1
|
Piga G, Fadda L, Borghero G, Maccabeo A, Pala F, Murru MR, Giglio S, Puligheddu M, Floris G. Semantic behavioral variant frontotemporal dementia and semantic dementia associated with TARDBP mutations. Amyotroph Lateral Scler Frontotemporal Degener 2024:1-10. [PMID: 39670434 DOI: 10.1080/21678421.2024.2439448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Frontotemporal dementia (FTD) is a highly heritable group of neurodegenerative disorders, characterized by varying clinical and pathological features. TARDBP gene has been described worldwide within the FTD/ALS spectrum but its association with right and left temporal variant of FTD (tvFTD) is still unclear. This study aimed to reclassify a Sardinian FTD cohort according to proposed criteria for the semantic behavioral variant FTD (sbvFTD), explore TARDBP mutations' association with tvFTD, and review related literature. From our FTD cohort of 94 patients, ten fulfilled the criteria for sbvFTD. Therefore, in light of the diagnostic reclassification carried out, we describe the largest series of unrelated patients with TARDBP p.A382T missense mutation, including four new cases of tvFTD: two sbvFTD and two svPPA, exhibiting semantic and behavioral disorders and showing predominant right and left anterior temporal lobe involvement, respectively. We present for the first time two sbvFTD cases carrying the pA382T TARDBP mutation. Comparison with C9orf72 and non-mutated patients revealed lower age at onset (p = 0.006), and a higher prevalence of tvFTD, particularly sbvFTD (p < 0.001), and motor neuron disease in TARDBP carriers (p < 0.001). Our findings along with a review of the literature highlighted TARDBP mutations' association with sbvFTD and semantic dementia, suggesting a genetic role in temporal variants of FTD and emphasizing the need for TARDBP mutation screening in these cases. Reclassifying FTD cohorts, including the sbvFTD phenotype, could aid in better defining the clinical spectrum of tvFTD and guide differential diagnosis across different FTD populations with TARDBP or other FTD-related mutations.
Collapse
Affiliation(s)
- Giuseppe Piga
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, University of Cagliari, Cagliari, Italy
| | - Laura Fadda
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, University of Cagliari, Cagliari, Italy
| | - Giuseppe Borghero
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, University of Cagliari, Cagliari, Italy
| | - Alessandra Maccabeo
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, University of Cagliari, Cagliari, Italy
| | - Francesca Pala
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, University of Cagliari, Cagliari, Italy
| | - Maria Rita Murru
- Multiple Sclerosis Centre, Binaghi Hospital, ASL Cagliari, University of Cagliari, Cagliari, Italy, and
| | - Sabrina Giglio
- Medical Genetics, Binaghi Hospital, ASL Cagliari, University of Cagliari, Cagliari, Italy
| | - Monica Puligheddu
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, University of Cagliari, Cagliari, Italy
| | - Gianluca Floris
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
2
|
He S, He XX, Yang HQ, Zhang JW, Chen S. Two new cases with the UBQLN2 gene mutation in Han Chinese. Neurol Sci 2024; 45:5047-5051. [PMID: 38943019 DOI: 10.1007/s10072-024-07674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Variations in the UBQLN2 gene are associated with a group of diseases with X-linked dominant inheritance and clinical phenotypes of amyotrophic lateral sclerosis (ALS) and/or frontal temporal lobe dementia (FTD). Cases with UBQLN2 variations have been rarely reported worldwide. The reported cases exhibit strong clinical heterogeneity. Here, we report two adult-onset cases with UBQLN2 variations in Han Chinese. Whole exome sequencing revealed the hemizygous P506S (c.1516C > T) and the heterozygous P509S variation (c.1525C > T), both of which were located within the hotspot mutation region. The patient with the P506S variation was a 24-year-old male. The clinical feature was spastic paraplegia without lower motor neuron damage. The patient's mother was an asymptomatic heterozygote carrier with skewed X-chromosome inactivation. The patient with the P509S variation was a 63-year-old female. Clinical features included ALS and parkinsonism. 18F-fluorodopa PET-CT revealed presynaptic dopaminergic deficits in bilateral posterior putamen. These cases further highlight the clinical heterogeneity of UBQLN2 cases.
