1
|
Reshma A, Subramanian A, Kumarasamy V, Tamilanban T, Sekar M, Gan S, Subramaniyan V, Wong L, Rani N, Wu Y. Neurocognitive effects of proanthocyanidin in Alzheimer's disease: a systematic review of preclinical evidence. Braz J Med Biol Res 2024; 57:e13587. [PMID: 39504064 PMCID: PMC11540257 DOI: 10.1590/1414-431x2024e13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/17/2024] [Indexed: 11/08/2024] Open
Abstract
Cognitive disorders and dementia largely influence individual independence and orientation. Based on the Alzheimer's Disease International (ADI) estimation, approximately 75% of individuals with dementia are undiagnosed. In fact, in some low- and middle-income countries, the percentage is as high as 90%. In this systematic review, which is based on PRISMA guidelines, we aim to identify the mechanism of action of proanthocyanidin. Finding a natural product alternative as a potential nootropic can help increase the number of armamentariums against dementia and other cognitive impairments. In this preclinical research, we determined the effect of proanthocyanidins on Alzheimer's disease (AD) by searching electronic bibliographic databases like Scopus, Proquest, ScienceDirect, PubMed, and Google. There was no imposed time limit. However, the search was limited to only English articles. The review protocol is registered on PROSPERO as CRD42022356301. A population, intervention, control, and outcomes (PICO) technique was utilized for report inclusion, and all reports were assessed for risk of bias by using the SYRCLE's RoB tool. The article's bibliographic information, induction model, type of proanthocyanidins, animal strain/weight/age, and outcome measurements were acquired from ten papers and are reported here. Further analysis was validated and determined for the review. The included studies met the review's inclusion criteria and suggested that proanthocyanidins have a neurocognitive effect against AD. Additionally, the effectiveness of proanthocyanidins in reducing oxidative stress, acetylcholinesterase activity, amyloid beta, its efficacy in alleviating superoxide dismutase, cognitive properties, and in facilitating cholinergic transmission in various models of AD has been collectively observed in ten studies.
Collapse
Affiliation(s)
- A. Reshma
- Department of Pharmacology, SRM College of Pharmacy, SRM
Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu,
India
| | - A. Subramanian
- Department of Pharmacology, SRM College of Pharmacy, SRM
Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu,
India
| | - V. Kumarasamy
- Department of Parasitology & Medical Entomology, Faculty of
Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur,
Malaysia
| | - T. Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM
Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu,
India
- Department of Occupational Safety and Health, Faculty of Public
Health, Universitas Airlangga, Surabaya, Indonesia
- Faculty of Health and Life Sciences, INTI International
University, Nilai, Malaysia
- Department of Pharmacology, Faculty of Medicine, MAHSA
University, Bandar Saujana Putra, Selangor, Malaysia
| | - M. Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway,
Selangor, Malaysia
| | - S.H. Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway,
Selangor, Malaysia
| | - V. Subramaniyan
- Department of Medical Sciences, School of Medical and Life
Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - L.S. Wong
- Faculty of Health and Life Sciences, INTI International
University, Nilai, Malaysia
| | - N.N.I.M. Rani
- Faculty of Pharmacy and Health Sciences, Royal College of
Medicine Perak, Universiti Kuala Lumpur, Perak, Malaysia
| | - Y.S. Wu
- Sunway Microbiome Centre & Department of Biological
Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya,
Selangor, Malaysia
| |
Collapse
|
2
|
Anfray A, Schaeffer S, Hattori Y, Santisteban MM, Casey N, Wang G, Strickland M, Zhou P, Holtzman DM, Anrather J, Park L, Iadecola C. A cell-autonomous role for border-associated macrophages in ApoE4 neurovascular dysfunction and susceptibility to white matter injury. Nat Neurosci 2024; 27:2138-2151. [PMID: 39294490 DOI: 10.1038/s41593-024-01757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/07/2024] [Indexed: 09/20/2024]
Abstract
Apolipoprotein E4 (ApoE4), the strongest genetic risk factor for sporadic Alzheimer's disease, is also a risk factor for microvascular pathologies leading to cognitive impairment, particularly subcortical white matter injury. These effects have been attributed to alterations in the regulation of the brain blood supply, but the cellular source of ApoE4 and the underlying mechanisms remain unclear. In mice expressing human ApoE3 or ApoE4, we report that border-associated macrophages (BAMs), myeloid cells closely apposed to neocortical microvessels, are both sources and effectors of ApoE4 mediating the neurovascular dysfunction through reactive oxygen species. ApoE4 in BAMs is solely responsible for the increased susceptibility to oligemic white matter damage in ApoE4 mice and is sufficient to enhance damage in ApoE3 mice. The data unveil a new aspect of BAM pathobiology and highlight a previously unrecognized cell-autonomous role of BAM in the neurovascular dysfunction of ApoE4 with potential therapeutic implications.
