Medical College, Rush University, 600 S. Paulina St., Chicago, IL, 60612, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
- Department of Neurology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
| |
Collapse
|
10
|
Dumitrascu OM, Doustar J, Fuchs DT, Koronyo Y, Sherman DS, Miller MS, Johnson KO, Carare RO, Verdooner SR, Lyden PD, Schneider JA, Black KL, Koronyo-Hamaoui M. Distinctive retinal peri-arteriolar versus peri-venular amyloid plaque distribution correlates with the cognitive performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.580733. [PMID: 38464292 PMCID: PMC10925252 DOI: 10.1101/2024.02.27.580733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Introduction The vascular contribution to Alzheimer's disease (AD) is tightly connected to cognitive performance across the AD continuum. We topographically describe retinal perivascular amyloid plaque (AP) burden in subjects with normal or impaired cognition. Methods Using scanning laser ophthalmoscopy, we quantified retinal peri-arteriolar and peri-venular curcumin-positive APs in the first, secondary and tertiary branches in twenty-eight subjects. Perivascular AP burden among cognitive states was correlated with neuroimaging and cognitive measures. Results Peri-arteriolar exceeded peri-venular AP count (p<0.0001). Secondary branch AP count was significantly higher in cognitively impaired (p<0.01). Secondary small and tertiary peri-venular AP count strongly correlated with clinical dementia rating, hippocampal volumes, and white matter hyperintensity count. Discussion Our topographic analysis indicates greater retinal amyloid accumulation in the retinal peri-arteriolar regions overall, and distal peri-venular regions in cognitively impaired individuals. Larger longitudinal studies are warranted to understand the temporal-spatial relationship between vascular dysfunction and perivascular amyloid deposition in AD. Highlights Retinal peri-arteriolar region exhibits more amyloid compared with peri-venular regions.Secondary retinal vascular branches have significantly higher perivascular amyloid burden in subjects with impaired cognition, consistent across sexes.Cognitively impaired individuals have significantly greater retinal peri-venular amyloid deposits in the distal small branches, that correlate with CDR and hippocampal volumes.
Collapse
|
11
|
Kelly L, Brown C, Michalik D, Hawkes CA, Aldea R, Agarwal N, Salib R, Alzetani A, Ethell DW, Counts SE, de Leon M, Fossati S, Koronyo‐Hamaoui M, Piazza F, Rich SA, Wolters FJ, Snyder H, Ismail O, Elahi F, Proulx ST, Verma A, Wunderlich H, Haack M, Dodart JC, Mazer N, Carare RO. Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA), updates in 2022-2023. Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer's disease: Opportunities for therapy. Alzheimers Dement 2024; 20:1421-1435. [PMID: 37897797 PMCID: PMC10917045 DOI: 10.1002/alz.13512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/30/2023]
Abstract
This editorial summarizes advances from the Clearance of Interstitial Fluid and Cerebrospinal Fluid (CLIC) group, within the Vascular Professional Interest Area (PIA) of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART). The overarching objectives of the CLIC group are to: (1) understand the age-related physiology changes that underlie impaired clearance of interstitial fluid (ISF) and cerebrospinal fluid (CSF) (CLIC); (2) understand the cellular and molecular mechanisms underlying intramural periarterial drainage (IPAD) in the brain; (3) establish novel diagnostic tests for Alzheimer's disease (AD), cerebral amyloid angiopathy (CAA), retinal amyloid vasculopathy, amyloid-related imaging abnormalities (ARIA) of spontaneous and iatrogenic CAA-related inflammation (CAA-ri), and vasomotion; and (4) establish novel therapies that facilitate IPAD to eliminate amyloid β (Aβ) from the aging brain and retina, to prevent or reduce AD and CAA pathology and ARIA side events associated with AD immunotherapy.
Collapse
Affiliation(s)
- Louise Kelly
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Daniel Michalik
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Roxana Aldea
- Roche Pharma Research & Early DevelopmentRoche Innovation Center BaselBaselSwitzerland
| | - Nivedita Agarwal
- Neuroradiology sectionScientific Institute IRCCS Eugenio MedeaBosisio Parini, LCItaly
| | - Rami Salib
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | - Aiman Alzetani
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Scott E. Counts
- Dept. Translational NeuroscienceDept. Family MedicineMichigan State UniversityGrand RapidsMichiganUSA
| | - Mony de Leon
- Brain Health Imaging InstituteDepartment of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | | | - Maya Koronyo‐Hamaoui
- Departments of NeurosurgeryNeurology, and Biomedical SciencesMaxine Dunitz Neurosurgical Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | | | | | - Heather Snyder
- Alzheimer's AssociationMedical & Scientific RelationsChicagoIllinoisUSA
| | - Ozama Ismail
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Fanny Elahi
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Ajay Verma
- Formation Venture Engineering FoundryTopsfieldMassachusettsUSA
| | | | | | | | | | - Roxana O. Carare
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| |
Collapse
|
12
|
Xu X, Zhang C, Tang G, Wang N, Feng Y. Single-cell transcriptome profiling highlights the role of APP in blood vessels in assessing the risk of patients with proliferative diabetic retinopathy developing Alzheimer's disease. Front Cell Dev Biol 2024; 11:1328979. [PMID: 38328307 PMCID: PMC10847282 DOI: 10.3389/fcell.2023.1328979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction: The incidence of diabetic retinopathy (DR) has been found to be associated with the risk of developing Alzheimer's disease (AD). In addition to the common properties of neurodegeneration, their progressions are involved with abnormal vascular functions. However, the interactions between them have not been fully understood. This study aimed to investigate the key factor for the underlying interactions and shared signaling pathways in the vasculature of DR and AD. Methods: We retrieved single-cell RNA sequencing (scRNA-seq) data regarding human fibrovascular membrane (FVM) of proliferative diabetic retinopathy (PDR) and human hippocampus vessels of AD from the NCBI-GEO database. GSEA analysis was performed to analyze AD-related genes in endothelial cells and pericytes of PDR. CellChat was used for predicting cell-cell communication and the signaling pathway. Results: The data suggested that amyloid-beta precursor protein (APP) signaling was found crucial in the vasculature of PDR and AD. Endothelial cells and pericytes could pose influences on other cells mainly via APP signaling in PDR. The endothelial cells were mainly coordinated with macrophages in the hippocampus vasculature of AD via APP signaling. The bulk RNA-seq in mice with PDR validated that the expression of APP gene had a significant correlation with that of the AD genome-wide association studies (GWAS) gene. Discussion: Our study demonstrates that the vasculopathy of PDR and AD is likely to share a common signaling pathway, of which the APP-related pathway is a potential target.
Collapse
Affiliation(s)
| | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Alber J, Bouwman F, den Haan J, Rissman RA, De Groef L, Koronyo‐Hamaoui M, Lengyel I, Thal DR. Retina pathology as a target for biomarkers for Alzheimer's disease: Current status, ophthalmopathological background, challenges, and future directions. Alzheimers Dement 2024; 20:728-740. [PMID: 37917365 PMCID: PMC10917008 DOI: 10.1002/alz.13529] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
There is emerging evidence that amyloid beta protein (Aβ) and tau-related lesions in the retina are associated with Alzheimer's disease (AD). Aβ and hyperphosphorylated (p)-tau deposits have been described in the retina and were associated with small amyloid spots visualized by in vivo imaging techniques as well as degeneration of the retina. These changes correlate with brain amyloid deposition as determined by histological quantification, positron emission tomography (PET) or clinical diagnosis of AD. However, the literature is not coherent on these histopathological and in vivo imaging findings. One important reason for this is the variability in the methods and the interpretation of findings across different studies. In this perspective, we indicate the critical methodological deviations among different groups and suggest a roadmap moving forward on how to harmonize (i) histopathologic examination of retinal tissue; (ii) in vivo imaging among different methods, devices, and interpretation algorithms; and (iii) inclusion/exclusion criteria for studies aiming at retinal biomarker validation.
