1
|
Kwon HJ, Santhosh D, Huang Z. A novel monomeric amyloid β-activated signaling pathway regulates brain development via inhibition of microglia. eLife 2024; 13:RP100446. [PMID: 39635981 PMCID: PMC11620749 DOI: 10.7554/elife.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Amyloid β (Aβ) forms aggregates in the Alzheimer's disease brain and is well known for its pathological roles. Recent studies show that it also regulates neuronal physiology in the healthy brain. Whether Aβ also regulates glial physiology in the normal brain, however, has remained unclear. In this article, we describe the discovery of a novel signaling pathway activated by the monomeric form of Aβ in vitro that plays essential roles in the regulation of microglial activity and the assembly of neocortex during mouse development in vivo. We find that activation of this pathway depends on the function of amyloid precursor and the heterotrimeric G protein regulator Ric8a in microglia and inhibits microglial immune activation at transcriptional and post-transcriptional levels. Genetic disruption of this pathway during neocortical development results in microglial dysregulation and excessive matrix proteinase activation, leading to basement membrane degradation, neuronal ectopia, and laminar disruption. These results uncover a previously unknown function of Aβ as a negative regulator of brain microglia and substantially elucidate the underlying molecular mechanisms. Considering the prominence of Aβ and neuroinflammation in the pathology of Alzheimer's disease, they also highlight a potentially overlooked role of Aβ monomer depletion in the development of the disease.
Collapse
Affiliation(s)
- Hyo Jun Kwon
- Departments of Neurology and Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Devi Santhosh
- Departments of Neurology and Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Zhen Huang
- Departments of Neurology and Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
2
|
Shen Y, Liu F, Zhang M. Therapeutic potential of plant-derived natural compounds in Alzheimer's disease: Targeting microglia-mediated neuroinflammation. Biomed Pharmacother 2024; 178:117235. [PMID: 39094545 DOI: 10.1016/j.biopha.2024.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Microglia are resident immune cells of the central nervous system (CNS) with roles in sensing, housekeeping, and defense. Exploring the role of microglia in the occurrence and development of Alzheimer's disease (AD) and the possible therapeutic mechanism of plant-derived natural compounds (PDNCs) that regulate microglia-associated neuroinflammation may potentially help in elucidating the pathogenesis of AD and provide novel insights for its treatment. This review explores the role of abnormal microglial activation and its dominant neuroinflammatory response, as well as the activation of their target receptors and signaling pathways in AD pathogenesis. Additionally, we report an update on the potential pharmacological mechanisms of multiple PDNCs in modulating microglia-associated neuroinflammation in AD treatment. Dysregulated activation of microglial receptors and their downstream pathways impaired immune homeostasis in animal models of AD. Multiple signaling pathways, such as mitogen-activated protein kinase (MAPK), nuclear factor kappa light chain enhancer of activated B cells (NF-κB), and Toll-like receptors, play important roles in microglial activation and can exacerbate microglia-mediated neuroinflammation. PDNCs, such as magnolol, stigmasterol, matrine, naringenin, naringin, and resveratrol, can delay the progression of AD by inhibiting the proinflammatory receptors of microglia, activating its anti-inflammatory receptors, regulating the receptors related to β-amyloid (Aβ) clearance, reversing immune dysregulation, and maintaining the immune homeostasis of microglial downstream pathways. This review summarizes the mechanisms by which microglia cause chronic inflammation in AD and evaluates the beneficial effects of PDNCs on immune regulation in AD by regulating microglial receptors and their downstream pathways.
Collapse
Affiliation(s)
- Yanyan Shen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, China.