Collapse
Affiliation(s)
- Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Samantha Schaeffer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Yorito Hattori
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Monica M Santisteban
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nicole Casey
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Michael Strickland
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Taylor X, Noristani HN, Fitzgerald GJ, Oluoch H, Babb N, McGathey T, Carter L, Hole JT, Lacor PN, DeMattos RB, Wang Y. Amyloid-β (Aβ) immunotherapy induced microhemorrhages are linked to vascular inflammation and cerebrovascular damage in a mouse model of Alzheimer's disease. Mol Neurodegener 2024; 19:77. [PMID: 39434125 PMCID: PMC11494988 DOI: 10.1186/s13024-024-00758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Anti-amyloid-β (Aβ) immunotherapy trials have revealed amyloid-related imaging abnormalities (ARIA) as the most prevalent and serious adverse events linked to pathological changes in cerebral vasculature. Recent studies underscore the critical involvement of perivascular macrophages and the infiltration of peripheral immune cells in regulating cerebrovascular damage. Specifically, Aβ antibodies engaged at cerebral amyloid angiopathy (CAA) deposits trigger perivascular macrophage activation and the upregulation of genes associated with vascular permeability. Nevertheless, further research is needed to understand the immediate downstream consequences of macrophage activation, potentially exacerbating CAA-related vascular permeability and microhemorrhages linked to Aβ immunotherapy. METHODS This study investigates immune responses induced by amyloid-targeting antibodies and CAA-induced microhemorrhages using RNA in situ hybridization, histology and digital spatial profiling in an Alzheimer's disease (AD) mouse model of microhemorrhage. RESULTS In the present study, we have demonstrated that bapineuzumab murine surrogate (3D6) induces profound vascular damage, leading to smooth muscle cell loss and blood-brain barrier (BBB) breakdown. In addition, digital spatial profiling (DSP) reveals that distinct immune responses contribute to vascular damage with peripheral immune responses and perivascular macrophage activation linked to smooth muscle cell loss and vascular fibrosis, respectively. Finally, RNA in situ hybridization identifies two distinct subsets of Trem2+ macrophages representing tissue-resident and monocyte-derived macrophages around vascular amyloid deposits. Overall, these findings highlight multifaceted roles of immune activation and vascular damage in driving the development of microhemorrhage. CONCLUSIONS In summary, our study has established a significant link between CAA-Aβ antibody immune complex formation, immune activation and vascular damage leading to smooth muscle cell loss. However, the full implications of this cascade on the development of microhemorrhages requires further exploration. Additional investigations are warranted to unravel the precise molecular mechanisms leading to microhemorrhage, the interplay of diverse immune populations and the functional roles played by various Trem2+ macrophage populations in response to Aβ immunotherapy.
Collapse
Affiliation(s)
- Xavier Taylor
- Lilly Research Laboratories, Neuroscience Discovery, Eli Lilly and Company, Indianapolis, 46225, IN, USA.
| | - Harun N Noristani
- Lilly Research Laboratories, Imaging Research and Development, Eli Lilly and Company, Philadelphia, PA, 19107, USA
| | - Griffin J Fitzgerald
- Lilly Research Laboratories, Neuroscience Discovery, Eli Lilly and Company, Indianapolis, 46225, IN, USA
| | - Herold Oluoch
- Lilly Research Laboratories, Neuroscience Discovery, Eli Lilly and Company, Indianapolis, 46225, IN, USA
| | - Nick Babb
- Lilly Research Laboratories, Neuroscience Discovery, Eli Lilly and Company, Indianapolis, 46225, IN, USA
| | - Tyler McGathey
- Lilly Research Laboratories, Neuroscience Discovery, Eli Lilly and Company, Indianapolis, 46225, IN, USA
| | - Lindsay Carter
- Lilly Research Laboratories, Neuroscience Discovery, Eli Lilly and Company, Indianapolis, 46225, IN, USA
| | - Justin T Hole
- Lilly Research Laboratories, Neuroscience Discovery, Eli Lilly and Company, Indianapolis, 46225, IN, USA
| | - Pascale N Lacor
- Lilly Research Laboratories, Imaging Research and Development, Eli Lilly and Company, Philadelphia, PA, 19107, USA
| | - Ronald B DeMattos
- Lilly Research Laboratories, Neuroscience Discovery, Eli Lilly and Company, Indianapolis, 46225, IN, USA
| | - Yaming Wang
- Lilly Research Laboratories, Neuroscience Discovery, Eli Lilly and Company, Indianapolis, 46225, IN, USA.
