1
|
Hu Q, Wang S, Zhang W, Qu J, Liu GH. Unraveling brain aging through the lens of oral microbiota. Neural Regen Res 2025; 20:1930-1943. [PMID: 38993126 DOI: 10.4103/nrr.nrr-d-23-01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
The oral cavity is a complex physiological community encompassing a wide range of microorganisms. Dysbiosis of oral microbiota can lead to various oral infectious diseases, such as periodontitis and tooth decay, and even affect systemic health, including brain aging and neurodegenerative diseases. Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration, indicating potential avenues for intervention strategies. In this review, we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases, and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration. We also highlight advances in therapeutic development grounded in the realm of oral microbes, with the goal of advancing brain health and promoting healthy aging.
Collapse
Affiliation(s)
- Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
2
|
Singhrao SK, Consoli C, Dennison SR, Kanagasingam S, Welbury R. Porphyromonas gingivalis LPS and Actinomyces naeslundii Conditioned Medium Enhance the Release of a Low Molecular Weight, Transcriptionally Active, Fragment of Glycogen Synthase-3 Kinase in IMR-32 Cell Line. J Alzheimers Dis Rep 2024; 8:1055-1067. [PMID: 39114545 PMCID: PMC11305843 DOI: 10.3233/adr-240066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/19/2024] [Indexed: 08/10/2024] Open
Abstract
Background Glycogen synthase-3 kinase (GSK3) is one of the major contributors of tau hyperphosphorylation linked to neurofibrillary tangles in Alzheimer's disease (AD). Objective To determine a mechanism of GSK-3β activation by two periodontal bacteria consistently confirmed in AD autopsied brains. Methods Porphyromonas gingivalis FDC381 and Actinomyces naeslundii ATCC10301 conditioned media were collected. IMR-32 cells were challenged for 48 h with the conditioned media alongside P. gingivalis (ATCC33277) ultrapurified lipopolysaccharide (LPS) designated Pg.LPS under established cell culture conditions either alone or combined. Gene expression and protein analyses for GSK-3β were carried out. Results qPCR demonstrated that GSK-3β gene was overexpressed in IMR-32 cells treated with Pg.LPS with a 2.09-fold change (p = 0.0005), while A. naeslundii treated cells demonstrated 1.41-fold change (p = 0.004). Western blotting of the cells challenged with Pg.LPS (p = 0.01) and A. naeslundii conditioned medium (p = 0.001) demonstrated the 37 kDa band for each treatment with variable intensity across the medium control. Immunohistochemistry with the GSK-3β of the IMR-32 cells challenged with Pg.LPS and A. naeslundii alone demonstrated cytoplasmic and nuclear localization. Conclusions Exposure to various bacterial factors upregulated the gene expression of GSK-3β. Western blotting for GSK-3β confirmed the presence of the cleaved fragment by Pg.LPS (37 kDa band p = 0.01) and A. naeslundii conditioned medium (37 kDa band p = 0.001). Immunostaining demonstrated both cytoplasmic and nuclear localization of GSK-3β. Therefore, Pg.LPS and an unknown factor from the A. naeslundii conditioned medium mediated GSK-3β activation via its transcriptionally active, cleaved, fragment. These virulence factors in the body appear to be detrimental to brain health.