Collapse
Affiliation(s)
- Jessica Alber
- George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
- Butler Hospital Memory & Aging ProgramProvidenceRhode IslandUSA
| | - Femke Bouwman
- Amsterdam UMC, location VUmcAlzheimer Center, Department of NeurologyAmsterdamThe Netherlands
| | - Jurre den Haan
- Amsterdam UMC, location VUmcAlzheimer Center, Department of NeurologyAmsterdamThe Netherlands
| | - Robert A. Rissman
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of BiologyLeuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Maya Koronyo‐Hamaoui
- Departments of Neurosurgery, Neurology, and Biomedical SciencesMaxine Dunitz Neurosurgical Research Institute, Cedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Imre Lengyel
- The Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastUK
| | - Dietmar Rudolf Thal
- Laboratory of NeuropathologyDepartment of Imaging and Pathology, and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Department of PathologyUZ LeuvenLeuvenBelgium
| | | |
Collapse
|
14
|
Cáceres C, Heusser B, Garnham A, Moczko E. The Major Hypotheses of Alzheimer's Disease: Related Nanotechnology-Based Approaches for Its Diagnosis and Treatment. Cells 2023; 12:2669. [PMID: 38067098 PMCID: PMC10705786 DOI: 10.3390/cells12232669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a well-known chronic neurodegenerative disorder that leads to the progressive death of brain cells, resulting in memory loss and the loss of other critical body functions. In March 2019, one of the major pharmaceutical companies and its partners announced that currently, there is no drug to cure AD, and all clinical trials of the new ones have been cancelled, leaving many people without hope. However, despite the clear message and startling reality, the research continued. Finally, in the last two years, the Food and Drug Administration (FDA) approved the first-ever medications to treat Alzheimer's, aducanumab and lecanemab. Despite researchers' support of this decision, there are serious concerns about their effectiveness and safety. The validation of aducanumab by the Centers for Medicare and Medicaid Services is still pending, and lecanemab was authorized without considering data from the phase III trials. Furthermore, numerous reports suggest that patients have died when undergoing extended treatment. While there is evidence that aducanumab and lecanemab may provide some relief to those suffering from AD, their impact remains a topic of ongoing research and debate within the medical community. The fact is that even though there are considerable efforts regarding pharmacological treatment, no definitive cure for AD has been found yet. Nevertheless, it is strongly believed that modern nanotechnology holds promising solutions and effective clinical strategies for the development of diagnostic tools and treatments for AD. This review summarizes the major hallmarks of AD, its etiological mechanisms, and challenges. It explores existing diagnostic and therapeutic methods and the potential of nanotechnology-based approaches for recognizing and monitoring patients at risk of irreversible neuronal degeneration. Overall, it provides a broad overview for those interested in the evolving areas of clinical neuroscience, AD, and related nanotechnology. With further research and development, nanotechnology-based approaches may offer new solutions and hope for millions of people affected by this devastating disease.
Collapse
Affiliation(s)
| | | | | | - Ewa Moczko
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562307, Chile; (C.C.)
| |
Collapse
|
15
|
Tang M, Blazes M, Lee CS. Imaging Amyloid and Tau in the Retina: Current Research and Future Directions. J Neuroophthalmol 2023; 43:168-179. [PMID: 36705970 PMCID: PMC10191872 DOI: 10.1097/wno.0000000000001786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The retina is a key focus in the search for biomarkers of Alzheimer's disease (AD) because of its accessibility and shared development with the brain. The pathological hallmarks of AD, amyloid beta (Aβ), and hyperphosphorylated tau (pTau) have been identified in the retina, although histopathologic findings have been mixed. Several imaging-based approaches have been developed to detect retinal AD pathology in vivo. Here, we review the research related to imaging AD-related pathology in the retina and implications for future biomarker research. EVIDENCE ACQUISITION Electronic searches of published literature were conducted using PubMed and Google Scholar. RESULTS Curcumin fluorescence and hyperspectral imaging are both promising methods for detecting retinal Aβ, although both require validation in larger cohorts. Challenges remain in distinguishing curcumin-labeled Aβ from background fluorescence and standardization of dosing and quantification methods. Hyperspectral imaging is limited by confounding signals from other retinal features and variability in reflectance spectra between individuals. To date, evidence of tau aggregation in the retina is limited to histopathologic studies. New avenues of research are on the horizon, including near-infrared fluorescence imaging, novel Aβ labeling techniques, and small molecule retinal tau tracers. Artificial intelligence (AI) approaches, including machine learning models and deep learning-based image analysis, are active areas of investigation. CONCLUSIONS Although the histopathological evidence seems promising, methods for imaging retinal Aβ require further validation, and in vivo imaging of retinal tau remains elusive. AI approaches may hold the greatest promise for the discovery of a characteristic retinal imaging profile of AD. Elucidating the role of Aβ and pTau in the retina will provide key insights into the complex processes involved in aging and in neurodegenerative disease.