| |
Collapse
|
4
|
Castellani RJ, Jamshidi P. Cerebral amyloid-β-related angiitis and iatrogenic cerebral amyloid angiopathy-related vasculitis: Implications for amyloid-related imaging abnormalities. J Neuropathol Exp Neurol 2024; 83:890-892. [PMID: 38970388 DOI: 10.1093/jnen/nlae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Affiliation(s)
- Rudy J Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
5
|
Salloway SP, Schrag M, Saver JL. Heed the Warning Signs to Avoid Serious ARIA. Neurology 2024; 103:e209674. [PMID: 39121446 DOI: 10.1212/wnl.0000000000209674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Affiliation(s)
- Stephen P Salloway
- From the Alpert Medical School of Brown University (S.P.S.), Department of Neurology (M.S.), Vanderbilt University Medical Center, and Vanderbilt Brain Institute (J.L.S.), Vanderbilt University, Nashville, TN
| | - Matthew Schrag
- From the Alpert Medical School of Brown University (S.P.S.), Department of Neurology (M.S.), Vanderbilt University Medical Center, and Vanderbilt Brain Institute (J.L.S.), Vanderbilt University, Nashville, TN
| | - Jeffrey L Saver
- From the Alpert Medical School of Brown University (S.P.S.), Department of Neurology (M.S.), Vanderbilt University Medical Center, and Vanderbilt Brain Institute (J.L.S.), Vanderbilt University, Nashville, TN
| |
Collapse
|
6
|
Xiong M, Dahlén A, Roshanbin S, Wik E, Aguilar X, Eriksson J, Sehlin D, Syvänen S. Antibody engagement with amyloid-beta does not inhibit [ 11C]PiB binding for PET imaging. J Neurochem 2024; 168:2601-2610. [PMID: 38721627 DOI: 10.1111/jnc.16127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 10/04/2024]
Abstract
The elimination of amyloid-beta (Aβ) plaques in Alzheimer's disease patients after treatment with anti-Aβ antibodies such as lecanemab and aducanumab is supported by a substantially decreased signal in amyloid positron emission tomography (PET) imaging. However, this decreased PET signal has not been matched by a similar substantial effect on cognitive function. There may be several reasons for this, including short treatment duration and advanced disease stages among the patients. However, one aspect that has not been investigated, and the subject of this study, is whether antibody engagement with amyloid plaques inhibits the binding of amyloid-PET ligands, leading to a false impression of Aβ removal from the brain. In the present study, tg-ArcSwe mice received three injections of RmAb158, the murine version of lecanemab or phosphate-buffered saline (PBS) before the administration of the amyloid-PET radioligand [11C]PiB, followed by isolation of brain tissue. Autoradiography showed that RmAb158- and PBS-treated mice displayed similar [11C]PiB binding. Moreover, the total Aβ1-40 levels, representing the major Aβ species of plaques in the tg-ArcSwe model, as well as soluble triggering receptor on myeloid cells 2 (sTREM2) levels, were similar in both groups. Interestingly, the concentration of soluble Aβ aggregates was decreased in the RmAb158-treated group, along with a small but significant decrease in the total Aβ1-42 levels. In conclusion, this study indicates that the binding of [11C]PiB to Aβ accurately mirrors the load of Aβ plaques in the brain, aligning with how amyloid-PET is interpreted in clinical studies of anti-Aβ antibodies. However, early treatment effects on soluble Aβ aggregates and Aβ1-42 levels were not detected.
Collapse
Affiliation(s)
- Mengfei Xiong
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Amelia Dahlén
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Sahar Roshanbin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Elin Wik
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Ximena Aguilar
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Dag Sehlin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Høilund-Carlsen PF, Alavi A, Barrio JR, Castellani RJ, Costa T, Herrup K, Kepp KP, Neve RL, Perry G, Revheim ME, Robakis NK, Sensi SL, Vissel B. Donanemab, another anti-Alzheimer's drug with risk and uncertain benefit. Ageing Res Rev 2024; 99:102348. [PMID: 38830549 DOI: 10.1016/j.arr.2024.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Based on "reducing amyloid plaques in the brain", the U.S. Food and Drug Administration has granted accelerated and full approval for two monoclonal anti-Alzheimer's antibodies, aducanumab and lecanemab, respectively. Approval of a third antibody, donanemab, is pending. Moreover, lecanemab and donanemab are claimed to cause delay in the cognitive decline that characterizes the disease. We believe that these findings are subject to misinterpretation and statistical bias. Donanemab is claimed to cause removal of up to 86 % of cerebral amyloid and 36 % delay in cognitive decline compared to placebo. In reality, these are very small changes on an absolute scale and arguably less than what can be achieved with cholinesterase inhibitor/memantine therapy. Moreover, the "removal" of amyloid, based on the reduced accumulation of amyloid-PET tracer, most likely also reflects therapy-related tissue damage. This would also correlate with the minimal clinical effect, the increased frequency of amyloid-related imaging abnormalities, and the accelerated loss of brain volume in treated compared to placebo patients observed with these antibodies. We recommend halting approvals of anti-AD antibodies until these issues are fully understood to ensure that antibody treatment does not cause more harm than benefit to patients.
Collapse
Affiliation(s)
- Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Rudolph J Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kasper P Kepp
- Section of Biophysical and Biomedicinal Chemistry, DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Boston, MA, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Mona-Elisabeth Revheim
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nikolaos K Robakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Stefano L Sensi
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; CAST-Center for Advanced Studies and Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; ITAB-Institute of Advanced Biomedical Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Bryce Vissel
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus Faculty of Medicine and Health, UNSW, Sydney, Australia; St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.
