1
|
Moguilner S, Baez S, Hernandez H, Migeot J, Legaz A, Gonzalez-Gomez R, Farina FR, Prado P, Cuadros J, Tagliazucchi E, Altschuler F, Maito MA, Godoy ME, Cruzat J, Valdes-Sosa PA, Lopera F, Ochoa-Gómez JF, Hernandez AG, Bonilla-Santos J, Gonzalez-Montealegre RA, Anghinah R, d'Almeida Manfrinati LE, Fittipaldi S, Medel V, Olivares D, Yener GG, Escudero J, Babiloni C, Whelan R, Güntekin B, Yırıkoğulları H, Santamaria-Garcia H, Lucas AF, Huepe D, Di Caterina G, Soto-Añari M, Birba A, Sainz-Ballesteros A, Coronel-Oliveros C, Yigezu A, Herrera E, Abasolo D, Kilborn K, Rubido N, Clark RA, Herzog R, Yerlikaya D, Hu K, Parra MA, Reyes P, García AM, Matallana DL, Avila-Funes JA, Slachevsky A, Behrens MI, Custodio N, Cardona JF, Barttfeld P, Brusco IL, Bruno MA, Sosa Ortiz AL, Pina-Escudero SD, Takada LT, Resende E, Possin KL, de Oliveira MO, Lopez-Valdes A, Lawlor B, Robertson IH, Kosik KS, Duran-Aniotz C, Valcour V, Yokoyama JS, Miller B, Ibanez A. Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations. Nat Med 2024; 30:3646-3657. [PMID: 39187698 PMCID: PMC11645278 DOI: 10.1038/s41591-024-03209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024]
Abstract
Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of diversity (including geographical, socioeconomic, sociodemographic, sex and neurodegeneration) on the brain-age gap is unknown. We analyzed datasets from 5,306 participants across 15 countries (7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries). Based on higher-order interactions, we developed a brain-age gap deep learning architecture for functional magnetic resonance imaging (2,953) and electroencephalography (2,353). The datasets comprised healthy controls and individuals with mild cognitive impairment, Alzheimer disease and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (functional magnetic resonance imaging: mean directional error = 5.60, root mean square error (r.m.s.e.) = 11.91; electroencephalography: mean directional error = 5.34, r.m.s.e. = 9.82) associated with frontoposterior networks compared with non-LAC models. Structural socioeconomic inequality, pollution and health disparities were influential predictors of increased brain-age gaps, especially in LAC (R² = 0.37, F² = 0.59, r.m.s.e. = 6.9). An ascending brain-age gap from healthy controls to mild cognitive impairment to Alzheimer disease was found. In LAC, we observed larger brain-age gaps in females in control and Alzheimer disease groups compared with the respective males. The results were not explained by variations in signal quality, demographics or acquisition methods. These findings provide a quantitative framework capturing the diversity of accelerated brain aging.
Collapse
Grants
- R01 AG075775 NIA NIH HHS
- R01AG083799 John E. Fogarty Foundation for Persons with Intellectual and Developmental Disabilities
- 75N95022C00031 NIDA NIH HHS
- P01 AG019724 NIA NIH HHS
- SG-20-725707 Alzheimer's Association
- R01 AG057234 NIA NIH HHS
- R01 AG083799 NIA NIH HHS
- U.S. Department of Health & Human Services | NIH | Fogarty International Center (FIC)
- Latin American Brain Health Institute (BrainLat) # BL-SRGP2020-02 ReDLat [National Institutes of Health and the Fogarty International Center (FIC), National Institutes of Aging (R01 AG057234, R01 AG075775, AG021051, R01AG083799, CARDS-NIH 75N95022C00031), Alzheimer's Association (SG-20-725707), Rainwater Charitable Foundation, The Bluefield project to cure FTD, and Global Brain Health Institute)], ANID/FONDECYT Regular (1210195, 1210176 and 1220995); and ANID/FONDAP/15150012
- National Institute on Aging of the National Institutes of Health (R01AG075775, R01AG083799, 2P01AG019724); ANID (FONDECYT Regular 1210176, 1210195); and DICYT-USACH (032351G_DAS)
Collapse
Affiliation(s)
- Sebastian Moguilner
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sandra Baez
- Universidad de los Andes, Bogota, Colombia
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Hernan Hernandez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Joaquín Migeot
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Agustina Legaz
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Raul Gonzalez-Gomez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Francesca R Farina
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- The University of California Santa Barbara (UCSB), Santa Barbara, CA, USA
| | - Pavel Prado
- Escuela de Fonoaudiología, Universidad San Sebastián, Santiago de Chile, Chile
| | - Jhosmary Cuadros
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del Táchira, San Cristóbal, Venezuela
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- University of Buenos Aires, Buenos Aires, Argentina
| | - Florencia Altschuler
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Marcelo Adrián Maito
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - María E Godoy
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Josephine Cruzat
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Pedro A Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Sciences and Technology of China, Chengdu, China
- Technology of China, Chengdu, China
- Cuban Neuroscience Center, La Habana, Cuba
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia (GNA), University of Antioquia, Medellín, Colombia
| | | | - Alfredis Gonzalez Hernandez
- Department of Psychology, Master Program of Clinical Neuropsychology, Universidad Surcolombiana Neiva, Neiva, Colombia
| | | | | | - Renato Anghinah
- Reference Center of Behavioural Disturbances and Dementia, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- Traumatic Brain Injury Cognitive Rehabilitation Out-Patient Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Luís E d'Almeida Manfrinati
