1
|
Manjarres Z, Calvo M, Pacheco R. Regulation of Pain Perception by Microbiota in Parkinson Disease. Pharmacol Rev 2023; 76:7-36. [PMID: 37863655 DOI: 10.1124/pharmrev.122.000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Pain perception involves current stimulation in peripheral nociceptive nerves and the subsequent stimulation of postsynaptic excitatory neurons in the spinal cord. Importantly, in chronic pain, the neural activity of both peripheral nociceptors and postsynaptic neurons in the central nervous system is influenced by several inflammatory mediators produced by the immune system. Growing evidence has indicated that the commensal microbiota plays an active role in regulating pain perception by either acting directly on nociceptors or indirectly through the modulation of the inflammatory activity on immune cells. This symbiotic relationship is mediated by soluble bacterial mediators or intrinsic structural components of bacteria that act on eukaryotic cells, including neurons, microglia, astrocytes, macrophages, T cells, enterochromaffin cells, and enteric glial cells. The molecular mechanisms involve bacterial molecules that act directly on neurons, affecting their excitability, or indirectly on non-neuronal cells, inducing changes in the production of proinflammatory or anti-inflammatory mediators. Importantly, Parkinson disease, a neurodegenerative and inflammatory disorder that affects mainly the dopaminergic neurons implicated in the control of voluntary movements, involves not only a motor decline but also nonmotor symptomatology, including chronic pain. Of note, several recent studies have shown that Parkinson disease involves a dysbiosis in the composition of the gut microbiota. In this review, we first summarize, integrate, and classify the molecular mechanisms implicated in the microbiota-mediated regulation of chronic pain. Second, we analyze the changes on the commensal microbiota associated to Parkinson disease and propose how these changes affect the development of chronic pain in this pathology. SIGNIFICANCE STATEMENT: The microbiota regulates chronic pain through the action of bacterial signals into two main locations: the peripheral nociceptors and the postsynaptic excitatory neurons in the spinal cord. The dysbiosis associated to Parkinson disease reveals increased representation of commensals that potentially exacerbate chronic pain and reduced levels of bacteria with beneficial effects on pain. This review encourages further research to better understand the signals involved in bacteria-bacteria and bacteria-host communication to get the clues for the development of probiotics with therapeutic potential.
Collapse
Affiliation(s)
- Zulmary Manjarres
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Margarita Calvo
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| |
Collapse
|
2
|
Paul P, Mahfoud ZR, Malik RA, Kaul R, Muffuh Navti P, Al-Sheikhly D, Chaari A. Knowledge, Awareness, and Attitude of Healthcare Stakeholders on Alzheimer's Disease and Dementia in Qatar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4535. [PMID: 36901551 PMCID: PMC10002196 DOI: 10.3390/ijerph20054535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Dementia is characterized by progressive cognitive decline, memory impairment, and disability. Alzheimer's disease (AD) accounts for 60-70% of cases, followed by vascular and mixed dementia. Qatar and the Middle East are at increased risk owing to aging populations and high prevalence of vascular risk factors. Appropriate levels of knowledge, attitudes, and awareness amongst health care professionals (HCPs) are the need of the hour, but literature indicates that these proficiencies may be inadequate, outdated, or markedly heterogenous. In addition to a review of published quantitative surveys investigating similar questions in the Middle East, a pilot cross-sectional online needs-assessment survey was undertaken to gauge these parameters of dementia and AD among healthcare stakeholders in Qatar between 19 April and 16 May 2022. Overall, 229 responses were recorded between physicians (21%), nurses (21%), and medical students (25%), with two-thirds from Qatar. Over half the respondents reported that >10% of their patients were elderly (>60 years). Over 25% reported having contact with >50 patients with dementia or neurodegenerative disease annually. Over 70% had not undertake related education/training in the last 2 years. The knowledge of HCPs regarding dementia and AD was moderate (mean score of 5.3 ± 1.5 out of 7) and their awareness of recent advances in basic disease pathophysiology was lacking. Differences existed across professions and location of respondents. Our findings lay the groundwork for a call-to-action for healthcare institutions to improve dementia care within Qatar and the Middle East region.
Collapse
Affiliation(s)
| | - Ziyad Riyad Mahfoud
- Division of Medical Education, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
- Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, NY 10065, New York, USA
| | - Rayaz A. Malik
- Division of Medicine, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M15 6BH, UK
| | | | - Phyllis Muffuh Navti
- Division of Continuing Professional Development, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Deema Al-Sheikhly
- Division of Medical Education, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
- Division of Continuing Professional Development, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Ali Chaari
- Premedical Division, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| |
Collapse
|
3
|
Recovery of Corneal Innervation after Treatment in Dry Eye Disease: A Confocal Microscopy Study. J Clin Med 2023; 12:jcm12051841. [PMID: 36902628 PMCID: PMC10003258 DOI: 10.3390/jcm12051841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
PURPOSE To analyze the changes in corneal innervation by means of in vivo corneal confocal microscopy (IVCM) in patients diagnosed with Evaporative (EDE) and Aqueous Deficient Dry Eye (ADDE) and treated with a standard treatment for Dry Eye Disease (DED) in combination with Plasma Rich in Growth Factors (PRGF). METHODS Eighty-three patients diagnosed with DED were enrolled in this study and included in the EDE or ADDE subtype. The primary variables analyzed were the length, density and number of nerve branches, and the secondary variables were those related to the quantity and stability of the tear film and the subjective response of the patients measured with psychometric questionnaires. RESULTS The combined treatment therapy with PRGF outperforms the standard treatment therapy in terms of subbasal nerve plexus regeneration, significantly increasing length, number of branches and nerve density, as well as significantly improving the stability of the tear film (p < 0.05 for all of them), and the most significant changes were located in the ADDE subtype. CONCLUSIONS the corneal reinnervation process responds in a different way depending on the treatment prescribed and the subtype of dry eye disease. In vivo confocal microscopy is presented as a powerful technique in the diagnosis and management of neurosensory abnormalities in DED.
Collapse
|
4
|
Fustes OJH, Fustes OJH. Neuropathy in Parkinson's Disease. Comment: Neuropathy in Parkinson's Disease: Risk Determinants and Impact on Quality of Life. Ann Indian Acad Neurol 2022; 25:1213-1214. [PMID: 36911492 PMCID: PMC9996466 DOI: 10.4103/aian.aian_711_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Otto J. H. Fustes
- Department of Internal Medicine, Federal University of Paraná, Curitiba, Brazil
| | - Olga J. H. Fustes
- Neurophysiology Service, America`s Neurological Clinic, Curitiba, Brazil
| |
Collapse
|
5
|
Proinflammatory profile in the skin of Parkinson's disease patients with and without pain. PLoS One 2022; 17:e0276564. [PMID: 36301901 PMCID: PMC9612575 DOI: 10.1371/journal.pone.0276564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022] Open
Abstract
Background Pain is a common non-motor symptom of Parkinson`s disease (PD), however, its pathomechanism remains elusive. Objective We aimed to investigate the local gene expression of selected proinflammatory mediators in patients with PD and correlated our data with patients`pain phenotype. Methods We recruited 30 patients with PD and 30 healthy controls. Pain intensity of patients was assessed using the Numeric Rating Scale (NRS) and patients were stratified into PD pain (NRS≥4) and PD No Pain (NRS<4) subgroups. Skin punch biopsies were immunoassayed for protein-gene product 9.5 as a pan-neuronal marker and intraepidermal nerve fiber density (IEFND). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to assess the gene expression of inflammatory mediators in the skin compared to controls. Results Patients with PD had lower distal IENFD compared to healthy controls. In skin samples, IL-2 (p<0.001) and TNF-α (p<0.01) were expressed higher in PD patients compared to controls. IL-1β (p<0.05) was expressed higher in the PD pain group compared to healthy controls. PD patients with pain receiving analgesics had a lower expression of TNF-α (p<0.05) in the skin compared to those not receiving treatment. Conclusions Our data suggest the occurrence of a local, peripheral inflammatory response in the skin in PD, but do not support this being a relevant factor contributing to pain in PD.
Collapse
|
6
|
Finsterer J, Scorza FA. Small fiber neuropathy. Acta Neurol Scand 2022; 145:493-503. [PMID: 35130356 DOI: 10.1111/ane.13591] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/01/2022]
Abstract
Small fiber neuropathy (SFN) is a peripheral nervous system disease due to affection of A-delta or C-fibers in a proximal, distal, or diffuse distribution. Selective SFN (without large fiber affection) manifests with pain, sensory disturbances, or autonomic dysfunction. Though uniform diagnostic criteria are unavailable, most of them request typical clinical features and reduced intra-epidermal nerve fiber density on proximal or distal skin biopsy. Little consensus has been reached about the treatment of SFN, why this narrative review aims at summarizing and discussing treatment options for SFN. Treatment of SFN can be classified as symptomatic, pathophysiologic, or causal. Prerequisites for treating SFN are an established diagnosis, knowledge about the symptoms and signs, and the etiology. Pain usually responds to oral/intravenous pain killers, antidepressants, anti-seizure drugs, or topical, transdermal specifications. Some of the autonomic disturbances respond favorably to symptomatic treatment. SFN related to Fabry disease or hATTR are accessible to pathogenesis-related therapy. Immune-mediated SFN responds to immunosuppression or immune-modulation. Several of the secondary SFNs respond to causal treatment of the underlying disorder. In conclusion, treatment of SFN relies on a multimodal concept and includes causative, pathophysiologic, and symptomatic measures. It strongly depends on the clinical presentation, diagnosis, and etiology, why it is crucial before initiation of treatment to fix the diagnosis and etiology. Due to the heterogeneous clinical presentation and multi-causality, treatment of SFN should be individualized with the goal of controlling the underlying cause, alleviating pain, and optimizing functionality.
Collapse
Affiliation(s)
- Josef Finsterer
- Neurology & Neurophysiology Center Vienna Austria
- Disciplina de Neurociência Escola Paulista de Medicina/Universidade Federal de São Paulo/. (EPM/UNIFESP) São Paulo Brasil
| | - Fulvio A. Scorza
- Disciplina de Neurociência Escola Paulista de Medicina/Universidade Federal de São Paulo/. (EPM/UNIFESP) São Paulo Brasil
| |
Collapse
|
7
|
Roversi K, Callai-Silva N, Roversi K, Griffith M, Boutopoulos C, Prediger RD, Talbot S. Neuro-Immunity and Gut Dysbiosis Drive Parkinson's Disease-Induced Pain. Front Immunol 2021; 12:759679. [PMID: 34868000 PMCID: PMC8637106 DOI: 10.3389/fimmu.2021.759679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 1-2% of the population aged 65 and over. Additionally, non-motor symptoms such as pain and gastrointestinal dysregulation are also common in PD. These impairments might stem from a dysregulation within the gut-brain axis that alters immunity and the inflammatory state and subsequently drives neurodegeneration. There is increasing evidence linking gut dysbiosis to the severity of PD's motor symptoms as well as to somatosensory hypersensitivities. Altogether, these interdependent features highlight the urgency of reviewing the links between the onset of PD's non-motor symptoms and gut immunity and whether such interplays drive the progression of PD. This review will shed light on maladaptive neuro-immune crosstalk in the context of gut dysbiosis and will posit that such deleterious interplays lead to PD-induced pain hypersensitivity.
Collapse
Affiliation(s)
- Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada.,Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Natalia Callai-Silva
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Karine Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| | - May Griffith
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Christos Boutopoulos
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Rui Daniel Prediger
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
Barros A, Queiruga-Piñeiro J, Lozano-Sanroma J, Alcalde I, Gallar J, Fernández-Vega Cueto L, