1
|
Tian Y, Li W, Zhang Y. 3-N-Butylphthalide alleviate Aβ-induced cellular senescence through the CDK2-pRB1-Caspase3 axis. Brain Res 2024:149435. [PMID: 39736372 DOI: 10.1016/j.brainres.2024.149435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/17/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ) and leading to cellular senescence and cognitive deficits. Cellular senescence contributes significantly to the pathogenesis of AD through the senescence-associated secretory phenotype (SASP), exacerbating Aβ deposition. This study investigates the protective effects of 3-N-Butylphthalide (NBP), a compound derived from Apium graveolens Linn (Chinese celery), on Aβ-induced cellular senescence in U87 cells. Using RNA-sequencing and biochemical assays, we demonstrate that NBP ameliorate Aβ oligomer-induced cellular senescence and apoptosis, and regulated the expression of cyclin-dependent kinase inhibitor 2A (CDKN2A) and components of the cyclin-dependent kinase 2 (CDK2)- phosphorylated retinoblastoma 1 (pRB1)-Caspase3 pathway. Moreover, NBP was shown to suppress the expression of SASP-related genes. These findings suggest that NBP rescues U87 cells from Aβ oligomer-induced senescence and apoptosis through modulating the CDK2-pRB1-Caspase3 axis and SASP expression. Our results underscore the potential of NBP as a senostatic agent for AD which have not been reported in previous studies, offering insights into its mechanisms of action and paving the way for future studies on its efficacy in vivo and in clinical settings. Thus, we contribute to growing evidence supporting the use of senolytic and senostatic agents in the treatment of AD.
Collapse
Affiliation(s)
- Yuanruhua Tian
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
2
|
Purzner J, Brown AS, Purzner T, Ellis L, Broski S, Litzenburger U, Andrews K, Sharma A, Wang X, Taylor MD, Cho YJ, Fuller MT, Scott MP. Ezh2 Delays Activation of Differentiation Genes During Normal Cerebellar Granule Neuron Development and in Medulloblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624171. [PMID: 39605517 PMCID: PMC11601632 DOI: 10.1101/2024.11.21.624171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumour in children. The Sonic Hedgehog (SHH)-medulloblastoma subtype arises from the cerebellar granule neuron lineage. Terminally differentiated neurons are incapable of undergoing further cell division, so an effective treatment for this tumour could be to force neuronal differentiation. Differentiation therapy provides a potential alternative for patients with medulloblastoma who harbor mutations that impair cell death pathways (TP53), which is associated a with high mortality. To this end, our goal was to explore epigenetic regulation of cerebellar granule neuron differentiation in medulloblastoma cells. Key regulators were discovered using chromatin immunoprecipitation with high-throughput sequencing. DNA-bound protein and chromatin protein modifications were investigated across all genes. We discovered that Ezh2-mediated tri-methylation of the H3 histone (H3K27me3), occurred on more than half of the 787 genes whose transcription normally increases as granule neurons terminally differentiate. Conditional knockout of Ezh2 led to early initiation of differentiation in granule neuron precursors (GNPs), but only after cell cycle exit had occurred. Similarly, in MB cells, neuronal differentiation could be induced by preventing H3K27me3 modifications using an Ezh2 inhibitor (UNC1999), but only when UNC1999 was combined with forced cell cycle exit driven by a CDK4/6 inhibitor (Palbociclib). Ezh2 emerges as a powerful restraint upon post-mitotic differentiation during normal GNP development and combination of Ezh2 inhibition with cell cycle exit leads to MB cell differentiation.
