1
|
Sano M, Iwatsuki K, Hirata H, Hoshiyama M. Imbalance in positive and negative acceleration ratio of alpha oscillation in patients with complex regional pain syndrome. Heliyon 2024; 10:e36463. [PMID: 39281607 PMCID: PMC11401108 DOI: 10.1016/j.heliyon.2024.e36463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Objectives To elucidate the functional characteristics of the brain in the presence of chronic pain using electroencephalography (EEG), with a focus on the dynamics of neural excitation and inhibition. Methods Resting-state EEG was performed in: 17 patients with complex regional pain syndrome (CRPS) who exhibited chronic pain higher than 20 on the visual analogue scale (VAS), 6 patients with reduced CRPS symptoms and chronic pain less than 20 on VAS, and healthy age-matched controls. For the analysis, 50 s of electroencephalogram (EEG) signals were extracted from EEG recordings during wakefulness and rest with eyes closed. The envelope of the alpha frequency band was calculated by examining the positive and negative accelerations of the envelope oscillation, ratio of positive (Ap) to negative (An) accelerations (Ap-An ratio), and mean amplitude of the envelope. Comparisons were made between patients and controls, and correlations between these EEG measures and the subjective pain VAS were evaluated.Significant differences in the value of Ap, An and Ap-An ratio were observed at temporal and central electrodes between patients with pain symptoms and controls. Those with reduced CRPS symptoms exhibited a distinct Ap-An ratio at the majority of electrodes when compared with those exhibiting chronic pain. Conclusions Distinct patterns in alpha wave envelope dynamics, reflecting excitatory and inhibitory activities, were associated with chronic pain in patients with CRPS. The pain-relieved state of CRPS suggested that a new balance of activities was established. This relationship indicated a potential association between altered alpha oscillation characteristics and the subjective experience of pain. Significance This study introduces a novel method for analyzing alpha oscillation envelopes, providing new insights into the neural pathophysiology of chronic pain in CRPS patients. This approach has the potential to enhance our understanding of the alterations in brain function that occur under chronic pain conditions.
Collapse
Affiliation(s)
- Misako Sano
- Division of Prevention & Rehabilitation Sciences, Graduate School of Health Sciences, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Katsuyuki Iwatsuki
- Department of Hnad Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Hitoshi Hirata
- Department of Hnad Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Minoru Hoshiyama
- Division of Prevention & Rehabilitation Sciences, Graduate School of Health Sciences, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan
- Brain & Mind Research Center, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan
| |
Collapse
|
2
|
Zhang S, Larsen B, Sydnor VJ, Zeng T, An L, Yan X, Kong R, Kong X, Gur RC, Gur RE, Moore TM, Wolf DH, Holmes AJ, Xie Y, Zhou JH, Fortier MV, Tan AP, Gluckman P, Chong YS, Meaney MJ, Deco G, Satterthwaite TD, Yeo BTT. In vivo whole-cortex marker of excitation-inhibition ratio indexes cortical maturation and cognitive ability in youth. Proc Natl Acad Sci U S A 2024; 121:e2318641121. [PMID: 38814872 PMCID: PMC11161789 DOI: 10.1073/pnas.2318641121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/04/2024] [Indexed: 06/01/2024] Open
Abstract
A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.
