1
|
Ruiz J, LoRicco JG, Soulère L, Castell MS, Grélard A, Kauffmann B, Dufourc EJ, Demé B, Popowycz F, Peters J. Membrane plasticity induced by myo-inositol derived archaeal lipids: chemical synthesis and biophysical characterization. Phys Chem Chem Phys 2023. [PMID: 37305972 DOI: 10.1039/d3cp01646c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Archaeal membrane lipids have specific structures that allow Archaea to withstand extreme conditions of temperature and pressure. In order to understand the molecular parameters that govern such resistance, the synthesis of 1,2-di-O-phytanyl-sn-glycero-3-phosphoinositol (DoPhPI), an archaeal lipid derived from myo-inositol, is reported. Benzyl protected myo-inositol was first prepared and then transformed to phosphodiester derivatives using a phosphoramidite based-coupling reaction with archaeol. Aqueous dispersions of DoPhPI alone or mixed with DoPhPC can be extruded and form small unilamellar vesicles, as detected by DLS. Neutron, SAXS, and solid-state NMR demonstrated that the water dispersions could form a lamellar phase at room temperature that then evolves into cubic and hexagonal phases with increasing temperature. Phytanyl chains were also found to impart remarkable and nearly constant dynamics to the bilayer over wide temperature ranges. All these new properties of archaeal lipids are proposed as providers of plasticity and thus means for the archaeal membrane to resist extreme conditions.
Collapse
Affiliation(s)
- Johal Ruiz
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| | | | - Laurent Soulère
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| | | | - Axelle Grélard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
- Institut Européen de Chimie et Biologie, CNRS, Université de Bordeaux, INSERM, UAR3033, France
| | - Brice Kauffmann
- Institut Européen de Chimie et Biologie, CNRS, Université de Bordeaux, INSERM, UAR3033, France
| | - Erick J Dufourc
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
- Institut Européen de Chimie et Biologie, CNRS, Université de Bordeaux, INSERM, UAR3033, France
| | - Bruno Demé
- Institut Laue-Langevin, 38000 Grenoble, France.
| | - Florence Popowycz
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| | - Judith Peters
- Institut Laue-Langevin, 38000 Grenoble, France.
- Univ. Grenoble Alpes, LiPhy, CNRS, 38000 Grenoble, France
- Institut Universitaire de France, France
| |
Collapse
|
2
|
Salvador-Castell M, Golub M, Erwin N, Demé B, Brooks NJ, Winter R, Peters J, Oger PM. Characterisation of a synthetic Archeal membrane reveals a possible new adaptation route to extreme conditions. Commun Biol 2021; 4:653. [PMID: 34079059 PMCID: PMC8172549 DOI: 10.1038/s42003-021-02178-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023] Open
Abstract
It has been proposed that adaptation to high temperature involved the synthesis of monolayer-forming ether phospholipids. Recently, a novel membrane architecture was proposed to explain the membrane stability in polyextremophiles unable to synthesize such lipids, in which apolar polyisoprenoids populate the bilayer midplane and modify its physico-chemistry, extending its stability domain. Here, we have studied the effect of the apolar polyisoprenoid squalane on a model membrane analogue using neutron diffraction, SAXS and fluorescence spectroscopy. We show that squalane resides inside the bilayer midplane, extends its stability domain, reduces its permeability to protons but increases that of water, and induces a negative curvature in the membrane, allowing the transition to novel non-lamellar phases. This membrane architecture can be transposed to early membranes and could help explain their emergence and temperature tolerance if life originated near hydrothermal vents. Transposed to the archaeal bilayer, this membrane architecture could explain the tolerance to high temperature in hyperthermophiles which grow at temperatures over 100 °C while having a membrane bilayer. The induction of a negative curvature to the membrane could also facilitate crucial cell functions that require high bending membranes.
Collapse
Affiliation(s)
| | - Maksym Golub
- Université Grenoble Alpes, CNRS, LiPhy, Grenoble, France
- Institut Laue Langevin, Grenoble, France
| | - Nelli Erwin
- Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany
| | - Bruno Demé
- Institut Laue Langevin, Grenoble, France
| | | | - Roland Winter
- Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany
| | - Judith Peters
- Université Grenoble Alpes, CNRS, LiPhy, Grenoble, France.
- Institut Laue Langevin, Grenoble, France.
| | | |
Collapse
|
3
|
LoRicco JG, Salvador-Castell M, Demé B, Peters J, Oger PM. Apolar Polyisoprenoids Located in the Midplane of the Bilayer Regulate the Response of an Archaeal-Like Membrane to High Temperature and Pressure. Front Chem 2020; 8:594039. [PMID: 33282836 PMCID: PMC7689154 DOI: 10.3389/fchem.2020.594039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023] Open
Abstract
Archaea are known to inhabit some of the most extreme environments on Earth. The ability of archaea possessing membrane bilayers to adapt to high temperature (>85°C) and high pressure (>1,000 bar) environments is proposed to be due to the presence of apolar polyisoprenoids at the midplane of the bilayer. In this work, we study the response of this novel membrane architecture to both high temperature and high hydrostatic pressure using neutron diffraction. A mixture of two diether, phytanyl chain lipids (DoPhPC and DoPhPE) and squalane was used to model this novel architecture. Diffraction data indicate that at high temperatures a stable coexistence of fluid lamellar phases exists within the membrane and that stable coexistence of these phases is also possible at high pressure. Increasing the amount of squalane in the membrane regulates the phase separation with respect to both temperature and pressure, and also leads to an increase in the lamellar repeat spacing. The ability of squalane to regulate the ultrastructure of an archaea-like membrane at high pressure and temperature supports the hypothesis that archaea can use apolar lipids as an adaptive mechanism to extreme conditions.
Collapse
Affiliation(s)
| | | | - Bruno Demé
- Department of Large Scale Structures, Institut Laue-Langevin, Grenoble, France
| | - Judith Peters
- Department of Large Scale Structures, Institut Laue-Langevin, Grenoble, France
- Department of Spectroscopy, Université Grenoble Alpes, LiPhy, Grenoble, France
| | - Philippe M. Oger
- Univ Lyon, INSA de Lyon, CNRS, MAP UMR 5240, Villeurbanne, France
| |
Collapse
|
4
|
Salvador-Castell M, Golub M, Martinez N, Ollivier J, Peters J, Oger P. The first study on the impact of osmolytes in whole cells of high temperature-adapted microorganisms. SOFT MATTER 2019; 15:8381-8391. [PMID: 31613294 DOI: 10.1039/c9sm01196j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The hyperthermophilic piezophile, Thermococcus barophilus displays a strong stress response characterized by the accumulation of the organic osmolyte, mannosylglycerate during growth under sub-optimal pressure conditions (0.1 MPa). Taking advantage of this known effect, the impact of osmolytes in piezophiles in an otherwise identical cellular context was investigated, by comparing T. barophilus cells grown under low or optimal pressures (40 MPa). Using neutron scattering techniques, we studied the molecular dynamics of live cells of T. barophilus at different pressures and temperatures. We show that in the presence of osmolytes, cells present a higher diffusion coefficient of hydration water and an increase of bulk water motions at a high temperature. In the absence of osmolytes, the T. barophilus cellular dynamics is more responsive to high temperature and high hydrostatic pressure. These results therefore give clear evidence for a protecting effect of osmolytes on proteins.
Collapse
|