| |
Collapse
|
8
|
Mastrangelo A, Gama L, Cinque P. Strategies to target the central nervous system HIV reservoir. Curr Opin HIV AIDS 2024; 19:133-140. [PMID: 38457227 DOI: 10.1097/coh.0000000000000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF THE REVIEW The central nervous system (CNS) is an hotspot for HIV persistence and may be a major obstacle to overcome for curative strategies. The peculiar anatomical, tissular and cellular characteristics of the HIV reservoir in the CNS may need to be specifically addressed to achieve a long-term HIV control without ART. In this review, we will discuss the critical challenges that currently explored curative strategies may face in crossing the blood-brain barrier (BBB), targeting latent HIV in brain-resident myeloid reservoirs, and eliminating the virus without eliciting dangerous neurological adverse events. RECENT FINDINGS Latency reversing agents (LRA), broadly neutralizing monoclonal antibodies (bNabs), chimeric antigen receptor (CAR) T-cells, and adeno-associated virus 9-vectored gene-therapies cross the BBB with varying efficiency. Although brain penetration is poor for bNAbs, viral vectors for in vivo gene-editing, certain LRAs, and CAR T-cells may reach the cerebral compartment more efficiently. All these approaches, however, may encounter difficulties in eliminating HIV-infected perivascular macrophages and microglia. Safety, including local neurological adverse effects, may also be a concern, especially if high doses are required to achieve optimal brain penetration and efficient brain cell targeting. SUMMARY Targeting the CNS remains a potential problem for the currently investigated HIV curing strategies. In vivo evidence on CNS effectiveness is limited for most of the investigated strategies, and additional studies should be focused on evaluating the interplay between the cerebral HIV reservoir and treatment aiming to achieve an ART-free cure.
Collapse
Affiliation(s)
- Andrea Mastrangelo
- Department of Allergy and Clinical Immunology, Centre Hopitalier Universitaire Vaudoise (CHUV), Lausanne, Switzerland
| | - Lucio Gama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Paola Cinque
- Unit of Infectious Diseases and Neurovirology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
9
|
Ventura-Antunes L, Nackenoff A, Romero-Fernandez W, Bosworth AM, Prusky A, Wang E, Carvajal-Tapia C, Shostak A, Harmsen H, Mobley B, Maldonado J, Solopova E, Caleb Snider J, David Merryman W, Lippmann ES, Schrag M. Arteriolar degeneration and stiffness in cerebral amyloid angiopathy are linked to β-amyloid deposition and lysyl oxidase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583563. [PMID: 38659767 PMCID: PMC11042178 DOI: 10.1101/2024.03.08.583563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a vasculopathy characterized by vascular β-amyloid (Aβ) deposition on cerebral blood vessels. CAA is closely linked to Alzheimer's disease (AD) and intracerebral hemorrhage. CAA is associated with the loss of autoregulation in the brain, vascular rupture, and cognitive decline. To assess morphological and molecular changes associated with the degeneration of penetrating arterioles in CAA, we analyzed post-mortem human brain tissue from 26 patients with mild, moderate, and severe CAA end neurological controls. The tissue was optically cleared for three-dimensional light sheet microscopy, and morphological features were quantified using surface volume rendering. We stained Aβ, vascular smooth muscle (VSM), lysyl oxidase (LOX), and vascular markers to visualize the relationship between degenerative morphological features, including vascular dilation, dolichoectasia (variability in lumenal diameter) and tortuosity, and the volumes of VSM, Aβ, and LOX in arterioles. Atomic force microscopy (AFM) was used to assess arteriolar wall stiffness, and we identified a pattern of morphological features associated with degenerating arterioles in the cortex. The volume of VSM associated with the arteriole was reduced by around 80% in arterioles with severe CAA and around 60% in cases with mild/moderate CAA. This loss of VSM correlated with increased arteriolar diameter and variability of diameter, suggesting VSM loss contributes to arteriolar laxity. These vascular morphological features correlated strongly with Aβ deposits. At sites of microhemorrhage, Aβ was consistently present, although the morphology of the deposits changed from the typical organized ring shape to sharply contoured shards with marked dilation of the vessel. AFM showed that arteriolar walls with CAA were more than 400% stiffer than those without CAA. Finally, we characterized the association of vascular degeneration with LOX, finding strong associations with VSM loss and vascular degeneration. These results show an association between vascular Aβ deposition, microvascular degeneration, and increased vascular stiffness, likely due to the combined effects of replacement of VSM by β-amyloid, cross-linking of extracellular matrices (ECM) by LOX, and possibly fibrosis. This advanced microscopic imaging study clarifies the association between Aβ deposition and vascular fragility. Restoration of physiologic ECM properties in penetrating arteries may yield a novel therapeutic strategy for CAA.
Collapse
Affiliation(s)
| | - Alex Nackenoff
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Allison M Bosworth
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alex Prusky
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emmeline Wang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Alena Shostak
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hannah Harmsen
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bret Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jose Maldonado
- Vanderbilt Neurovisualization Lab, Vanderbilt University, Nashville, TN, USA
| | - Elena Solopova
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J. Caleb Snider
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - W. David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Matthew Schrag
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville TN, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
10
|
Høilund-Carlsen PF, Alavi A, Castellani RJ, Neve RL, Perry G, Revheim ME, Barrio JR. Alzheimer's Amyloid Hypothesis and Antibody Therapy: Melting Glaciers? Int J Mol Sci 2024; 25:3892. [PMID: 38612701 PMCID: PMC11012162 DOI: 10.3390/ijms25073892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The amyloid cascade hypothesis for Alzheimer's disease is still alive, although heavily challenged. Effective anti-amyloid immunotherapy would confirm the hypothesis' claim that the protein amyloid-beta is the cause of the disease. Two antibodies, aducanumab and lecanemab, have been approved by the U.S. Food and Drug Administration, while a third, donanemab, is under review. The main argument for the FDA approvals is a presumed therapy-induced removal of cerebral amyloid deposits. Lecanemab and donanemab are also thought to cause some statistical delay in the determination of cognitive decline. However, clinical efficacy that is less than with conventional treatment, selection of amyloid-positive trial patients with non-specific amyloid-PET imaging, and uncertain therapy-induced removal of cerebral amyloids in clinical trials cast doubt on this anti-Alzheimer's antibody therapy and hence on the amyloid hypothesis, calling for a more thorough investigation of the negative impact of this type of therapy on the brain.