Collapse
Affiliation(s)
- James Purzner
- Division of Neurosurgery, Department of Surgery, Queen’s University, Kingston, ON
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Alexander S. Brown
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- EditCo Bio, Redwood City, CA
| | - Teresa Purzner
- Division of Neurosurgery, Department of Surgery, Queen’s University, Kingston, ON
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Lauren Ellis
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA
| | - Sara Broski
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Nura Bio, South San Francisco, CA
| | - Ulrike Litzenburger
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Therapeutic Oncology Research Lab Head, Nuvisan Pharma, Berlin, Germany
| | | | | | - Xin Wang
- Clinician-Scientist Training Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON
| | - Michael D. Taylor
- Pediatric Brain Tumor Research Program, Texas Children’s Hospital, Houston, TX
| | - Yoon-Jae Cho
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon USA
| | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Matthew P. Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
3
|
Terao R, Sohn BS, Yamamoto T, Lee TJ, Colasanti J, Pfeifer CW, Lin JB, Santeford A, Yamaguchi S, Yoshida M, Apte RS. Cholesterol Accumulation Promotes Photoreceptor Senescence and Retinal Degeneration. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 39167399 PMCID: PMC11343002 DOI: 10.1167/iovs.65.10.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose Dysregulated cholesterol metabolism is critical in the pathogenesis of AMD. Cellular senescence contributes to the development of numerous age-associated diseases. In this study, we investigated the link between cholesterol burden and the cellular senescence of photoreceptors. Methods Retinas from rod-specific ATP binding cassette subfamily A member 1 (Abca1) and G member 1 (Abcg1) (Abca1/g1-rod/-rod) knockout mice fed with a high-fat diet were analyzed for the signs of cellular senescence. Real-time quantitative PCR and immunofluorescence were used to characterize the senescence profile of the retina and cholesterol-treated photoreceptor cell line (661W). Inducible elimination of p16(Ink4a)-positive senescent cells (INK-ATTAC) mice or the administration of senolytic drugs (dasatinib and quercetin: D&Q) were used to examine the impact of senolytics on AMD-like phenotypes in Abca1/g1-rod/-rod retina. Results Increased accumulation of senescent cells as measured by markers of cellular senescence was found in Abca1/g1-rod/-rod retina. Exogenous cholesterol also induced cellular senescence in 661W cells. Selective elimination of senescent cells in Abca1/g1-rod/-rod;INK-ATTAC mice or by administration of D&Q improved visual function, lipid accumulation in retinal pigment epithelium, and Bruch's membrane thickening. Conclusions Cholesterol accumulation promotes cellular senescence in photoreceptors. Eliminating senescent photoreceptors improves visual function in a model of retinal neurodegeneration, and senotherapy offers a novel therapeutic avenue for further investigation.
Collapse
Affiliation(s)
- Ryo Terao
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Brian S. Sohn
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Taku Yamamoto
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Tae Jun Lee
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jason Colasanti
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Charles W. Pfeifer
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Joseph B. Lin
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Andrea Santeford
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Shinobu Yamaguchi
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mitsukuni Yoshida
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
4
|
Rao S, He Z, Wang Z, Yin H, Hu X, Tan Y, Wan T, Zhu H, Luo Y, Wang X, Li H, Wang Z, Hu X, Hong C, Wang Y, Luo M, Du W, Qian Y, Tang S, Xie H, Chen C. Extracellular vesicles from human urine-derived stem cells delay aging through the transfer of PLAU and TIMP1. Acta Pharm Sin B 2024; 14:1166-1186. [PMID: 38487008 PMCID: PMC10935484 DOI: 10.1016/j.apsb.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 03/17/2024] Open
Abstract
Aging increases the risks of various diseases and the vulnerability to death. Cellular senescence is a hallmark of aging that contributes greatly to aging and aging-related diseases. This study demonstrates that extracellular vesicles from human urine-derived stem cells (USC-EVs) efficiently inhibit cellular senescence in vitro and in vivo. The intravenous injection of USC-EVs improves cognitive function, increases physical fitness and bone quality, and alleviates aging-related structural changes in different organs of senescence-accelerated mice and natural aging mice. The anti-aging effects of USC-EVs are not obviously affected by the USC donors' ages, genders, or health status. Proteomic analysis reveals that USC-EVs are enriched with plasminogen activator urokinase (PLAU) and tissue inhibitor of metalloproteinases 1 (TIMP1). These two proteins contribute importantly to the anti-senescent effects of USC-EVs associated with the inhibition of matrix metalloproteinases, cyclin-dependent kinase inhibitor 2A (P16INK4a), and cyclin-dependent kinase inhibitor 1A (P21cip1). These findings suggest a great potential of autologous USC-EVs as a promising anti-aging agent by transferring PLAU and TIMP1 proteins.