- Reference Center of Behavioural Disturbances and Dementia, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- Traumatic Brain Injury Cognitive Rehabilitation Out-Patient Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Sol Fittipaldi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Vicente Medel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Daniela Olivares
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Program-Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, University of Chile, Santiago, Chile
- Centro de Neuropsicología Clínica (CNC), Santiago, Chile
| | - Görsev G Yener
- Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
- Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Javier Escudero
- School of Engineering, Institute for Imaging, Data and Communications, University of Edinburgh, Edinburgh, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele Cassino, Cassino, Italy
| | - Robert Whelan
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Bahar Güntekin
- Department of Neurosciences, Health Sciences Institute, Istanbul Medipol University, İstanbul, Turkey
- Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Harun Yırıkoğulları
- Department of Neurosciences, Health Sciences Institute, Istanbul Medipol University, İstanbul, Turkey
- Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Hernando Santamaria-Garcia
- Pontificia Universidad Javeriana (PhD Program in Neuroscience), Bogotá, Colombia
- Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
| | - Alberto Fernández Lucas
- Departamento de Medicina Legal, Psiquiatría y Patología, Universidad Complutense de Madrid, Madrid, Spain
| | - David Huepe
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Gaetano Di Caterina
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Agustina Birba
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | | | - Carlos Coronel-Oliveros
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Amanuel Yigezu
- The University of California Santa Barbara (UCSB), Santa Barbara, CA, USA
| | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad ICESI, Cali, Colombia
| | - Daniel Abasolo
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of Surrey, Guildford, UK
| | - Kerry Kilborn
- School of Psychology, University of Glasgow, Glasgow, UK
| | - Nicolás Rubido
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, UK
| | - Ruaridh A Clark
- Centre for Signal and Image Processing, Department of Electronic and Electrical Engineering, University of Strathclyde, Strathclyde, UK
| | - Ruben Herzog
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, InsermCNRS, Paris, France
| | - Deniz Yerlikaya
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Kun Hu
- Harvard Medical School, Boston, MA, USA
| | - Mario A Parra
- Department of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
- BrainLat, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Pablo Reyes
- Pontificia Universidad Javeriana (PhD Program in Neuroscience), Bogotá, Colombia
- Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
| | - Adolfo M García
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Departamento de Lingüística y Literatura, Universidad de Santiago de Chile, Santiago, Chile
| | - Diana L Matallana
- Pontificia Universidad Javeriana (PhD Program in Neuroscience), Bogotá, Colombia
- Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
- Mental Health Department, Hospital Universitario Fundación Santa Fe, Bogota, Colombia
| | - José Alberto Avila-Funes
- Department of Geriatrics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Center (CMYN), Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Program - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, University of Chile, Santiago, Chile
| | - María I Behrens
- Neurology and Psychiatry Department, Clínica Alemana-Universidad Desarrollo, Santiago, Chile
- Centro de Investigación Clínica Avanzada (CICA), Universidad de Chile, Santiago, Chile
- Departamento de Neurología y Neurocirugía, Hospital Clínico de la Universidad de Chile, Santiago, Chile
- Departamento de Neurociencia, Universidad de Chile, Santiago, Chile
| | - Nilton Custodio
- Servicio de Neurología, Instituto Peruano de Neurociencias, Lima, Perú
| | - Juan F Cardona
- Facultad de Psicología, Universidad del Valle, Cali, Colombia
| | - Pablo Barttfeld
- Cognitive Science Group, Instituto de Investigaciones Psicológicas (IIPsi), CONICET UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ignacio L Brusco
- Centro de Neuropsiquiatría y Neurología de la Conducta (CENECON), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Martín A Bruno
- Instituto de Ciencias Biomédicas (ICBM), Universidad Catoóica de Cuyo, San Juan, Argentina
| | - Ana L Sosa Ortiz
- Instituto Nacional de Neurologia y Neurocirugia MVS, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Stefanie D Pina-Escudero
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Leonel T Takada
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Elisa Resende
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Katherine L Possin
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Maira Okada de Oliveira
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Alejandro Lopez-Valdes
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- School of Engineering, Department of Electrical and Electronic Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Brian Lawlor
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Ian H Robertson
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Kenneth S Kosik
- Division of the Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Claudia Duran-Aniotz
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Victor Valcour
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Jennifer S Yokoyama
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Bruce Miller
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Agustin Ibanez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile.