Collapse
Affiliation(s)
- Poul F. Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Rudolph J. Castellani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Rachael L. Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology and Genetics of Neurodegeneration, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Mona-Elisabeth Revheim
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, 0372 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
| | - Jorge R. Barrio
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, LA 90095, USA
| |
Collapse
|
11
|
Ichimata S, Aikawa A, Sugishita N, Katoh N, Kametani F, Tagawa H, Handa Y, Yazaki M, Sekijima Y, Ehara T, Nishida N, Ishizawa S. Enterocolic granulomatous phlebitis associated with epidermal growth factor-containing fibulin-like extracellular matrix protein 1 deposition and focal amyloid properties: A case report. Pathol Int 2024; 74:146-153. [PMID: 38240415 DOI: 10.1111/pin.13405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 03/21/2024]
Abstract
A woman in her 60s with rheumatoid arthritis was admitted with fever and abdominal pain. Laparoscopic examination with the differential diagnosis of peritoneal neoplasm and infection revealed granulomatous phlebitis in the resected greater omentum. Amorphous eosinophilic deposits observed in the resected tissue exhibited focal, weak positivity for Congo red but were strongly positive for thioflavin S, confirming their focal amyloid properties. Marked degeneration of elastic fibers was also evident. Electron microscopy revealed deposits around the affected elastic fibers. Immunohistochemistry revealed the deposition of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) along with T-cell-predominant lymphocytic inflammation. The definitive diagnosis was granulomatous enterocolic lymphocytic phlebitis (ELP) associated with EFEMP1 deposition exhibiting focal amyloid properties (EFEMP1/AEFEMP1), supported by proteomics analysis. This type of vasculitis is similar to amyloid-β-related angiitis of the central nervous system. Thus, we speculate that granulomatous ELP also results from an immune response that recognizes EFEMP1/AEFEMP1 deposits as foreign material and attempts to remove them. Confirmation of EFEMP1/AEFEMP1 deposition with Congo red staining is challenging, particularly in the presence of inflammation, and warrants comprehensive evaluation.
Collapse
Affiliation(s)
- Shojiro Ichimata
- Department of Pathology, Toyama Prefectural Central Hospital, Toyama, Japan
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Akane Aikawa
- Department of Pathology, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Naonori Sugishita
- Department of Japanese Oriental Medicine and Rheumatology, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Nagaaki Katoh
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Fuyuki Kametani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hibiki Tagawa
- Clinical Laboratory Sciences Division, Shinshu University Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Yusuke Handa
- Clinical Laboratory Sciences Division, Shinshu University Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Masahide Yazaki
- Clinical Laboratory Sciences Division, Shinshu University Graduate School of Medicine, Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Takashi Ehara
- Department of Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Nishida
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shin Ishizawa
- Department of Pathology, Toyama Prefectural Central Hospital, Toyama, Japan
| |
Collapse
|
12
|
De Strooper B, Karran E. New precision medicine avenues to the prevention of Alzheimer's disease from insights into the structure and function of γ-secretases. EMBO J 2024; 43:887-903. [PMID: 38396302 PMCID: PMC10943082 DOI: 10.1038/s44318-024-00057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Two phase-III clinical trials with anti-amyloid peptide antibodies have met their primary goal, i.e. slowing of Alzheimer's disease (AD) progression. However, antibody therapy may not be the optimal therapeutic modality for AD prevention, as we will discuss in the context of the earlier small molecules described as "γ-secretase modulators" (GSM). We review here the structure, function, and pathobiology of γ-secretases, with a focus on how mutations in presenilin genes result in early-onset AD. Significant progress has been made in generating compounds that act in a manner opposite to pathogenic presenilin mutations: they stabilize the proteinase-substrate complex, thereby increasing the processivity of substrate cleavage and altering the size spectrum of Aβ peptides produced. We propose the term "γ-secretase allosteric stabilizers" (GSAS) to distinguish these compounds from the rather heterogenous class of GSM. The GSAS represent, in theory, a precision medicine approach to the prevention of amyloid deposition, as they specifically target a discrete aspect in a complex cell biological signalling mechanism that initiates the pathological processes leading to Alzheimer's disease.
Collapse
Affiliation(s)
- Bart De Strooper
- Dementia Research Institute, Institute of Neurology, University College London, at the Francis Crick Institute, London, NW1 AT, UK.