Collapse
Affiliation(s)
- Shuang He
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, China
| | - Xin-Xin He
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, China
| | - Hong-Qi Yang
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, China
| | - Jie-Wen Zhang
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, China.
| | - Shuai Chen
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, China.
| |
Collapse
|
3
|
Nan H, Kim YJ, Chu M, Li D, Li J, Jiang D, Wu Y, Ohtsuka T, Wu L. Genetic and clinical landscape of Chinese frontotemporal dementia: dominance of TBK1 and OPTN mutations. Alzheimers Res Ther 2024; 16:127. [PMID: 38872230 PMCID: PMC11170894 DOI: 10.1186/s13195-024-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Our study aims to evaluate the genetic and phenotypic spectrum of Frontotemporal dementia (FTD) gene variant carriers in Chinese populations, investigate mutation frequencies, and assess the functional properties of TBK1 and OPTN variants. METHODS Clinically diagnosed FTD patients underwent genetic analysis through exome sequencing, repeat-primed polymerase chain reaction, and Sanger sequencing. TBK1 and OPTN variants were biologically characterized in vitro using immunofluorescence, immunoprecipitation, and immunoblotting analysis. The frequencies of genes implicated in FTD in China were analyzed through a literature review and meta-analysis. RESULTS Of the 261 Chinese FTD patients, 61 (23.4%) carried potential causative variants in FTD-related genes, including MAPT (n = 17), TBK1 (n = 7), OPTN (n = 6), GRN (n = 6), ANXA11 (n = 4), CHMP2B (n = 3), C9orf72 GGGGCC repeats (n = 2), CYLD (n = 2), PRNP (n = 2), SQSTM1 (n = 2), TARDBP (n = 2), VCP (n = 1), CCNF (n = 1), CHCHD10 (n = 1), SIGMAR1 (n = 1), CHCHD2 (n = 1), FUS (n = 1), TMEM106B (n = 1), and UBQLN2 (n = 1). 29 variants can be considered novel, including the MAPT p.D54N, p.E342K, p.R221P, p.T263I, TBK1 p.E696G, p.I37T, p.E232Q, p.S398F, p.T78A, p.Q150P, p.W259fs, OPTN p.R144G, p.F475V, GRN p.V473fs, p.C307fs, p.R101fs, CHMP2B p.K6N, p.R186Q, ANXA11 p.Q155*, CYLD p.T157I, SQSTM1 p.S403A, UBQLN2 p.P509H, CCNF p.S160N, CHCHD10 p.A8T, SIGMAR1 p.S117L, CHCHD2 p.P53fs, FUS p.S235G & p.S236G, and TMEM106B p.L144V variants. Patients with TBK1 and OPTN variants presented with heterogeneous clinical phenotypes. Functional analysis demonstrated that TBK1 I37T and E232Q mutants showed decreased autophosphorylation, and the OPTN phosphorylation was reduced by the TBK1 I37T mutant. The OPTN-TBK1 complex formation was enhanced by the TBK1 E696G mutant, while OPTN R144G and F475V mutants exhibited reduced recruitment to autophagosomes compared to the wild-type. The overall frequency of TBK1 and OPTN in Chinese FTD patients was 2.0% and 0.3%, respectively. CONCLUSIONS Our study demonstrates the extensive genetic and phenotypic heterogeneity of Chinese FTD patients. TBK1 mutations are the second most frequent cause of clinical FTD after MAPT in the Chinese.
Collapse
Affiliation(s)
- Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yeon-Jeong Kim
- Department of Biochemistry, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Dan Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Jieying Li
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yiming Wu
- The Experimental High School Attached to Beijing Normal University, Beijing, 100032, China
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan.
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
4
|
Liu C, Dong L, Wang J, Li J, Huang X, Lei D, Mao C, Chu S, Sha L, Xu Q, Peng B, Cui L, Gao J. GRN mutation spectrum and genotype-phenotype correlation in Chinese dementia patients: data from PUMCH dementia cohort. J Med Genet 2024; 61:543-548. [PMID: 38228392 DOI: 10.1136/jmg-2023-109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND METHODS: The GRN mutations, especially of the loss of function type, are causative of frontotemporal dementia (FTD). However, several GRN variants can be found in other neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease. So far, there have been over 300 GRN mutations reported globally. However, the genetic spectrum and phenotypic characteristics have not been fully elucidated in Chinese population.The participants were from the dementia cohort of Peking Union Medical College Hospital (n=1945). They received history inquiry, cognitive evaluation, brain imaging and exome sequencing. The dementia subjects carrying the rare variants of the GRN were included in this study. Those with the pathogenic or likely pathogenic variants of other dementia-related genes were excluded. RESULTS 14 subjects carried the rare variants of GRN. They were clinically diagnosed with behavioural variant of FTD (n=2), non-fluent/agrammatic variant primary progressive aphasia (PPA, n=3), semantic variant PPA (n=1), AD (n=6) and mixed dementia (n=2). 13 rare variants of GRN were found, including 6 novel variants (W49X, S226G, M152I, A91E, G79E and A303S). The most prevalent symptom was amnesia (85.7%, 12/14), followed by psychiatric and behavioural disorder (78.6%, 11/14). In terms of lobar atrophy, temporal atrophy/hypometabolism was the most common (85.7%, 12/14), followed by parietal atrophy/hypometabolism (78.6%, 11/14). CONCLUSION The novel GRN variants identified in this study contribute to enrich the GRN mutation repertoire. There is phenotypic similarity and diversity among Chinese patients with the GRN mutations.
Collapse
Affiliation(s)
- Caiyan Liu
- Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Liling Dong
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Jie Wang
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Jie Li
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Xinying Huang
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Dan Lei
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Chenhui Mao
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Shanshan Chu
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Longze Sha
- Peking Union Medical College, Beijing, China
| | - Qi Xu
- Peking Union Medical College, Beijing, China
| | - Bin Peng
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| |
Collapse
|
5
|
Belder CRS, Marshall CR, Jiang J, Mazzeo S, Chokesuwattanaskul A, Rohrer JD, Volkmer A, Hardy CJD, Warren JD. Primary progressive aphasia: six questions in search of an answer. J Neurol 2024; 271:1028-1046. [PMID: 37906327 PMCID: PMC10827918 DOI: 10.1007/s00415-023-12030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023]
Abstract
Here, we review recent progress in the diagnosis and management of primary progressive aphasia-the language-led dementias. We pose six key unanswered questions that challenge current assumptions and highlight the unresolved difficulties that surround these diseases. How many syndromes of primary progressive aphasia are there-and is syndromic diagnosis even useful? Are these truly 'language-led' dementias? How can we diagnose (and track) primary progressive aphasia better? Can brain pathology be predicted in these diseases? What is their core pathophysiology? In addition, how can primary progressive aphasia best be treated? We propose that pathophysiological mechanisms linking proteinopathies to phenotypes may help resolve the clinical complexity of primary progressive aphasia, and may suggest novel diagnostic tools and markers and guide the deployment of effective therapies.
Collapse
Affiliation(s)
- Christopher R S Belder
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, 8 - 11 Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, University College London, London, UK
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Charles R Marshall
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Jessica Jiang
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, 8 - 11 Queen Square, London, WC1N 3BG, UK
| | - Salvatore Mazzeo
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, 8 - 11 Queen Square, London, WC1N 3BG, UK
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Anthipa Chokesuwattanaskul
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, 8 - 11 Queen Square, London, WC1N 3BG, UK
- Division of Neurology, Department of Internal Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Cognitive Clinical and Computational Neuroscience Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, 8 - 11 Queen Square, London, WC1N 3BG, UK
| | - Anna Volkmer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, 8 - 11 Queen Square, London, WC1N 3BG, UK
| | - Chris J D Hardy
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, 8 - 11 Queen Square, London, WC1N 3BG, UK
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, 8 - 11 Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
6
|
Chu S, Xie X, Payan C, Stochaj U. Valosin containing protein (VCP): initiator, modifier, and potential drug target for neurodegenerative diseases. Mol Neurodegener 2023; 18:52. [PMID: 37545006 PMCID: PMC10405438 DOI: 10.1186/s13024-023-00639-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.
Collapse
Affiliation(s)
- Siwei Chu
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Xinyi Xie
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Carla Payan
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada.
- Quantitative Life Sciences Program, McGill University, Montreal, Canada.
| |
Collapse
|
7
|
Chu M, Nan H, Jiang D, Liu L, Huang A, Wang Y, Wu L. Progranulin Gene Mutations in Chinese Patients with Frontotemporal Dementia: A Case Report and Literature Review. J Alzheimers Dis 2023; 93:225-234. [PMID: 36970912 DOI: 10.3233/jad-230052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Progranulin (GRN) mutations in frontotemporal dementia (FTD) have been less frequently reported in China than in Western countries. OBJECTIVE This study reports a novel GRN mutation and summarizes the genetic and clinical features of patients with GRN mutations in China. METHODS Comprehensive clinical, genetic, and neuroimaging examinations were conducted on a 58-year-old female patient diagnosed with semantic variant primary progressive aphasia. A literature review was also conducted and clinical and genetic features of patients with GRN mutations in China were summarized. RESULTS Neuroimaging revealed marked lateral atrophy and hypometabolism in the left frontal, temporal, and parietal lobes. The patient was negative for pathologic amyloid and tau deposition by positron emission tomography. A novel heterozygous 45-bp deletion (c.1414-14_1444delCCCTTCCCCGCCAGGCTGTGTGCTGCGAGGATCGCCAGCACTGCT) was detected by whole-exome sequencing of the patient's genomic DNA. Nonsense-mediated mRNA decay was presumed to be involved in the degradation of the mutant gene transcript. The mutation was deemed pathogenic according to American College of Medical Genetics and Genomics criteria. The patient had a reduced plasma GRN level. In the literature, there were reports of 13 Chinese patients - mostly female - with GRN mutations; the prevalence was 1.2% -2.6% and patients mostly had early disease onset. CONCLUSION Our findings expand the mutation profile of GRN in China, which can aid the diagnosis and treatment of FTD.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Anqi Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yihao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|