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina.
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA.
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Moguilner S, Baez S, Hernandez H, Migeot J, Legaz A, Gonzalez-Gomez R, Farina FR, Prado P, Cuadros J, Tagliazucchi E, Altschuler F, Maito MA, Godoy ME, Cruzat J, Valdes-Sosa PA, Lopera F, Ochoa-Gómez JF, Hernandez AG, Bonilla-Santos J, Gonzalez-Montealegre RA, Anghinah R, d’Almeida Manfrinati LE, Fittipaldi S, Medel V, Olivares D, Yener GG, Escudero J, Babiloni C, Whelan R, Güntekin B, Yırıkoğulları H, Santamaria-Garcia H, Lucas AF, Huepe D, Di Caterina G, Soto-Añari M, Birba A, Sainz-Ballesteros A, Coronel-Oliveros C, Yigezu A, Herrera E, Abasolo D, Kilborn K, Rubido N, Clark RA, Herzog R, Yerlikaya D, Hu K, Parra MA, Reyes P, García AM, Matallana DL, Avila-Funes JA, Slachevsky A, Behrens MI, Custodio N, Cardona JF, Barttfeld P, Brusco IL, Bruno MA, Sosa Ortiz AL, Pina-Escudero SD, Takada LT, Resende E, Possin KL, de Oliveira MO, Lopez-Valdes A, Lawlor B, Robertson IH, Kosik KS, Duran-Aniotz C, Valcour V, Yokoyama JS, Miller BL, Ibanez A. Brain clocks capture diversity and disparity in aging and dementia. RESEARCH SQUARE 2024:rs.3.rs-4150225. [PMID: 38978575 PMCID: PMC11230497 DOI: 10.21203/rs.3.rs-4150225/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of multimodal diversity (geographical, socioeconomic, sociodemographic, sex, neurodegeneration) on the brain age gap (BAG) is unknown. Here, we analyzed datasets from 5,306 participants across 15 countries (7 Latin American countries -LAC, 8 non-LAC). Based on higher-order interactions in brain signals, we developed a BAG deep learning architecture for functional magnetic resonance imaging (fMRI=2,953) and electroencephalography (EEG=2,353). The datasets comprised healthy controls, and individuals with mild cognitive impairment, Alzheimer's disease, and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (fMRI: MDE=5.60, RMSE=11.91; EEG: MDE=5.34, RMSE=9.82) compared to non-LAC, associated with frontoposterior networks. Structural socioeconomic inequality and other disparity-related factors (pollution, health disparities) were influential predictors of increased brain age gaps, especially in LAC (R2=0.37, F2=0.59, RMSE=6.9). A gradient of increasing BAG from controls to mild cognitive impairment to Alzheimer's disease was found. In LAC, we observed larger BAGs in females in control and Alzheimer's disease groups compared to respective males. Results were not explained by variations in signal quality, demographics, or acquisition methods. Findings provide a quantitative framework capturing the multimodal diversity of accelerated brain aging.
Collapse
Affiliation(s)
- Sebastian Moguilner
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sandra Baez
- Universidad de los Andes, Bogota, Colombia
- Global Brain Health Institute (GBHI), University of California, San Francisco, US; and Trinity College Dublin, Dublin, Ireland
| | - Hernan Hernandez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Joaquín Migeot
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Agustina Legaz
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Raul Gonzalez-Gomez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Francesca R. Farina
- Global Brain Health Institute (GBHI), University of California, San Francisco, US; and Trinity College Dublin, Dublin, Ireland
- The University of California Santa Barbara (UCSB), California, USA
| | - Pavel Prado
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago de Chile, Chile
| | - Jhosmary Cuadros
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del Táchira, San Cristóbal 5001, Venezuela
- Pontificia Universidad Javeriana (PhD Program in Neuroscience) Bogotá, San Ignacio, Colombia
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- University of Buenos Aires, Argentina
| | - Florencia Altschuler
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Marcelo Adrián Maito
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - María E. Godoy
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Josephine Cruzat
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Pedro A. Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Sciences
- Technology of China, Chengdu, China; Cuban Neuroscience Center, La Habana, Cuba
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia (GNA) University of Antioquia, Medellín, Colombia
| | | | - Alfredis Gonzalez Hernandez
- Department of Psychology, Master program of Clinical Neuropsychology, Universidad Surcolombiana Neiva, Neiva - Huila, Colombia
| | | | | | - Renato Anghinah
- Reference Center of Behavioural Disturbances and Dementia, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- Traumatic Brain Injury Cognitive Rehabilitation Out-Patient Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Luís E. d’Almeida Manfrinati