Collapse
Affiliation(s)
- Shaoshi Zhang
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore119077, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
- Department of Pediatrics, University of Minnesota, Minneapolis, MN55455
| | - Valerie J. Sydnor
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
| | - Tianchu Zeng
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Lijun An
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Xiaoxuan Yan
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore119077, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Ru Kong
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Xiaolu Kong
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
- ByteDance, Singapore048583, Singapore
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
- Department of Radiology, University of Pennsylvania, Philadelphia, PA19104
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
- Department of Radiology, University of Pennsylvania, Philadelphia, PA19104
| | - Tyler M. Moore
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
| | - Daniel H. Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Avram J. Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ07103
- Wu Tsai Institute, Yale University, New Haven, CT06520
| | - Yapei Xie
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore119077, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Marielle V. Fortier
- Department of Diagnostic and Interventional Imaging, Kandang Kerbau Women’s and Children’s Hospital, Singapore229899, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore138632, Singapore
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore138632, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore119074, Singapore
| | - Peter Gluckman
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland1142, New Zealand
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore138632, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore119228, Singapore
| | - Michael J. Meaney
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore138632, Singapore
- Department of Neurology and Neurosurgery, McGill University, Montreal, QCH3A1A1, Canada
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Technology and Information, Universitat Pompeu Fabra, Barcelona08002, Spain
- Institució Catalana de la Recerca i Estudis Avançats, Universitat Barcelona, Barcelona08010, Spain
| | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
| | - B. T. Thomas Yeo
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore119077, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hopstial, Charlestown, MA02129
| |
Collapse
|
3
|
Wang J, Li Y, Yang GY, Jin K. Age-Related Dysfunction in Balance: A Comprehensive Review of Causes, Consequences, and Interventions. Aging Dis 2024:AD.2024.0124-1. [PMID: 38607735 DOI: 10.14336/ad.2024.0124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/24/2024] [Indexed: 04/14/2024] Open
Abstract
This review delves into the multifaceted aspects of age-related balance changes, highlighting their prevalence, underlying causes, and the impact they have on the elderly population. Central to this discussion is the exploration of various physiological changes that occur with aging, such as alterations in the vestibular, visual, proprioceptive systems, and musculoskeletal degeneration. We examine the role of neurological disorders, cognitive decline, and medication side effects in exacerbating balance issues. The review underscores the significance of early detection and effective intervention strategies in mitigating the risks associated with balance problems, such as falls and reduced mobility. It discusses the effectiveness of diverse intervention strategies, including exercise programs, rehabilitation techniques, and technological advancements like virtual reality, wearable devices, and telemedicine. Additionally, the review stresses the importance of a holistic approach in managing balance disorders, encompassing medication review, addressing comorbidities, and environmental modifications. The paper also presents future research directions, emphasizing the need for a deeper understanding of the complex mechanisms underlying balance changes with aging and the potential of emerging technologies and interdisciplinary approaches in enhancing assessment and intervention methods. This comprehensive review aims to provide valuable insights for healthcare providers, researchers, and policymakers in developing targeted strategies to improve the quality of life and ensure the well-being of the aging population.
Collapse
Affiliation(s)
- Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfang Li
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
4
|
Courson J, Quoy M, Timofeeva Y, Manos T. An exploratory computational analysis in mice brain networks of widespread epileptic seizure onset locations along with potential strategies for effective intervention and propagation control. Front Comput Neurosci 2024; 18:1360009. [PMID: 38468870 PMCID: PMC10925689 DOI: 10.3389/fncom.2024.1360009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Mean-field models have been developed to replicate key features of epileptic seizure dynamics. However, the precise mechanisms and the role of the brain area responsible for seizure onset and propagation remain incompletely understood. In this study, we employ computational methods within The Virtual Brain framework and the Epileptor model to explore how the location and connectivity of an Epileptogenic Zone (EZ) in a mouse brain are related to focal seizures (seizures that start in one brain area and may or may not remain localized), with a specific focus on the hippocampal region known for its association with epileptic seizures. We then devise computational strategies to confine seizures (prevent widespread propagation), simulating medical-like treatments such as tissue resection and the application of an anti-seizure drugs or neurostimulation to suppress hyperexcitability. Through selectively removing (blocking) specific connections informed by the structural connectome and graph network measurements or by locally reducing outgoing connection weights of EZ areas, we demonstrate that seizures can be kept constrained around the EZ region. We successfully identified the minimal connections necessary to prevent widespread seizures, with a particular focus on minimizing surgical or medical intervention while simultaneously preserving the original structural connectivity and maximizing brain functionality.
Collapse
Affiliation(s)
- Juliette Courson
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, Cergy-Pontoise, France
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Mathias Quoy
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- IPAL CNRS Singapore, Singapore, Singapore
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Thanos Manos
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
| |
Collapse
|
5
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. Front Comput Neurosci 2023; 17:1295395. [PMID: 38188355 PMCID: PMC10770256 DOI: 10.3389/fncom.2023.1295395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activities between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, which was first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC aligns well with the observed FC when compared with that simulated traditional structural connectome.
Collapse
Affiliation(s)
- Thanos Manos
- ETIS, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CNRS, Cergy-Pontoise, CY Cergy Paris Université, Cergy, France
| | - Sandra Diaz-Pier
- Simulation and Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|