Collapse
Affiliation(s)
- Mira Tang
- Wellesley College, Wellesley, Massachusetts, United States
| | - Marian Blazes
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Cecilia S. Lee
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
- Roger and Angie Karalis Johnson Retina Center, Seattle, Washington, United States
| |
Collapse
|
16
|
Koronyo Y, Rentsendorj A, Mirzaei N, Regis GC, Sheyn J, Shi H, Barron E, Cook-Wiens G, Rodriguez AR, Medeiros R, Paulo JA, Gupta VB, Kramerov AA, Ljubimov AV, Van Eyk JE, Graham SL, Gupta VK, Ringman JM, Hinton DR, Miller CA, Black KL, Cattaneo A, Meli G, Mirzaei M, Fuchs DT, Koronyo-Hamaoui M. Retinal pathological features and proteome signatures of Alzheimer's disease. Acta Neuropathol 2023; 145:409-438. [PMID: 36773106 PMCID: PMC10020290 DOI: 10.1007/s00401-023-02548-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Alzheimer's disease (AD) pathologies were discovered in the accessible neurosensory retina. However, their exact nature and topographical distribution, particularly in the early stages of functional impairment, and how they relate to disease progression in the brain remain largely unknown. To better understand the pathological features of AD in the retina, we conducted an extensive histopathological and biochemical investigation of postmortem retina and brain tissues from 86 human donors. Quantitative examination of superior and inferior temporal retinas from mild cognitive impairment (MCI) and AD patients compared to those with normal cognition (NC) revealed significant increases in amyloid β-protein (Aβ42) forms and novel intraneuronal Aβ oligomers (AβOi), which were closely associated with exacerbated retinal macrogliosis, microgliosis, and tissue atrophy. These pathologies were unevenly distributed across retinal layers and geometrical areas, with the inner layers and peripheral subregions exhibiting most pronounced accumulations in the MCI and AD versus NC retinas. While microgliosis was increased in the retina of these patients, the proportion of microglial cells engaging in Aβ uptake was reduced. Female AD patients exhibited higher levels of retinal microgliosis than males. Notably, retinal Aβ42, S100 calcium-binding protein B+ macrogliosis, and atrophy correlated with severity of brain Aβ pathology, tauopathy, and atrophy, and most retinal pathologies reflected Braak staging. All retinal biomarkers correlated with the cognitive scores, with retinal Aβ42, far-peripheral AβOi and microgliosis displaying the strongest correlations. Proteomic analysis of AD retinas revealed activation of specific inflammatory and neurodegenerative processes and inhibition of oxidative phosphorylation/mitochondrial, and photoreceptor-related pathways. This study identifies and maps retinopathy in MCI and AD patients, demonstrating the quantitative relationship with brain pathology and cognition, and may lead to reliable retinal biomarkers for noninvasive retinal screening and monitoring of AD.
Collapse
Affiliation(s)
- Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Giovanna C Regis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Ernesto Barron
- Doheny Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Galen Cook-Wiens
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Anthony R Rodriguez
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rodrigo Medeiros
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Veer B Gupta
- School of Medicine, Deakin University, Victoria, Australia
| | - Andrei A Kramerov
- Department of Biomedical Sciences and Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences and Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Departments of Neurology and Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, USA
| | - Jennifer E Van Eyk
- Departments of Neurology and Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, USA
- Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stuart L Graham
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - John M Ringman
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - David R Hinton
- Departments of Pathology and Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Antonino Cattaneo
- European Brain Research Institute (EBRI), Viale Regina Elena, Rome, Italy
| | - Giovanni Meli
- European Brain Research Institute (EBRI), Viale Regina Elena, Rome, Italy
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
- Departments of Neurology and Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, USA.
| |
Collapse
|
17
|
Hu Z, Wang L, Zhu D, Qin R, Sheng X, Ke Z, Shao P, Zhao H, Xu Y, Bai F. Retinal Alterations as Potential Biomarkers of Structural Brain Changes in Alzheimer’s Disease Spectrum Patients. Brain Sci 2023; 13:brainsci13030460. [PMID: 36979270 PMCID: PMC10046312 DOI: 10.3390/brainsci13030460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Retinal imaging being a potential biomarker for Alzheimer’s disease is gradually attracting the attention of researchers. However, the association between retinal parameters and AD neuroimaging biomarkers, particularly structural changes, is still unclear. In this cross-sectional study, we recruited 25 cognitively impaired (CI) and 21 cognitively normal (CN) individuals. All subjects underwent retinal layer thickness and microvascular measurements with optical coherence tomography angiography (OCTA). Gray matter and white matter (WM) data such as T1-weighted magnetic resonance imaging and diffusion tensor imaging, respectively, were also collected. In addition, hippocampal subfield volumes and WM tract microstructural alterations were investigated as classical AD neuroimaging biomarkers. The microvascular and retinal features and their correlation with brain structural imaging markers were further analyzed. We observed a reduction in vessel density (VD) at the inferior outer (IO) sector (p = 0.049), atrophy in hippocampal subfield volumes, such as the subiculum (p = 0.012), presubiculum (p = 0.015), molecular_layer_HP (p = 0.033), GC-ML-DG (p = 0.043) and whole hippocampus (p = 0.033) in CI patients. Altered microstructural integrity of WM tracts in CI patients was also discovered in the cingulum hippocampal part (CgH). Importantly, we detected significant associations between retinal VD and gray matter volumes of the hippocampal subfield in CI patients. These findings suggested that the retinal microvascular measures acquired by OCTA may be markers for the early prediction of AD-related structural brain changes.