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, and Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium.
| | - Eric Karran
- Cambridge Research Center, AbbVie, Inc., Cambridge, MA, USA
| |
Collapse
|
13
|
Bilodeau PA, Dickson JR, Kozberg MG. The Impact of Anti-Amyloid Immunotherapies on Stroke Care. J Clin Med 2024; 13:1245. [PMID: 38592119 PMCID: PMC10931618 DOI: 10.3390/jcm13051245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 04/10/2024] Open
Abstract
Anti-amyloid immunotherapies have recently emerged as treatments for Alzheimer's disease. While these therapies have demonstrated efficacy in clearing amyloid-β and slowing cognitive decline, they have also been associated with amyloid-related imaging abnormalities (ARIA) which include both edema (ARIA-E) and hemorrhage (ARIA-H). Given that ARIA have been associated with significant morbidity in cases of antithrombotic or thrombolytic therapy, an understanding of mechanisms of and risk factors for ARIA is of critical importance for stroke care. We discuss the latest data regarding mechanisms of ARIA, including the role of underlying cerebral amyloid angiopathy, and implications for ischemic stroke prevention and management.
Collapse
Affiliation(s)
- Philippe A. Bilodeau
- Division of Neuroimmunology and Neuroinfectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - John R. Dickson
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Boston, MA 02129, USA;
| | - Mariel G. Kozberg
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Boston, MA 02129, USA;
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
14
|
Solopova E, Romero-Fernandez W, Harmsen H, Ventura-Antunes L, Wang E, Shostak A, Maldonado J, Donahue MJ, Schultz D, Coyne TM, Charidimou A, Schrag M. Fatal iatrogenic cerebral β-amyloid-related arteritis in a woman treated with lecanemab for Alzheimer's disease. Nat Commun 2023; 14:8220. [PMID: 38086820 PMCID: PMC10716177 DOI: 10.1038/s41467-023-43933-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
We report the case of a 79-year-old woman with Alzheimer's disease who participated in a Phase III randomized controlled trial called CLARITY-AD testing the experimental drug lecanemab. She was randomized to the placebo group and subsequently enrolled in an open-label extension which guaranteed she received the active drug. After the third biweekly infusion, she suffered a seizure characterized by speech arrest and a generalized convulsion. Magnetic resonance imaging revealed she had multifocal swelling and a marked increase in the number of cerebral microhemorrhages. She was treated with an antiepileptic regimen and high-dose intravenous corticosteroids but continued to worsen and died after 5 days. Post-mortem MRI confirmed extensive microhemorrhages in the temporal, parietal and occipital lobes. The autopsy confirmed the presence of two copies of APOE4, a gene associated with a higher risk of Alzheimer's disease, and neuropathological features of moderate severity Alzheimer's disease and severe cerebral amyloid angiopathy with perivascular lymphocytic infiltrates, reactive macrophages and fibrinoid degeneration of vessel walls. There were deposits of β-amyloid in meningeal vessels and penetrating arterioles with numerous microaneurysms. We conclude that the patient likely died as a result of severe cerebral amyloid-related inflammation.
Collapse
Affiliation(s)
- Elena Solopova
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Hannah Harmsen
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Emmeline Wang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alena Shostak
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jose Maldonado
- Vanderbilt Neurovisualization Lab, Vanderbilt University, Nashville, TN, USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel Schultz
- Final Diagnosis: Private Autopsy Florida - Forensic Pathology Lab, Tampa, FL, USA
| | - Thomas M Coyne
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | | | - Matthew Schrag
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- The Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
15
|
Uekawa K, Hattori Y, Ahn SJ, Seo J, Casey N, Anfray A, Zhou P, Luo W, Anrather J, Park L, Iadecola C. Border-associated macrophages promote cerebral amyloid angiopathy and cognitive impairment through vascular oxidative stress. Mol Neurodegener 2023; 18:73. [PMID: 37789345 PMCID: PMC10548599 DOI: 10.1186/s13024-023-00660-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a devastating condition common in patients with Alzheimer's disease but also observed in the general population. Vascular oxidative stress and neurovascular dysfunction have been implicated in CAA but the cellular source of reactive oxygen species (ROS) and related signaling mechanisms remain unclear. We tested the hypothesis that brain border-associated macrophages (BAM), yolk sac-derived myeloid cells closely apposed to parenchymal and leptomeningeal blood vessels, are the source of radicals through the Aβ-binding innate immunity receptor CD36, leading to neurovascular dysfunction, CAA, and cognitive impairment. METHODS Tg2576 mice and WT littermates were transplanted with CD36-/- or CD36+/+ bone marrow at 12-month of age and tested at 15 months. This approach enables the repopulation of perivascular and leptomeningeal compartments with CD36-/- BAM. Neurovascular function was tested in anesthetized mice equipped with a cranial window in which cerebral blood flow was monitored by laser-Doppler flowmetry. Amyloid pathology and cognitive function were also examined. RESULTS The increase in blood flow evoked by whisker stimulation (functional hyperemia) or by endothelial and smooth muscle vasoactivity was markedly attenuated in WT → Tg2576 chimeras but was fully restored in CD36-/- → Tg2576 chimeras, in which BAM ROS production was suppressed. CAA-associated Aβ1-40, but not Aβ1-42, was reduced in CD36-/- → Tg2576 chimeras. Similarly, CAA, but not parenchymal plaques, was reduced in CD36-/- → Tg2576 chimeras. These beneficial vascular effects were associated with cognitive improvement. Finally, CD36-/- mice were able to more efficiently clear exogenous Aβ1-40 injected into the neocortex or the striatum. CONCLUSIONS CD36 deletion in BAM suppresses ROS production and rescues the neurovascular dysfunction and damage induced by Aβ. CD36 deletion in BAM also reduced brain Aβ1-40 and ameliorated CAA without affecting parenchyma plaques. Lack of CD36 enhanced the vascular clearance of exogenous Aβ. Restoration of neurovascular function and attenuation of CAA resulted in a near complete rescue of cognitive function. Collectively, these data implicate brain BAM in the pathogenesis of CAA and raise the possibility that targeting BAM CD36 is beneficial in CAA and other conditions associated with vascular Aβ deposition and damage.