- Reference Center of Behavioural Disturbances and Dementia, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- Traumatic Brain Injury Cognitive Rehabilitation Out-Patient Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Sol Fittipaldi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Universidad de los Andes, Bogota, Colombia
| | - Vicente Medel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Daniela Olivares
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology program-Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Centro de Neuropsicología Clínica (CNC), Santiago, Chile
| | - Görsev G. Yener
- Faculty of Medicine, Izmir University of Economics, 35330, Izmir, Turkey
- Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Javier Escudero
- School of Engineering, Institute for Imaging, Data and Communications, University of Edinburgh, Scotland, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele Cassino, Cassino, (FR), Italy
| | - Robert Whelan
- Global Brain Health Institute (GBHI), University of California, San Francisco, US; and Trinity College Dublin, Dublin, Ireland
- School of Psychology, Trinity College Dublin, Dublin 2, Ireland
| | - Bahar Güntekin
- Department of Neurosciences, Health Sciences Institute, Istanbul Medipol University, İstanbul, Turkey
- Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University
| | - Harun Yırıkoğulları
- Department of Neurosciences, Health Sciences Institute, Istanbul Medipol University, İstanbul, Turkey
- Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Hernando Santamaria-Garcia
- Pontificia Universidad Javeriana (PhD Program in Neuroscience) Bogotá, San Ignacio, Colombia
- Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
| | - Alberto Fernández Lucas
- Departamento de Medicina Legal, Psiquiatría y Patología, Facultad de Medicina, Universidad Complutense de Madrid
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez
| | - Gaetano Di Caterina
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Agustina Birba
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | | | - Carlos Coronel-Oliveros
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Global Brain Health Institute (GBHI), University of California, San Francisco, US; and Trinity College Dublin, Dublin, Ireland
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Chile
| | - Amanuel Yigezu
- Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad ICESI, Cali, Colombia
| | - Daniel Abasolo
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Kerry Kilborn
- School of Psychology, University of Glasgow, Glasgow, Scotland
| | - Nicolás Rubido
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ruaridh A. Clark
- Centre for Signal and Image Processing, Department of Electronic and Electrical Engineering, University of Strathclyde, UK
| | - Ruben Herzog
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Deniz Yerlikaya
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Kun Hu
- Harvard Medical School, Boston, USA
| | - Mario A. Parra
- Department of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom; Researcher associate of BrainLat, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Pablo Reyes
- Pontificia Universidad Javeriana (PhD Program in Neuroscience) Bogotá, San Ignacio, Colombia
- Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
| | - Adolfo M. García
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California, San Francisco, US; and Trinity College Dublin, Dublin, Ireland
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile 2
| | - Diana L. Matallana
- Pontificia Universidad Javeriana (PhD Program in Neuroscience) Bogotá, San Ignacio, Colombia
| | - José Alberto Avila-Funes
- Department of Geriatrics. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Mexico City, Mexico
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Center (CMYN), Neurology Department, Hospital del Salvador & Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Program – Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
| | - María I. Behrens
- Neurology and Psychiatry Department, Clínica Alemana-Universidad Desarrollo, Santiago, Chile
- Centro de Investigación Clínica Avanzada (CICA), Facultad de Medicina-Hospital Clínico, Universidad de Chile, Independencia, Santiago, 8380453, Chile
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Independencia, Santiago, 8380430, Chile
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Independencia, Santiago, 8380453, Chile
| | - Nilton Custodio
- Servicio de Neurología, Instituto Peruano de Neurociencias, Lima, Perú
| | - Juan F. Cardona
- Facultad de Psicología, Universidad del Valle, Santiago de Cali, Colombia
| | - Pablo Barttfeld
- Cognitive Science Group. Instituto de Investigaciones Psicológicas (IIPsi), CONICET UNC, Facultad de Psicología, Universidad Nacional de Córdoba, Boulevard de la Reforma esquina Enfermera Gordillo, CP 5000. Córdoba, Argentina
| | - Ignacio L. Brusco
- Centro de Neuropsiquiatría y Neurología de la Conducta (CENECON), Facultad de Medicina, Universidad de Buenos Aires (UBA), C.A.B.A., Buenos Aires, Argentina