Collapse
Affiliation(s)
- Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Lianlian Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China
| | - Dandan Zhu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Xiaoning Sheng
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Pengfei Shao
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
- Geriatric Medicine Center, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Correspondence: ; Tel.: +86-25-83105960
| |
Collapse
|
18
|
Gharbiya M, Visioli G, Trebbastoni A, Albanese GM, Colardo M, D’Antonio F, Segatto M, Lambiase A. Beta-Amyloid Peptide in Tears: An Early Diagnostic Marker of Alzheimer's Disease Correlated with Choroidal Thickness. Int J Mol Sci 2023; 24:ijms24032590. [PMID: 36768913 PMCID: PMC9917300 DOI: 10.3390/ijms24032590] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
We aimed to evaluate the diagnostic role of Alzheimer's disease (AD) biomarkers in tears as well as their association with retinal and choroidal microstructures. In a cross-sectional study, 35 subjects (age 71.7 ± 6.9 years) were included: 11 with prodromal AD (MCI), 10 with mild-to-moderate AD, and 14 healthy controls. The diagnosis of AD and MCI was confirmed according to a complete neuropsychological evaluation and PET or MRI imaging. After tear sample collection, β-amyloid peptide Aβ1-42 concentration was analyzed using ELISA, whereas C-terminal fragments of the amyloid precursor protein (APP-CTF) and phosphorylated tau (p-tau) were assessed by Western blot. Retinal layers and choroidal thickness (CT) were acquired by spectral-domain optical coherence tomography (SD-OCT). Aβ1-42 levels in tears were able to detect both MCI and AD patients with a specificity of 93% and a sensitivity of 81% (AUC = 0.91). Tear levels of Aβ1-42 were lower, both in the MCI (p < 0.01) and in the AD group (p < 0.001) when compared to healthy controls. Further, Aβ1-42 was correlated with psychometric scores (p < 0.001) and CT (p < 0.01). CT was thinner in the affected patients (p = 0.035). No differences were observed for APP-CTF and p-tau relative abundance in tears. Testing Aβ1-42 levels in tears seems to be a minimally invasive, cost-saving method for early detection and diagnosis of AD.
Collapse
Affiliation(s)
- Magda Gharbiya
- Department of Sense Organs, Sapienza University of Rome, 155, Viale del Policlinico, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-06-49975389; Fax: +39-06-49975388
| | - Giacomo Visioli
- Department of Sense Organs, Sapienza University of Rome, 155, Viale del Policlinico, 00161 Rome, Italy
| | | | - Giuseppe Maria Albanese
- Department of Sense Organs, Sapienza University of Rome, 155, Viale del Policlinico, 00161 Rome, Italy
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, 86100 Campobasso, Italy
| | - Fabrizia D’Antonio
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, 86100 Campobasso, Italy
| | - Alessandro Lambiase
- Department of Sense Organs, Sapienza University of Rome, 155, Viale del Policlinico, 00161 Rome, Italy
| |
Collapse
|
19
|
Xia X, Qin Q, Peng Y, Wang M, Yin Y, Tang Y. Retinal Examinations Provides Early Warning of Alzheimer's Disease. J Alzheimers Dis 2022; 90:1341-1357. [PMID: 36245377 DOI: 10.3233/jad-220596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with Alzheimer's disease have difficulty maintaining independent living abilities as the disease progresses, causing an increased burden of care on family caregivers and the healthcare system and related financial strain. This patient group is expected to continue to expand as life expectancy climbs. Current diagnostics for Alzheimer's disease are complex, unaffordable, and invasive without regard to diagnosis quality at early stages, which urgently calls for more technical improvements for diagnosis specificity. Optical coherence tomography or tomographic angiography has been shown to identify retinal thickness loss and lower vascular density present earlier than symptom onset in these patients. The retina is an extension of the central nervous system and shares anatomic and functional similarities with the brain. Ophthalmological examinations can be an efficient tool to offer a window into cerebral pathology with the merit of easy operation. In this review, we summarized the latest observations on retinal pathology in Alzheimer's disease and discussed the feasibility of retinal imaging in diagnostic prediction, as well as limitations in current retinal examinations for Alzheimer's disease diagnosis.