Collapse
Affiliation(s)
- Ken Uekawa
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Yorito Hattori
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Sung Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - James Seo
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nicole Casey
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Wenjie Luo
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
16
|
Høilund-Carlsen PF, Revheim ME, Costa T, Alavi A, Kepp KP, Sensi SL, Perry G, Robakis NK, Barrio JR, Vissel B. Passive Alzheimer's immunotherapy: A promising or uncertain option? Ageing Res Rev 2023; 90:101996. [PMID: 37414156 DOI: 10.1016/j.arr.2023.101996] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
The US Food and Drug Administration (FDA)'s recent accelerated approval of two anti-amyloid antibodies for treatment of Alzheimer's disease (AD), aducanumab and lecanemab, has caused substantial debate. To inform this debate, we reviewed the literature on randomized clinical trials conducted with eight such antibodies focusing on clinical efficacy, cerebral amyloid removal, amyloid-related imaging abnormalities (ARIAs) and cerebral volumes to the extent such measurements have been reported. Two antibodies, donanemab and lecanemab, have demonstrated clinical efficacy, but these results remain uncertain. We further argue that the decreased amyloid PET signal in these trials is unlikely to be a one-to-one reflection of amyloid removal, but rather a reflection of increased therapy-related brain damage, as supported by the increased incidence of ARIAs and reported loss of brain volume. Due to these uncertainties of benefit and risk, we recommend that the FDA pauses existing approvals and approval of new antibodies until results of phase 4 studies with these drugs are available to inform on these risk-benefit uncertainties. We recommend that the FDA prioritize FDG PET and detection of ARIAs and accelerated brain volume loss with MRI in all trial patients, and neuropathological examination of all patients who die in these phase 4 trials.
Collapse
Affiliation(s)
- Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Mona-Elisabeth Revheim
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kasper P Kepp
- Section of Biophysical and Biomedicinal Chemistry, DTU Chemistry, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Stefano L Sensi
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; CAST-Center for Advanced Studies and Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Mind Impairments and Neurological Disorders-iMIND, University of California, Irvine, Irvine, CA, USA; ITAB-Institute of Advanced Biomedical Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Nikolaos K Robakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Bryce Vissel
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus Faculty of Medicine and Health, UNSW, Sydney, Australia; St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia
| |
Collapse
|
17
|
Taylor X, Clark IM, Fitzgerald GJ, Oluoch H, Hole JT, DeMattos RB, Wang Y, Pan F. Amyloid-β (Aβ) immunotherapy induced microhemorrhages are associated with activated perivascular macrophages and peripheral monocyte recruitment in Alzheimer's disease mice. Mol Neurodegener 2023; 18:59. [PMID: 37649100 PMCID: PMC10469415 DOI: 10.1186/s13024-023-00649-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Amyloid-related imaging abnormalities (ARIA) have been identified as the most common and serious adverse events resulting from pathological changes in the cerebral vasculature during several recent anti-amyloid-β (Aβ) immunotherapy trials. However, the precise cellular and molecular mechanisms underlying how amyloid immunotherapy enhances cerebral amyloid angiopathy (CAA)-mediated alterations in vascular permeability and microhemorrhages are not currently understood. Interestingly, brain perivascular macrophages have been implicated in regulating CAA deposition and cerebrovascular function however, further investigations are required to understand how perivascular macrophages play a role in enhancing CAA-related vascular permeability and microhemorrhages associated with amyloid immunotherapy. METHODS In this study, we examined immune responses induced by amyloid-targeting antibodies and CAA-induced microhemorrhages using histology and gene expression analyses in Alzheimer's disease (AD) mouse models and primary culture systems. RESULTS In the present study, we demonstrate that anti-Aβ (3D6) immunotherapy leads to the formation of an antibody immune complex with vascular amyloid deposits and induces the activation of CD169+ perivascular macrophages. We show that macrophages activated by antibody mediated Fc receptor signaling have increased expression of inflammatory signaling and extracellular matrix remodeling genes such as Timp1 and MMP9 in vitro and confirm these key findings in vivo. Finally, we demonstrate enhanced vascular permeability of plasma proteins and recruitment of inflammatory monocytes around vascular amyloid deposits, which are associated with hemosiderin deposits from cerebral microhemorrhages, suggesting the multidimensional roles of activated perivascular macrophages in response to Aβ immunotherapy. CONCLUSIONS In summary, our study establishes a connection between Aβ antibodies engaged at CAA deposits, the activation of perivascular macrophages, and the upregulation of genes involved in vascular permeability. However, the implications of this phenomenon on the susceptibility to microhemorrhages remain to be fully elucidated. Further investigations are warranted to determine the precise role of CD169 + perivascular macrophages in enhancing CAA-mediated vascular permeability, extravasation of plasma proteins, and infiltration of immune cells associated with microhemorrhages.