| | - Martín A. Bruno
- Instituto de Ciencias Biomédicas (ICBM) Facultad de Ciencias Médicas, Universidad Catoóica de Cuyo, San Juan, Argentina
| | - Ana L. Sosa Ortiz
- Instituto Nacional de Neurologia y Neurocirugia MVS, Universidad Nacional Autonoma de Mexico, Mexico, Mexico
| | - Stefanie D. Pina-Escudero
- Global Brain Health Institute (GBHI), University of California, San Francisco, US; and Trinity College Dublin, Dublin, Ireland
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Elisa Resende
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Katherine L. Possin
- Global Brain Health Institute (GBHI), University of California, San Francisco, US; and Trinity College Dublin, Dublin, Ireland
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Maira Okada de Oliveira
- Global Brain Health Institute (GBHI), University of California, San Francisco, US; and Trinity College Dublin, Dublin, Ireland
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Alejandro Lopez-Valdes
- Global Brain Health Institute (GBHI), University of California, San Francisco, US; and Trinity College Dublin, Dublin, Ireland
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Brain Lawlor
- Global Brain Health Institute (GBHI), University of California, San Francisco, US; and Trinity College Dublin, Dublin, Ireland
- Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Ian H. Robertson
- Global Brain Health Institute (GBHI), University of California, San Francisco, US; and Trinity College Dublin, Dublin, Ireland
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Kenneth S. Kosik
- The University of Chicago, Division of the Biological Sciences, 5841 S Maryland Avenue Chicago, IL 60637, USA
| | - Claudia Duran-Aniotz
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Victor Valcour
- Global Brain Health Institute (GBHI), University of California, San Francisco, US; and Trinity College Dublin, Dublin, Ireland
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Jennifer S. Yokoyama
- Global Brain Health Institute (GBHI), University of California, San Francisco, US; and Trinity College Dublin, Dublin, Ireland
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Bruce L. Miller
- Global Brain Health Institute (GBHI), University of California, San Francisco, US; and Trinity College Dublin, Dublin, Ireland
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Agustin Ibanez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California, San Francisco, US; and Trinity College Dublin, Dublin, Ireland
- Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Wittens MMJ, Denissen S, Sima DM, Fransen E, Niemantsverdriet E, Bastin C, Benoit F, Bergmans B, Bier JC, de Deyn PP, Deryck O, Hanseeuw B, Ivanoiu A, Picard G, Ribbens A, Salmon E, Segers K, Sieben A, Struyfs H, Thiery E, Tournoy J, van Binst AM, Versijpt J, Smeets D, Bjerke M, Nagels G, Engelborghs S. Brain age as a biomarker for pathological versus healthy ageing - a REMEMBER study. Alzheimers Res Ther 2024; 16:128. [PMID: 38877568 PMCID: PMC11179390 DOI: 10.1186/s13195-024-01491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVES This study aimed to evaluate the potential clinical value of a new brain age prediction model as a single interpretable variable representing the condition of our brain. Among many clinical use cases, brain age could be a novel outcome measure to assess the preventive effect of life-style interventions. METHODS The REMEMBER study population (N = 742) consisted of cognitively healthy (HC,N = 91), subjective cognitive decline (SCD,N = 65), mild cognitive impairment (MCI,N = 319) and AD dementia (ADD,N = 267) subjects. Automated brain volumetry of global, cortical, and subcortical brain structures computed by the CE-labeled and FDA-cleared software icobrain dm (dementia) was retrospectively extracted from T1-weighted MRI sequences that were acquired during clinical routine at participating memory clinics from the Belgian Dementia Council. The volumetric features, along with sex, were combined into a weighted sum using a linear model, and were used to predict 'brain age' and 'brain predicted age difference' (BPAD = brain age-chronological age) for every subject. RESULTS MCI and ADD patients showed an increased brain age compared to their chronological age. Overall, brain age outperformed BPAD and chronological age in terms of classification accuracy across the AD spectrum. There was a weak-to-moderate correlation between total MMSE score and both brain age (r = -0.38,p < .001) and BPAD (r = -0.26,p < .001). Noticeable trends, but no significant correlations, were found between BPAD and incidence of conversion from MCI to ADD, nor between BPAD and conversion time from MCI to ADD. BPAD was increased in heavy alcohol drinkers compared to non-/sporadic (p = .014) and moderate (p = .040) drinkers. CONCLUSIONS Brain age and associated BPAD have the potential to serve as indicators for, and to evaluate the impact of lifestyle modifications or interventions on, brain health.