Collapse
Affiliation(s)
- Xinyi Xia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yankun Peng
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Du X, Koronyo Y, Mirzaei N, Yang C, Fuchs DT, Black KL, Koronyo-Hamaoui M, Gao L. Label-free hyperspectral imaging and deep-learning prediction of retinal amyloid β-protein and phosphorylated tau. PNAS NEXUS 2022; 1:pgac164. [PMID: 36157597 PMCID: PMC9491695 DOI: 10.1093/pnasnexus/pgac164] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/15/2022] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is a major risk for the aging population. The pathological hallmarks of AD-an abnormal deposition of amyloid β-protein (Aβ) and phosphorylated tau (pTau)-have been demonstrated in the retinas of AD patients, including in prodromal patients with mild cognitive impairment (MCI). Aβ pathology, especially the accumulation of the amyloidogenic 42-residue long alloform (Aβ42), is considered an early and specific sign of AD, and together with tauopathy, confirms AD diagnosis. To visualize retinal Aβ and pTau, state-of-the-art methods use fluorescence. However, administering contrast agents complicates the imaging procedure. To address this problem from fundamentals, ex-vivo studies were performed to develop a label-free hyperspectral imaging method to detect the spectral signatures of Aβ42 and pS396-Tau, and predicted their abundance in retinal cross-sections. For the first time, we reported the spectral signature of pTau and demonstrated an accurate prediction of Aβ and pTau distribution powered by deep learning. We expect our finding will lay the groundwork for label-free detection of AD.
Collapse
Affiliation(s)
- Xiaoxi Du
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chengshuai Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Liang Gao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
den Haan J, Hart de Ruyter FJ, Lochocki B, Kroon MA, Kemper EM, Teunissen CE, van Berckel B, Scheltens P, Hoozemans JJ, van de Kreeke A, Verbraak FD, de Boer JF, Bouwman FH. No difference in retinal fluorescence after oral curcumin intake in amyloid-proven AD cases compared to controls. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12347. [PMID: 35991218 PMCID: PMC9376971 DOI: 10.1002/dad2.12347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/11/2022]
Abstract
Introduction Previous work has showed the in vivo presence of retinal amyloid in Alzheimer's disease (AD) patients using curcumin. We aimed to replicate these findings in an amyloid biomarker-confirmed cohort. Methods Twenty-six patients with AD (age 66 [+9], Mini-Mental Status Examination [MMSE] ≥17) and 14 controls (age 71 [+12]) used one of three curcumin formulations: Longvida, Theracurmin, and Novasol. Plasma levels were determined and pre- and post-curcumin retinal fluorescence scans were assessed visually in all cases and quantitatively assessed in a subset. Results Visual assessment showed no difference between AD patients and controls for pre- and post-curcumin images. This was confirmed by quantitative analyses on a subset. Mean conjugated plasma curcumin levels were 198.7 nM (Longvida), 576.6 nM (Theracurmin), and 1605.8 nM (Novasol). Discussion We found no difference in retinal fluorescence between amyloid-confirmed AD cases and control participants, using Longvida and two additional curcumin formulations. Additional replication studies in amyloid-confirmed cohorts are needed to assess the diagnostic value of retinal fluorescence as an AD biomarker.