Collapse
Affiliation(s)
- Sim K. Singhrao
- School of Medicine and Dentistry, University of Central Lancashire, Preston, UK
| | - Claudia Consoli
- Central Biotechnology Services, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Sarah R. Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | | | - Richard Welbury
- School of Medicine and Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
3
|
Liu S, Butler CA, Ayton S, Reynolds EC, Dashper SG. Porphyromonas gingivalis and the pathogenesis of Alzheimer's disease. Crit Rev Microbiol 2024; 50:127-137. [PMID: 36597758 DOI: 10.1080/1040841x.2022.2163613] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
The cause of Alzheimer's disease (AD), and the pathophysiological mechanisms involved, remain major unanswered questions in medical science. Oral bacteria, especially those species associated with chronic periodontitis and particularly Porphyromonas gingivalis, are being linked causally to AD pathophysiology in a subpopulation of susceptible individuals. P. gingivalis produces large amounts of proteolytic enzymes, haem and iron capture proteins, adhesins and internalins that are secreted and attached to the cell surface and concentrated onto outer membrane vesicles (OMVs). These enzymes and adhesive proteins have been shown to cause host tissue damage and stimulate inflammatory responses. The ecological and pathophysiological roles of P. gingivalis OMVs, their ability to disperse widely throughout the host and deliver functional proteins lead to the proposal that they may be the link between a P. gingivalis focal infection in the subgingivae during periodontitis and neurodegeneration in AD. P. gingivalis OMVs can cross the blood brain barrier and may accelerate AD-specific neuropathology by increasing neuroinflammation, plaque/tangle formation and dysregulation of iron homeostasis, thereby inducing ferroptosis leading to neuronal death and neurodegeneration.
Collapse
Affiliation(s)
- Sixin Liu
- School of Dentistry, University of Michigan, Ann Arbor, United States of America
| | - Catherine A Butler
- Centre for Oral Health Research, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Eric C Reynolds
- Centre for Oral Health Research, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Stuart G Dashper
- Centre for Oral Health Research, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
4
|
Jia S, Li X, Du Q. Host insulin resistance caused by Porphyromonas gingivalis-review of recent progresses. Front Cell Infect Microbiol 2023; 13:1209381. [PMID: 37520442 PMCID: PMC10373507 DOI: 10.3389/fcimb.2023.1209381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a Gram-negative oral anaerobic bacterium that plays a key role in the pathogenesis of periodontitis. P. gingivalis expresses a variety of virulence factors that disrupt innate and adaptive immunity, allowing P. gingivalis to survive and multiply in the host and destroy periodontal tissue. In addition to periodontal disease, P.gingivalis is also associated with systemic diseases, of which insulin resistance is an important pathological basis. P. gingivalis causes a systemic inflammatory response, disrupts insulin signaling pathways, induces pancreatic β-cell hypofunction and reduced numbers, and causes decreased insulin sensitivity leading to insulin resistance (IR). In this paper, we systematically review the studies on the mechanism of insulin resistance induced by P. gingivalis, discuss the association between P. gingivalis and systemic diseases based on insulin resistance, and finally propose relevant therapeutic approaches. Overall, through a systematic review of the mechanisms related to systemic diseases caused by P. gingivalis through insulin resistance, we hope to provide new insights for future basic research and clinical interventions for related systemic diseases.
Collapse
Affiliation(s)
- Shuxian Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Kanagasingam S, von Ruhland C, Welbury R, Singhrao SK. Ex vivo Detection of Amyloid-β in Naturally Formed Oral Biofilm. J Alzheimers Dis Rep 2022; 6:757-773. [PMID: 36721488 PMCID: PMC9837734 DOI: 10.3233/adr-220076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background Oral infection has been implicated in the possible etiology of Alzheimer's disease. Objective To detect amyloid-β (Aβ) within microbial biofilms. Methods Freshly extracted teeth (N = 87) with periodontal disease were separated into Group A (N = 11), with primary root canal infection and Group B (N = 21) with failed endodontic treatment identified by the presence of, gutta percha root filling. Biofilm characteristics were observed by scanning electron microscopy (SEM). Demineralized paraffin wax embedded tooth sections and mineralized calculus biofilm were immunostained with the anti-Aβ antibody. The gutta perchas were processed either for on-section acrylic resin tissue immunocolloidal gold silver staining (IGSS) using the anti-Aβ antibody or in Araldite resin for ultrastructure. Results SEM demonstrated calculus and gutta percha in situ harboring a polymicrobial biofilm featuring extracellular polymeric substance (EPS) and water channels. Immunohistochemistry on rehydrated paraffin wax tooth sections from Group A, demonstrated Aβ staining on external (calculus and plaque) and all intracanal infected regions. In Group B, the gutta percha biofilm IGSS gave an inconclusive result for Aβ. Transmission electron microscopy of selected teeth with infected intra-canals (Group A) and 20% of gutta percha biofilm (Group B) EPS contained electron dense fibrils of variable sizes, some of which were typical of human Aβ fibrils. Conclusion This study detected both soluble and insoluble Aβ fibrils within the EPS of periodontal and endodontic natural biofilm, strongly suggesting its role as an antimicrobial peptide in combatting local infection, with potential risk for cross-seeding into the brain for AD development.