Collapse
Affiliation(s)
- Mandy M J Wittens
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
| | - Stijn Denissen
- icometrix, Leuven, Belgium
- AIMS lab, Center for Neurosciences (C4N), Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Diana M Sima
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
- icometrix, Leuven, Belgium
| | - Erik Fransen
- Centre of Medical Genetics, University of Antwerp, and Antwerp University Hospital - UZA, Edegem, Belgium
| | | | - Christine Bastin
- GIGA-CRC-IVI, Liège University, Allée du Six Août, 8, Liège, 4000, Belgium
| | - Florence Benoit
- Geriatrics Department, Brugmann University Hospital, Universite Libre de Bruxelles, Brussels, Belgium
| | - Bruno Bergmans
- Neurology Department, AZ St-Jan Brugge, Brugge, Belgium
- Ghent University Hospital, Ghent, Belgium
| | - Jean-Christophe Bier
- Neurological department H. U. B. - Erasme Hospital - Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Peter Paul de Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Antwerp, 2610, Belgium
- Memory Clinic, Ziekenhuisnetwerk, Antwerp, Belgium
| | - Olivier Deryck
- Neurology Department, AZ St-Jan Brugge, Brugge, Belgium
- Ghent University Hospital, Ghent, Belgium
| | - Bernard Hanseeuw
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, 1200, Belgium
- Department of Neurology, Clinique Universitaires Saint-Luc, Brussels, 1200, Belgium
- WELBIO Department, WEL Research Institute, Wavre, 1300, Belgium
| | - Adrian Ivanoiu
- Department of Neurology, Cliniques Universitaires St Luc, and Institute of Neuroscience, Université Catholique de Louvain, Woluwe-Saint-Lambert (Brussels), Belgium
| | - Gaëtane Picard
- Department of Neurology, Clinique Saint-Pierre, Ottignies, Belgium
| | | | - Eric Salmon
- GIGA-CRC-IVI, Liège University, Allée du Six Août, 8, Liège, 4000, Belgium
- Department of Neurology, Memory Clinic, Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium
| | - Kurt Segers
- Memory Clinic - Neurology and Geriatrics Department, CHU Brugmann, Van Gehuchtenplein 4, Brussels, 1020, Belgium
| | - Anne Sieben
- Neuropathology Lab, IBB-NeuroBiobank BB190113, Born Bunge Institute, Antwerp, Belgium
- Department of Pathology, Antwerp University Hospital - UZA, Antwerp, Belgium
- Laboratory of Neurology, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Hanne Struyfs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Johnson and Johnson Innovative Medicine, Beerse, Belgium
| | - Evert Thiery
- Department of Neurology, University Hospital Ghent, Ghent University, Ghent, Belgium
| | - Jos Tournoy
- Department of Chronic Diseases, Metabolism and Ageing, Geriatric Medicine and Memory Clinic, University Hospitals Leuven and KU Leuven, Louvain, Belgium
| | - Anne-Marie van Binst
- Radiology Department, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Jan Versijpt
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
| | - Dirk Smeets
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
- icometrix, Leuven, Belgium
| | - Maria Bjerke
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
- Department of Clinical Chemistry, Laboratory of Neurochemistry, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Guy Nagels
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- St. Edmund Hall, University of Oxford, Oxford, UK
- AIMS lab, Center for Neurosciences (C4N), Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
4
|
Chen CL, Cheng SY, Montaser-Kouhsari L, Wu WC, Hsu YC, Tai CH, Tseng WYI, Kuo MC, Wu RM. Advanced brain aging in Parkinson's disease with cognitive impairment. NPJ Parkinsons Dis 2024; 10:62. [PMID: 38493188 PMCID: PMC10944471 DOI: 10.1038/s41531-024-00673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Patients with Parkinson's disease and cognitive impairment (PD-CI) deteriorate faster than those without cognitive impairment (PD-NCI), suggesting an underlying difference in the neurodegeneration process. We aimed to verify brain age differences in PD-CI and PD-NCI and their clinical significance. A total of 94 participants (PD-CI, n = 27; PD-NCI, n = 34; controls, n = 33) were recruited. Predicted age difference (PAD) based on gray matter (GM) and white matter (WM) features were estimated to represent the degree of brain aging. Patients with PD-CI showed greater GM-PAD (7.08 ± 6.64 years) and WM-PAD (8.82 ± 7.69 years) than those with PD-NCI (GM: 1.97 ± 7.13, Padjusted = 0.011; WM: 4.87 ± 7.88, Padjusted = 0.049) and controls (GM: -0.58 ± 7.04, Padjusted = 0.004; WM: 0.88 ± 7.45, Padjusted = 0.002) after adjusting demographic factors. In patients with PD, GM-PAD was negatively correlated with MMSE (Padjusted = 0.011) and MoCA (Padjusted = 0.013) and positively correlated with UPDRS Part II (Padjusted = 0.036). WM-PAD was negatively correlated with logical memory of immediate and delayed recalls (Padjusted = 0.003 and Padjusted < 0.001). Also, altered brain regions in PD-CI were identified and significantly correlated with brain age measures, implicating the neuroanatomical underpinning of neurodegeneration in PD-CI. Moreover, the brain age metrics can improve the classification between PD-CI and PD-NCI. The findings suggest that patients with PD-CI had advanced brain aging that was associated with poor cognitive functions. The identified neuroimaging features and brain age measures can serve as potential biomarkers of PD-CI.
Collapse
Affiliation(s)
- Chang-Le Chen
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shao-Ying Cheng
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
| | | | - Wen-Chao Wu
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.
- Acroviz Inc, Taipei, Taiwan.