Collapse
Affiliation(s)
- Shanshan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Zehui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Zun Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
- Xiangya School of Nursing, Central South University, Changsha 410013, China
| | - Hao Yin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Xiongke Hu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
- Department of Pediatric Orthopedics, Hunan Children's Hospital, University of South China, Changsha 410007, China
| | - Yijuan Tan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Tengfei Wan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Hao Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Yi Luo
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Xin Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Hongming Li
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chungu Hong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Yiyi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Mingjie Luo
- Xiangya School of Nursing, Central South University, Changsha 410013, China
- School of Nursing, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Wei Du
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuxuan Qian
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Siyuan Tang
- Xiangya School of Nursing, Central South University, Changsha 410013, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunyuan Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| |
Collapse
|
5
|
Chen X, Walton K, Brodaty H, Chalton K. Polyphenols and Diets as Current and Potential Nutrition Senotherapeutics in Alzheimer's Disease: Findings from Clinical Trials. J Alzheimers Dis 2024; 101:S479-S501. [PMID: 38875032 DOI: 10.3233/jad-231222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Cellular senescence, a hallmark of aging, plays an important role in age-related conditions among older adults. Targeting senescent cells and its phenotype may provide a promising strategy to delay the onset or progression of Alzheimer's disease (AD). In this review article, we investigated efficacy and safety of nutrition senotherapy in AD, with a focus on the role of polyphenols as current and potential nutrition senotherapeutic agents, as well as relevant dietary patterns. Promising results with neuroprotective effects of senotherapeutic agents such as quercetin, resveratrol, Epigallocatechin-gallate, curcumin and fisetin were reported from preclinical studies. However, in-human trials remain limited, and findings were inconclusive. In future, nutrition senotherapeutic agents should be studied both individually and within dietary patterns, through the perspective of cellular senescence and AD. Further studies are warranted to investigate bioavailability, dosing regimen, long term effects of nutrition senotherapy and provide better understanding of the underlying mechanisms. Collaboration between researchers needs to be established, and methodological limitations of current studies should be addressed.
Collapse
Affiliation(s)
- Xi Chen
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Kensington, NSW, Australia
| | - Karen Walton
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Kensington, NSW, Australia
| | - Karen Chalton
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
6
|
Pandics T, Major D, Fazekas-Pongor V, Szarvas Z, Peterfi A, Mukli P, Gulej R, Ungvari A, Fekete M, Tompa A, Tarantini S, Yabluchanskiy A, Conley S, Csiszar A, Tabak AG, Benyo Z, Adany R, Ungvari Z. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. GeroScience 2023; 45:3381-3408. [PMID: 37688657 PMCID: PMC10643494 DOI: 10.1007/s11357-023-00913-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
The aging population worldwide is facing a significant increase in age-related non-communicable diseases, including cardiovascular and brain pathologies. This comprehensive review paper delves into the impact of the exposome, which encompasses the totality of environmental exposures, on unhealthy aging. It explores how environmental factors contribute to the acceleration of aging processes, increase biological age, and facilitate the development and progression of a wide range of age-associated diseases. The impact of environmental factors on cognitive health and the development of chronic age-related diseases affecting the cardiovascular system and central nervous system is discussed, with a specific focus on Alzheimer's disease, Parkinson's disease, stroke, small vessel disease, and vascular cognitive impairment (VCI). Aging is a major risk factor for these diseases. Their pathogenesis involves cellular and molecular mechanisms of aging such as increased oxidative stress, impaired mitochondrial function, DNA damage, and inflammation and is influenced by environmental factors. Environmental toxicants, including ambient particulate matter, pesticides, heavy metals, and organic solvents, have been identified as significant contributors to cardiovascular and brain aging disorders. These toxicants can inflict both macro- and microvascular damage and many of them can also cross the blood-brain barrier, inducing neurotoxic effects, neuroinflammation, and neuronal dysfunction. In conclusion, environmental factors play a critical role in modulating cardiovascular and brain aging. A deeper understanding of how environmental toxicants exacerbate aging processes and contribute to the pathogenesis of neurodegenerative diseases, VCI, and dementia is crucial for the development of preventive strategies and interventions to promote cardiovascular, cerebrovascular, and brain health. By mitigating exposure to harmful environmental factors and promoting healthy aging, we can strive to reduce the burden of age-related cardiovascular and brain pathologies in the aging population.