Collapse
Affiliation(s)
- Jurre den Haan
- Amsterdam UMC, location VUmcAlzheimer CenterNeurologyAmsterdamThe Netherlands
| | | | | | - Maurice A.G.M. Kroon
- Amsterdam UMC, location AMCDepartment of Pharmacy and Clinical PharmacologyAmsterdamThe Netherlands
| | - E. Marleen Kemper
- Amsterdam UMC, location AMCDepartment of Pharmacy and Clinical PharmacologyAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Amsterdam UMC, location VUmcNeurochemistry LabDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Bart van Berckel
- Amsterdam UMC, location VUmcDepartment of Nuclear MedicineAmsterdamThe Netherlands
| | - Philip Scheltens
- Amsterdam UMC, location VUmcAlzheimer CenterNeurologyAmsterdamThe Netherlands
| | - Jeroen J. Hoozemans
- Amsterdam UMClocation VUmcDepartment of PathologyAmsterdam NeuroscienceAmsterdamThe Netherlands
| | | | - Frank D. Verbraak
- Amsterdam UMClocation VUmcOphthalmology DepartmentAmsterdamThe Netherlands
| | | | - Femke H. Bouwman
- Amsterdam UMC, location VUmcAlzheimer CenterNeurologyAmsterdamThe Netherlands
| |
Collapse
|
22
|
Frame G, Schuller A, Smith MA, Crish SD, Dengler-Crish CM. Alterations in Retinal Signaling Across Age and Sex in 3xTg Alzheimer’s Disease Mice. J Alzheimers Dis 2022; 88:471-492. [PMID: 35599482 PMCID: PMC9398084 DOI: 10.3233/jad-220016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background: Visual disturbances often precede cognitive dysfunction in patients with Alzheimer’s disease (AD) and may coincide with early accumulation of amyloid-β (Aβ) protein in the retina. These findings have inspired critical research on in vivo ophthalmic Aβ imaging for disease biomarker detection but have not fully answered mechanistic questions on how retinal pathology affects visual signaling between the eye and brain. Objective: The goal of this study was to provide a functional and structural assessment of eye-brain communication between retinal ganglion cells (RGCs) and their primary projection target, the superior colliculus, in female and male 3xTg-AD mice across disease stages. Methods: Retinal electrophysiology, axonal transport, and immunofluorescence were used to determine RGC projection integrity, and retinal and collicular Aβ levels were assessed with advanced protein quantitation techniques. Results: 3xTg mice exhibited nuanced deficits in RGC electrical signaling, axonal transport, and synaptic integrity that exceeded normal age-related decrements in RGC function in age- and sex-matched healthy control mice. These deficits presented in sex-specific patterns among 3xTg mice, differing in the timing and severity of changes. Conclusion: These data support the premise that retinal Aβ is not just a benign biomarker in the eye, but may contribute to subtle, nuanced visual processing deficits. Such disruptions might enhance the biomarker potential of ocular amyloid and differentiate patients with incipient AD from patients experiencing normal age-related decrements in visual function.
Collapse
Affiliation(s)
- Gabrielle Frame
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, OH, USA
| | - Adam Schuller
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Matthew A. Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH, USA
| | - Samuel D. Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | | |
Collapse
|
23
|
Vit JP, Fuchs DT, Angel A, Levy A, Lamensdorf I, Black KL, Koronyo Y, Koronyo-Hamaoui M. Visual-stimuli Four-arm Maze test to Assess Cognition and Vision in Mice. Bio Protoc 2021; 11:e4234. [PMID: 34909455 DOI: 10.21769/bioprotoc.4234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 11/02/2022] Open
Abstract
Visual impairments, notably loss of contrast sensitivity and color vision, were documented in Alzheimer's disease (AD) patients yet are critically understudied. This protocol describes a novel visual-stimuli four-arm maze (ViS4M; also called visual x-maze), which is a versatile x-shaped maze equipped with spectrum- and intensity-controlled light-emitting diode (LED) sources and dynamic grayscale objects. The ViS4M is designed to allow the assessment of color and contrast vision along with locomotor and cognitive functions in mice. In the color testing mode, the spectral distributions of the LED lights create four homogenous spaces that differ in chromaticity and luminance, corresponding to the mouse visual system. In the contrast sensitivity test, the four grayscale objects are placed in the middle of each arm, contrasting against the black walls and the white floors of the maze. Upon entering the maze, healthy wild-type (WT) mice tend to spontaneously alternate between arms, even under equiluminant conditions of illumination, suggesting that cognitively and visually intact mice use both color and brightness as cues to navigate the maze. Evaluation of the double-transgenic APPSWE/PS1ΔE9 mouse model of AD (AD+ mice) reveals substantial deficits to alternate in both color and contrast modes at an early age, when hippocampal-based memory and learning is still intact. Profiling of timespan, entries, and transition patterns between the different arms uncovers variable aging and AD-associated impairments in color discrimination and contrast sensitivity. The analysis of arm sequences of alternation reveals different pathways of exploration in young WT, old WT, and AD+ mice, which can be used as color and contrast imprints of functionally intact versus impaired mice. Overall, we describe the utility of a novel visual x-maze test to identify behavioral changes in mice related to cognition, as well as color and contrast vision, with high precision and reproducibility. Graphic abstract: Exploratory behavior of AD+ mice versus age- and sex-matched WT mice is tracked (top left: trajectory from a 5-min video file) in a novel visual-stimuli four-arm maze (ViS4M; also named visual x-maze) equipped with spectrum- and intensity-controlled LED sources or grayscale objects. Consecutive arm entries reveal that APPSWE/PS1ΔE9 (AD+) mice alternate less between arms, as opposed to WT mice. Sequence analysis, according to the three alternation pathways (depicted by white, yellow, and brown arrows) under different conditions of illumination, uncovers specific deficits linked to color vision in AD+ mice, evidenced by a color imprint chart.