Collapse
Affiliation(s)
- Shalini Kanagasingam
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Christopher von Ruhland
- Electron and Light Microscopy Facility, College of Biomedical and Life Sciences, Cardiff University, Wales, UK
| | - Richard Welbury
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Sim K. Singhrao
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
6
|
Kanagasingam S, von Ruhland C, Welbury R, Singhrao SK. Antimicrobial, Polarizing Light, and Paired Helical Filament Properties of Fragmented Tau Peptides of Selected Putative Gingipains. J Alzheimers Dis 2022; 89:1279-1291. [PMID: 36031895 DOI: 10.3233/jad-220486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Tau is an established substrate for gingipains secreted by Porphyromonas gingivalis. Hyperphosphorylation of tau and neurofibrillary tangle (NFT) formation is a defining lesion of Alzheimer's disease (AD) where NFT distribution is related to Braak stage and disease severity. OBJECTIVE To assess gingipains'-fragmented tau peptides for their antimicrobial properties and for the likelihood of paired helical/straight filament (PHF/SF) formation with implications for the NFT lesion. METHODS Seven non-phosphorylated (A-G) and three phosphorylated (A-C) tau peptides, were tested for antimicrobial properties against P. gingivalis. Polarizing light properties were determined using Congo Red staining. Secondary and tertiary structures of peptides B-F were determined using transmission electron microscopy (TEM) and circular dichroism (CD) was undertaken for the soluble peptides A in phosphorylated and non-phosphorylated states. RESULTS Phosphorylated tau peptide A displayed a significant effect against planktonic P. gingivalis. The CD results demonstrated that both peptides A, in phosphorylated and non-phosphorylated states, in aqueous solution, adopted mainly β-type structures. Non-phosphorylated peptides B-F and phosphorylated peptides B-C were insoluble and fibrillar under the TEM. The secondary and tertiary structures of the non-phosphorylated peptide B demonstrated fewer helical twists, whereas peptide C displayed significantly more helical twists along the whole fiber(s) length following its phosphorylation. CONCLUSION Phosphorylated peptide A reduced P. gingivalis viability. CD spectroscopy demonstrated the phosphorylated and the non-phosphorylated peptide A predominantly formed from β-sheet structures in aqueous solution with potential antimicrobial activity. Phosphorylation of tau peptides physically changed their tertiary structure into PHFs with potential for self-aggregation and binding to the NFT lesion.
Collapse
Affiliation(s)
- Shalini Kanagasingam
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Christopher von Ruhland
- Electron and Light Microscopy Facility, College of Biomedical and Life Sciences, Cardiff University, Wales, UK
| | - Richard Welbury
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Sim K Singhrao
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
7
|
Ma X, Zhou S, Xu X, Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg 2022; 9:905892. [PMID: 35990090 PMCID: PMC9388913 DOI: 10.3389/fsurg.2022.905892] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Copper has been used as an antimicrobial agent long time ago. Nowadays, copper-containing nanoparticles (NPs) with antimicrobial properties have been widely used in all aspects of our daily life. Copper-containing NPs may also be incorporated or coated on the surface of dental materials to inhibit oral pathogenic microorganisms. This review aims to detail copper-containing NPs' antimicrobial mechanism, cytotoxic effect and their application in dentistry.