Collapse
Affiliation(s)
- Tamas Pandics
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Public Health Laboratory, National Public Health Centre, Budapest, Hungary
- Department of Public Health Siences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Peterfi
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Tompa
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam G Tabak
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, H-1052, Hungary
| | - Roza Adany
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
- Epidemiology and Surveillance Centre, Semmelweis University, 1085, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Lopes LA, Davenport C, Ramos Torres E, Chlebowski A, Mikami A, Raber J, Ruth Torres E, Kisby G. Neuropathological Examination of Mice Chronically Exposed to Secondhand Smoke. Mil Med 2023; 188:575-583. [PMID: 37948264 PMCID: PMC10637311 DOI: 10.1093/milmed/usad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/28/2023] [Accepted: 06/27/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Around 21.6-35% of military personnel are smokers, while 12.26% of them have been regularly exposed to second-hand smoke (SHS). Second-hand smoke is considered an important risk factor for neurological diseases because it can induce oxidative stress, DNA damage, and disrupt DNA repair pathways. MATERIAL AND METHODS The brain of air (sham) or SHS exposed mice was cryoperserved, sectioned, and placed on a glass slide before immunoprobing them with antibodies to observe for oxidative DNA damage (8-oxoG), oxidative DNA repair (8-oxoguanine DNA glycosylase 1, Ogg1; apurinic/apyrimidinic endonuclease, Ape1), and inflammatory (glial fibrillary acidic protein) proteins. RESULTS Nissl staining of the prefrontal cortex (PFCTX) revealed the presence of dark, shrunken cells, hippocampal thinning, and the presence of activated astrocytes in SHS exposed mice. 8-oxoG staining was also more prominent in the PFCTX and hippocampus (HIPP) of SHS exposed mice. Ogg1 staining was reduced in the PFCTX and CA3 hippocampal neurons of SHS exposed mice, whereas it was more prominent in CA1 and CA4 hippocampal neurons. In contrast, Ape1 staining was more prominent in the PFCTX and the HIPP of SHS exposed mice. CONCLUSIONS These studies demonstrate that oxidative DNA damage (8-oxoG) was elevated and oxidative DNA repair (Ape1 and Ogg1) was altered in the brain of SHS exposed mice. In addition, activated astrocytes (i.e., glial fibrillary acidic protein) were also observed in the brain of SHS exposed mice. Therefore, SHS induces both oxidative DNA damage and repair as well as inflammation as possible underlying mechanism(s) of the cognitive decline and metabolic changes that were observed in chronically exposed mice. A better understanding of how chronic exposure to SHS induces cognitive dysfunction among military personnel could help improve the combat readiness of U.S. soldiers as well as reduce the financial burden on the DOD and veterans' families.
Collapse
Affiliation(s)
- Leilani A Lopes
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Lebanon, OR 97355, USA
| | - Conor Davenport
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Lebanon, OR 97355, USA
| | - Estefania Ramos Torres
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Lebanon, OR 97355, USA
| | - Anna Chlebowski
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Lebanon, OR 97355, USA
| | - Anna Mikami
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Lebanon, OR 97355, USA
| | - Jacob Raber
- Department of Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Eileen Ruth Torres
- Department of Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Glen Kisby
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Lebanon, OR 97355, USA
| |
Collapse
|
8
|
Naviaux RK. Mitochondrial and metabolic features of salugenesis and the healing cycle. Mitochondrion 2023; 70:131-163. [PMID: 37120082 DOI: 10.1016/j.mito.2023.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Pathogenesis and salugenesis are the first and second stages of the two-stage problem of disease production and health recovery. Salugenesis is the automatic, evolutionarily conserved, ontogenetic sequence of molecular, cellular, organ system, and behavioral changes that is used by living systems to heal. It is a whole-body process that begins with mitochondria and the cell. The stages of salugenesis define a circle that is energy- and resource-consuming, genetically programmed, and environmentally responsive. Energy and metabolic resources are provided by mitochondrial and metabolic transformations that drive the cell danger response (CDR) and create the three phases of the healing cycle: Phase 1-Inflammation, Phase 2-Proliferation, and Phase 3-Differentiation. Each phase requires a different mitochondrial phenotype. Without different mitochondria there can be no healing. The rise and fall of extracellular ATP (eATP) signaling is a key driver of the mitochondrial and metabolic reprogramming required to progress through the healing cycle. Sphingolipid and cholesterol-enriched membrane lipid rafts act as rheostats for tuning cellular sensitivity to purinergic signaling. Abnormal persistence of any phase of the CDR inhibits the healing cycle, creates dysfunctional cellular mosaics, causes the symptoms of chronic disease, and accelerates the process of aging. New research reframes the rising tide of chronic disease around the world as a systems problem caused by the combined action of pathogenic triggers and anthropogenic factors that interfere with the mitochondrial functions needed for healing. Once chronic pain, disability, or disease is established, salugenesis-based therapies will start where pathogenesis-based therapies end.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, and Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, MC#8467, San Diego, CA 92103.
| |
Collapse
|
9
|
Kosagisharaf JR, Hegde ML. Introduction to The Special Issue: Novel Molecular Pathways and Therapeutic Challenges in Neurodegenerative Diseases. J Alzheimers Dis 2023; 94:S3-S7. [PMID: 37393511 PMCID: PMC10473067 DOI: 10.3233/jad-230622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Affiliation(s)
- Jagannatha Rao Kosagisharaf
- Koneru Lakshmaiah Education Foundation (KLEF) Deemed to be University, Vaddeswaram, Andhra Pradesh, India
- SNI, INDICASAT AIP, Panama
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Division of DNA Repair Research, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|