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ming-Che Kuo
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Tseng WYI, Hsu YC, Huang LK, Hong CT, Lu YH, Chen JH, Fu CK, Chan L. Brain Age Is Associated with Cognitive Outcomes of Cholinesterase Inhibitor Treatment in Patients with Mild Cognitive Impairment. J Alzheimers Dis 2024; 98:1095-1106. [PMID: 38517785 DOI: 10.3233/jad-231109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Background The effect of cholinesterase inhibitor (ChEI) on mild cognitive impairment (MCI) is controversial. Brain age has been shown to predict Alzheimer's disease conversion from MCI. Objective The study aimed to show that brain age is related to cognitive outcomes of ChEI treatment in MCI. Methods Brain MRI, the Clinical Dementia Rating (CDR) and Mini-Mental State Exam (MMSE) scores were retrospectively retrieved from a ChEI treatment database. Patients who presented baseline CDR of 0.5 and received ChEI treatment for at least 2 years were selected. Patients with stationary or improved cognition as verified by the CDR and MMSE were categorized to the ChEI-responsive group, and those with worsened cognition were assigned to the ChEI-unresponsive group. A gray matter brain age model was built with a machine learning algorithm by training T1-weighted MRI data of 362 healthy participants. The model was applied to each patient to compute predicted age difference (PAD), i.e. the difference between brain age and chronological age. The PADs were compared between the two groups. Results 58 patients were found to fit the ChEI-responsive criteria in the patient data, and 58 matched patients that fit the ChEI-unresponsive criteria were compared. ChEI-unresponsive patients showed significantly larger PAD than ChEI-responsive patients (8.44±8.78 years versus 3.87±9.02 years, p = 0.0067). Conclusions Gray matter brain age is associated with cognitive outcomes after 2 years of ChEI treatment in patients with the CDR of 0.5. It might facilitate the clinical trials of novel therapeutics for MCI.
Collapse
Affiliation(s)
| | | | - Li-Kai Huang
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City, Taiwan (R.O.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Chien-Tai Hong
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City, Taiwan (R.O.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan (R.O.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Yueh-Hsun Lu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan (R.O.C.)
- Department of Radiology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan (R.O.C.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Jia-Hung Chen
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City, Taiwan (R.O.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | | | - Lung Chan
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City, Taiwan (R.O.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan (R.O.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| |
Collapse
|
6
|
Shida AF, Massett RJ, Imms P, Vegesna RV, Amgalan A, Irimia A. Significant Acceleration of Regional Brain Aging and Atrophy After Mild Traumatic Brain Injury. J Gerontol A Biol Sci Med Sci 2023; 78:1328-1338. [PMID: 36879433 PMCID: PMC10395568 DOI: 10.1093/gerona/glad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 03/08/2023] Open
Abstract
Brain regions' rates of age-related volumetric change after traumatic brain injury (TBI) are unknown. Here, we quantify these rates cross-sectionally in 113 persons with recent mild TBI (mTBI), whom we compare against 3 418 healthy controls (HCs). Regional gray matter (GM) volumes were extracted from magnetic resonance images. Linear regression yielded regional brain ages and the annualized average rates of regional GM volume loss. These results were compared across groups after accounting for sex and intracranial volume. In HCs, the steepest rates of volume loss were recorded in the nucleus accumbens, amygdala, and lateral orbital sulcus. In mTBI, approximately 80% of GM structures had significantly steeper rates of annual volume loss than in HCs. The largest group differences involved the short gyri of the insula and both the long gyrus and central sulcus of the insula. No significant sex differences were found in the mTBI group, regional brain ages being the oldest in prefrontal and temporal structures. Thus, mTBI involves significantly steeper regional GM loss rates than in HCs, reflecting older-than-expected regional brain ages.
Collapse
Affiliation(s)
- Alexander F Shida
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Roy J Massett
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Phoebe Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Ramanand V Vegesna
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Anar Amgalan
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
- Department of Quantitative & Computational Biology, Dana and David Dornsife College of Arts & Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Yue JH, Zhang QH, Yang X, Wang P, Sun XC, Yan SY, Li A, Zhao WW, Cao DN, Wang Y, Wei ZY, Li XL, Zhu LW, Yang G, Mah JZ. Magnetic resonance imaging of white matter in Alzheimer's disease: a global bibliometric analysis from 1990 to 2022. Front Neurosci 2023; 17:1163809. [PMID: 37304017 PMCID: PMC10248146 DOI: 10.3389/fnins.2023.1163809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 06/13/2023] Open
Abstract
Background Alzheimer's disease (AD) is a common, progressive, irreversible, and fatal neurodegenerative disorder with rapidly increasing worldwide incidence. Although much research on magnetic resonance imaging (MRI) of the white matter (WM) in AD has been published, no bibliometric analysis study has investigated this issue. Thus, this study aimed to provide an overview of the current status, hotspots, and trends in MRI of WM in AD. Methods We searched for records related to MRI studies of WM in AD from 1990 to 2022 in the Web of Science Core Collection (WOSCC) database. CiteSpace (version 5.1.R8) and VOSviewer (version 1.6.19) software were used for bibliometric analyses. Results A total of 2,199 articles were obtained from this study. From 1990 to 2022, the number of published articles showed exponential growth of y = 4.1374e0.1294x, with an average of 17.9 articles per year. The top country and institutions were the United States and the University of California Davis, accounting for 44.52 and 5.32% of the total studies, respectively. The most productive journal was Neurology, and the most co-cited journal was Lancet Neurology. Decarli C was the most productive author. The current research frontier trend focuses on the association between small vessel disease and AD, the clinical application and exploration of diffusion MRI, and related markers. Conclusion This study provides an in-depth overview of publications on MRI of WM in AD, identifying the current research status, hotspots, and frontier trends in the field.
Collapse
Affiliation(s)
- Jin-huan Yue
- Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen, China
| | - Qin-hong Zhang
- Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen, China
| | - Xu Yang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Peng Wang
- Department of Oncology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu-Chen Sun
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shi-Yan Yan
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ang Li
- Sanofifi-Aventis China Investment Co., Ltd, Beijing, China
| | | | - Dan-Na Cao
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Wang
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ze-Yi Wei
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiao-Ling Li
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu-Wen Zhu
- Department of Rehabilitation, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | | |
Collapse
|
8
|
Chiu FY, Yen Y. Imaging biomarkers for clinical applications in neuro-oncology: current status and future perspectives. Biomark Res 2023; 11:35. [PMID: 36991494 DOI: 10.1186/s40364-023-00476-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Biomarker discovery and development are popular for detecting the subtle diseases. However, biomarkers are needed to be validated and approved, and even fewer are ever used clinically. Imaging biomarkers have a crucial role in the treatment of cancer patients because they provide objective information on tumor biology, the tumor's habitat, and the tumor's signature in the environment. Tumor changes in response to an intervention complement molecular and genomic translational diagnosis as well as quantitative information. Neuro-oncology has become more prominent in diagnostics and targeted therapies. The classification of tumors has been actively updated, and drug discovery, and delivery in nanoimmunotherapies are advancing in the field of target therapy research. It is important that biomarkers and diagnostic implements be developed and used to assess the prognosis or late effects of long-term survivors. An improved realization of cancer biology has transformed its management with an increasing emphasis on a personalized approach in precision medicine. In the first part, we discuss the biomarker categories in relation to the courses of a disease and specific clinical contexts, including that patients and specimens should both directly reflect the target population and intended use. In the second part, we present the CT perfusion approach that provides quantitative and qualitative data that has been successfully applied to the clinical diagnosis, treatment and application. Furthermore, the novel and promising multiparametric MR imageing approach will provide deeper insights regarding the tumor microenvironment in the immune response. Additionally, we briefly remark new tactics based on MRI and PET for converging on imaging biomarkers combined with applications of bioinformatics in artificial intelligence. In the third part, we briefly address new approaches based on theranostics in precision medicine. These sophisticated techniques merge achievable standardizations into an applicatory apparatus for primarily a diagnostic implementation and tracking radioactive drugs to identify and to deliver therapies in an individualized medicine paradigm. In this article, we describe the critical principles for imaging biomarker characterization and discuss the current status of CT, MRI and PET in finiding imaging biomarkers of early disease.
Collapse
Affiliation(s)
- Fang-Ying Chiu
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, 970374, Taiwan.
- Center for Brain and Neurobiology Research, Tzu Chi University, Hualien City, 970374, Taiwan.
- Teaching and Research Headquarters for Sustainable Development Goals, Tzu Chi University, Hualien City, 970374, Taiwan.
| | - Yun Yen
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, 970374, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei City, 110301, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, 110301, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City, 110301, Taiwan.
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei City, 116081, Taiwan.
| |
Collapse
|
9
|
Biomarkers for Alzheimer's Disease in the Current State: A Narrative Review. Int J Mol Sci 2022; 23:ijms23094962. [PMID: 35563350 PMCID: PMC9102515 DOI: 10.3390/ijms23094962] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) has become a problem, owing to its high prevalence in an aging society with no treatment available after onset. However, early diagnosis is essential for preventive intervention to delay disease onset due to its slow progression. The current AD diagnostic methods are typically invasive and expensive, limiting their potential for widespread use. Thus, the development of biomarkers in available biofluids, such as blood, urine, and saliva, which enables low or non-invasive, reasonable, and objective evaluation of AD status, is an urgent task. Here, we reviewed studies that examined biomarker candidates for the early detection of AD. Some of the candidates showed potential biomarkers, but further validation studies are needed. We also reviewed studies for non-invasive biomarkers of AD. Given the complexity of the AD continuum, multiple biomarkers with machine-learning-classification methods have been recently used to enhance diagnostic accuracy and characterize individual AD phenotypes. Artificial intelligence and new body fluid-based biomarkers, in combination with other risk factors, will provide a novel solution that may revolutionize the early diagnosis of AD.
Collapse
|