Collapse
Affiliation(s)
- Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | | | | | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.,Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
24
|
Dumitrascu OM, Rosenberry R, Sherman DS, Khansari MM, Sheyn J, Torbati T, Sherzai A, Sherzai D, Johnson KO, Czeszynski AD, Verdooner S, Black KL, Frautschy S, Lyden PD, Shi Y, Cheng S, Koronyo Y, Koronyo-Hamaoui M. Retinal Venular Tortuosity Jointly with Retinal Amyloid Burden Correlates with Verbal Memory Loss: A Pilot Study. Cells 2021; 10:cells10112926. [PMID: 34831149 PMCID: PMC8616417 DOI: 10.3390/cells10112926] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/21/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction: Retinal imaging is a non-invasive tool to study both retinal vasculature and neurodegeneration. In this exploratory retinal curcumin-fluorescence imaging (RFI) study, we sought to determine whether retinal vascular features combined with retinal amyloid burden correlate with the neurocognitive status. Methods: We used quantitative RFI in a cohort of patients with cognitive impairment to automatically compute retinal amyloid burden. Retinal blood vessels were segmented, and the vessel tortuosity index (VTI), inflection index, and branching angle were quantified. We assessed the correlations between retinal vascular and amyloid parameters, and cognitive domain Z-scores using linear regression models. Results: Thirty-four subjects were enrolled and twenty-nine (55% female, mean age 64 ± 6 years) were included in the combined retinal amyloid and vascular analysis. Eleven subjects had normal cognition and 18 had impaired cognition. Retinal VTI was discriminated among cognitive scores. The combined proximal mid-periphery amyloid count and venous VTI index exhibited significant differences between cognitively impaired and cognitively normal subjects (0.49 ± 1.1 vs. 0.91 ± 1.4, p = 0.006), and correlated with both the Wechsler Memory Scale-IV and SF-36 mental component score Z-scores (p < 0.05). Conclusion: This pilot study showed that retinal venular VTI combined with the proximal mid-periphery amyloid count could predict verbal memory loss. Future research is needed to finesse the clinical application of this retinal imaging-based technology.
Collapse
Affiliation(s)
- Oana M. Dumitrascu
- Department of Neurology, Mayo Clinic, Scottsdale, AZ 85251, USA
- Correspondence: (O.M.D.); (M.K.-H.); Tel.: +480-301-8100 (O.M.D.); Fax: +480-301-9494 (O.M.D.)
| | - Ryan Rosenberry
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.R.); (S.C.)
| | - Dale S. Sherman
- Department of Neuropsychology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Maziyar M. Khansari
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90007, USA; (M.M.K.); (Y.S.)
| | - Julia Sheyn
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.S.); (T.T.); (K.L.B.); (Y.K.)
| | - Tania Torbati
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.S.); (T.T.); (K.L.B.); (Y.K.)
| | - Ayesha Sherzai
- Department of Neurology, Loma Linda University, Loma Linda, CA 92350, USA; (A.S.); (D.S.)
| | - Dean Sherzai
- Department of Neurology, Loma Linda University, Loma Linda, CA 92350, USA; (A.S.); (D.S.)
| | - Kenneth O. Johnson
- NeuroVision Imaging Inc., Sacramento, CA 95833, USA; (K.O.J.); (A.D.C.); (S.V.)
| | - Alan D. Czeszynski
- NeuroVision Imaging Inc., Sacramento, CA 95833, USA; (K.O.J.); (A.D.C.); (S.V.)
| | - Steven Verdooner
- NeuroVision Imaging Inc., Sacramento, CA 95833, USA; (K.O.J.); (A.D.C.); (S.V.)
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.S.); (T.T.); (K.L.B.); (Y.K.)
| | - Sally Frautschy
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Patrick D. Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Yonggang Shi
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90007, USA; (M.M.K.); (Y.S.)
| | - Susan Cheng
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.R.); (S.C.)
| | - Yosef Koronyo
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.S.); (T.T.); (K.L.B.); (Y.K.)
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.S.); (T.T.); (K.L.B.); (Y.K.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence: (O.M.D.); (M.K.-H.); Tel.: +480-301-8100 (O.M.D.); Fax: +480-301-9494 (O.M.D.)
| |
Collapse
|