Collapse
Affiliation(s)
- Xavier Taylor
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Isaiah M Clark
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Griffin J Fitzgerald
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Herold Oluoch
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Justin T Hole
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Ronald B DeMattos
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| | - Yaming Wang
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Feng Pan
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
18
|
Castellani RJ, Perry G. The Teflon hypothesis. Brain Commun 2023; 5:fcad203. [PMID: 37492487 PMCID: PMC10365830 DOI: 10.1093/braincomms/fcad203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
This scientific commentary refers to 'Key questions for the evaluation of anti-amyloid immunotherapies for Alzheimer's disease', by Liu et al. (https://doi.org/10.1093/braincomms/fcad175).
Collapse
Affiliation(s)
- Rudy J Castellani
- Correspondence to: Rudy J. Castellani, MD, Department of Pathology, Northwestern University Feinberg School of Medicine, 710 N. Fairbanks Court, Olson Pavilion 2-514, Chicago, IL 60611, USA E-mail:
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
19
|
Høilund-Carlsen PF, Revheim ME, Costa T, Kepp KP, Castellani RJ, Perry G, Alavi A, Barrio JR. FDG-PET versus Amyloid-PET Imaging for Diagnosis and Response Evaluation in Alzheimer's Disease: Benefits and Pitfalls. Diagnostics (Basel) 2023; 13:2254. [PMID: 37443645 DOI: 10.3390/diagnostics13132254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
In June 2021, the US Federal Drug and Food Administration (FDA) granted accelerated approval for the antibody aducanumab and, in January 2023, also for the antibody lecanemab, based on a perceived drug-induced removal of cerebral amyloid-beta as assessed by amyloid-PET and, in the case of lecanemab, also a presumption of limited clinical efficacy. Approval of the antibody donanemab is awaiting further data. However, published trial data indicate few, small and uncertain clinical benefits, below what is considered "clinically meaningful" and similar to the effect of conventional medication. Furthermore, a therapy-related decrease in the amyloid-PET signal may also reflect increased cell damage rather than simply "amyloid removal". This interpretation is more consistent with increased rates of amyloid-related imaging abnormalities and brain volume loss in treated patients, relative to placebo. We also challenge the current diagnostic criteria for AD based on amyloid-PET imaging biomarkers and recommend that future anti-AD therapy trials apply: (1) diagnosis of AD based on the co-occurrence of cognitive decline and decreased cerebral metabolism assessed by FDA-approved FDG-PET, (2) therapy efficacy determined by favorable effect on cognitive ability, cerebral metabolism by FDG-PET, and brain volumes by MRI, and (3) neuropathologic examination of all deaths occurring in these trials.
Collapse
Affiliation(s)
- Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Mona-Elisabeth Revheim
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, 0372 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
| | - Tommaso Costa
- GDS, Department of Psychology, Koelliker Hospital, University of Turin, 10124 Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Kasper P Kepp
- Section of Biophysical and Biomedicinal Chemistry, DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rudolph J Castellani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Pacheco Pachado M, Casas AI, Elbatreek MH, Nogales C, Guney E, Espay AJ, Schmidt HH. Re-Addressing Dementia by Network Medicine and Mechanism-Based Molecular Endotypes. J Alzheimers Dis 2023; 96:47-56. [PMID: 37742653 PMCID: PMC10657714 DOI: 10.3233/jad-230694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/26/2023]
Abstract
Alzheimer's disease (AD) and other forms of dementia are together a leading cause of disability and death in the aging global population, imposing a high personal, societal, and economic burden. They are also among the most prominent examples of failed drug developments. Indeed, after more than 40 AD trials of anti-amyloid interventions, reduction of amyloid-β (Aβ) has never translated into clinically relevant benefits, and in several cases yielded harm. The fundamental problem is the century-old, brain-centric phenotype-based definitions of diseases that ignore causal mechanisms and comorbidities. In this hypothesis article, we discuss how such current outdated nosology of dementia is a key roadblock to precision medicine and articulate how Network Medicine enables the substitution of clinicopathologic phenotypes with molecular endotypes and propose a new framework to achieve precision and curative medicine for patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Mayra Pacheco Pachado
- Department of Pharmacology and Personalised Medicine, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Ana I. Casas
- Department of Pharmacology and Personalised Medicine, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Universitätsklinikum Essen, Klinik für Neurologie, Essen, Germany
| | - Mahmoud H. Elbatreek
- Department of Pharmacology and Personalised Medicine, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Cristian Nogales
- Department of Pharmacology and Personalised Medicine, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Emre Guney
- Discovery and Data Science (DDS) Unit, STALICLA R&D SL, Barcelona, Spain
| | - Alberto J. Espay
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Harald H.H.W. Schmidt
- Department of Pharmacology and Personalised Medicine, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|