Collapse
Affiliation(s)
- Xinru Ma
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Stomatology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (West China Hospital Sichuan University Tibet Chengdu Branch Hospital), Chengdu, China
| | - Shiyu Zhou
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoling Xu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Jungbauer G, Stähli A, Zhu X, Auber Alberi L, Sculean A, Eick S. Periodontal microorganisms and Alzheimer disease - A causative relationship? Periodontol 2000 2022; 89:59-82. [PMID: 35244967 PMCID: PMC9314828 DOI: 10.1111/prd.12429] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023]
Abstract
In the initiation or exacerbation of Alzheimer disease, the dissemination of oral microorganisms into the brain tissue or the low‐level systemic inflammation have been speculated to play a role. However, the impact of oral microorganisms, such as Porphyromonas gingivalis, on the pathogenesis of Alzheimer disease and the potential causative relationship is still unclear. The present review has critically reviewed the literature by examining the following aspects: (a) the oral microbiome and the immune response in the elderly population, (b) human studies on the association between periodontal and gut microorganisms and Alzheimer disease, (c) animal and in vitro studies on microorganisms and Alzheimer disease, and (d) preventive and therapeutic approaches. Factors contributing to microbial dysbiosis seem to be aging, local inflammation, systemic diseases, wearing of dentures, living in nursing homes and no access to adequate oral hygiene measures. Porphyromonas gingivalis was detectable in post‐mortem brain samples. Microbiome analyses of saliva samples or oral biofilms showed a decreased microbial diversity and a different composition in Alzheimer disease compared to cognitively healthy subjects. Many in‐vitro and animal studies underline the potential of P gingivalis to induce Alzheimer disease‐related alterations. In animal models, recurring applications of P gingivalis or its components increased pro‐inflammatory mediators and β‐amyloid in the brain and deteriorated the animals' cognitive performance. Since periodontitis is the result of a disturbed microbial homoeostasis, an effect of periodontal therapy on the oral microbiome and host response related to cognitive parameters may be suggested and should be elucidated in further clinical trials.
Collapse
Affiliation(s)
- Gert Jungbauer
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Private Dental Practice, Straubing, Germany
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | | | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Shinjyo N, Kita K. Infection and Immunometabolism in the Central Nervous System: A Possible Mechanistic Link Between Metabolic Imbalance and Dementia. Front Cell Neurosci 2021; 15:765217. [PMID: 34795562 PMCID: PMC8592913 DOI: 10.3389/fncel.2021.765217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndromes are frequently associated with dementia, suggesting that the dysregulation of energy metabolism can increase the risk of neurodegeneration and cognitive impairment. In addition, growing evidence suggests the link between infections and brain disorders, including Alzheimer's disease. The immune system and energy metabolism are in an intricate relationship. Infection triggers immune responses, which are accompanied by imbalance in cellular and organismal energy metabolism, while metabolic disorders can lead to immune dysregulation and higher infection susceptibility. In the brain, the activities of brain-resident immune cells, including microglia, are associated with their metabolic signatures, which may be affected by central nervous system (CNS) infection. Conversely, metabolic dysregulation can compromise innate immunity in the brain, leading to enhanced CNS infection susceptibility. Thus, infection and metabolic imbalance can be intertwined to each other in the etiology of brain disorders, including dementia. Insulin and leptin play pivotal roles in the regulation of immunometabolism in the CNS and periphery, and dysfunction of these signaling pathways are associated with cognitive impairment. Meanwhile, infectious complications are often comorbid with diabetes and obesity, which are characterized by insulin resistance and leptin signaling deficiency. Examples include human immunodeficiency virus (HIV) infection and periodontal disease caused by an oral pathogen Porphyromonas gingivalis. This review explores potential interactions between infectious agents and insulin and leptin signaling pathways, and discuss possible mechanisms underlying the relationship between infection, metabolic dysregulation, and brain disorders, particularly focusing on the roles of insulin and leptin.
Collapse
Affiliation(s)
- Noriko Shinjyo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|