| | - Fang Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, China
| | - Mingjie Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
3
|
Navolokin N, Adushkina V, Zlatogorskaya D, Telnova V, Evsiukova A, Vodovozova E, Eroshova A, Dosadina E, Diduk S, Semyachkina-Glushkovskaya O. Promising Strategies to Reduce the SARS-CoV-2 Amyloid Deposition in the Brain and Prevent COVID-19-Exacerbated Dementia and Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:788. [PMID: 38931455 PMCID: PMC11206883 DOI: 10.3390/ph17060788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic, caused by infection with the SARS-CoV-2 virus, is associated with cognitive impairment and Alzheimer's disease (AD) progression. Once it enters the brain, the SARS-CoV-2 virus stimulates accumulation of amyloids in the brain that are highly toxic to neural cells. These amyloids may trigger neurological symptoms in COVID-19. The meningeal lymphatic vessels (MLVs) play an important role in removal of toxins and mediate viral drainage from the brain. MLVs are considered a promising target to prevent COVID-19-exacerbated dementia. However, there are limited methods for augmentation of MLV function. This review highlights new discoveries in the field of COVID-19-mediated amyloid accumulation in the brain associated with the neurological symptoms and the development of promising strategies to stimulate clearance of amyloids from the brain through lymphatic and other pathways. These strategies are based on innovative methods of treating brain dysfunction induced by COVID-19 infection, including the use of photobiomodulation, plasmalogens, and medicinal herbs, which offer hope for addressing the challenges posed by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Nikita Navolokin
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Daria Zlatogorskaya
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Arina Evsiukova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Anna Eroshova
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Elina Dosadina
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Sergey Diduk
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
- Research Institute of Carcinogenesis of the N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Kashirskoe Shosse 24, 115522 Moscow, Russia
| | | |
Collapse
|
4
|
Oriá RB, Smith CJ, Ashford JW, Vitek MP, Guerrant RL. Pros and Cons of APOE4 Homozygosity and Effects on Neuroplasticity, Malnutrition, and Infections in Early Life Adversity, Alzheimer's Disease, and Alzheimer's Prevention. J Alzheimers Dis 2024; 100:S179-S185. [PMID: 39093076 DOI: 10.3233/jad-240888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Fortea et al.'s. (2024) recent data analysis elegantly calls attention to familial late-onset Alzheimer's disease (AD) with APOE4 homozygosity. The article by Grant (2024) reviews the factors associated with AD, particularly the APOE genotype and lifestyle, and the broad implications for prevention, both for individuals with the lifestyles associated with living in resource-rich countries and for those enduring environmental adversity in poverty settings, including high exposure to enteric pathogens and precarious access to healthcare. Grant discusses the issue of APOE genotype and its implications for the benefits of lifestyle modifications. This review highlights that bearing APOE4 could constitute an evolutionary benefit in coping with heavy enteric infections and malnutrition early in life in the critical formative first two years of brain development. However, the critical issue may be that this genotype could be a health concern under shifts in lifestyle and unhealthy diets during aging, leading to severe cognitive impairments and increased risk of AD. This commentary supports the discussions of Grant and the benefits of improving lifestyle for decreasing the risks for AD while providing further understanding and modelling of the early life benefits of APOE4 amidst adversity. This attention to the pathophysiology of AD should help further elucidate these critical, newly appreciated pathogenic pathways for developing approaches to the prevention and management in the context of the APOE genetic variations associated with AD.
Collapse
Affiliation(s)
- Reinaldo B Oriá
- Department of Morphology, Laboratory of Tissue Healing, Ontogeny, and Nutrition, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Carr J Smith
- Society for Brain Mapping and Therapeutics, Pacific Palisades, CA, USA
| | - J Wesson Ashford
- War Related Illness and Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Michael P Vitek
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Richard L Guerrant
- Department of Medicine, Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Huang Z. Evidence that Alzheimer's Disease Is a Disease of Competitive Synaptic Plasticity Gone Awry. J Alzheimers Dis 2024; 99:447-470. [PMID: 38669548 PMCID: PMC11119021 DOI: 10.3233/jad-240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Mounting evidence indicates that a physiological function of amyloid-β (Aβ) is to mediate neural activity-dependent homeostatic and competitive synaptic plasticity in the brain. I have previously summarized the lines of evidence supporting this hypothesis and highlighted the similarities between Aβ and anti-microbial peptides in mediating cell/synapse competition. In cell competition, anti-microbial peptides deploy a multitude of mechanisms to ensure both self-protection and competitor elimination. Here I review recent studies showing that similar mechanisms are at play in Aβ-mediated synapse competition and perturbations in these mechanisms underpin Alzheimer's disease (AD). Specifically, I discuss evidence that Aβ and ApoE, two crucial players in AD, co-operate in the regulation of synapse competition. Glial ApoE promotes self-protection by increasing the production of trophic monomeric Aβ and inhibiting its assembly into toxic oligomers. Conversely, Aβ oligomers, once assembled, promote the elimination of competitor synapses via direct toxic activity and amplification of "eat-me" signals promoting the elimination of weak synapses. I further summarize evidence that neuronal ApoE may be part of a gene regulatory network that normally promotes competitive plasticity, explaining the selective vulnerability of ApoE expressing neurons in AD brains. Lastly, I discuss evidence that sleep may be key to Aβ-orchestrated plasticity, in which sleep is not only induced by Aβ but is also required for Aβ-mediated plasticity, underlining the link between sleep and AD. Together, these results strongly argue that AD is a disease of competitive synaptic plasticity gone awry, a novel perspective that may promote AD research.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Milton NGN. SARS-CoV-2 amyloid, is COVID-19-exacerbated dementia an amyloid disorder in the making? FRONTIERS IN DEMENTIA 2023; 2:1233340. [PMID: 39081980 PMCID: PMC11285677 DOI: 10.3389/frdem.2023.1233340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2024]
|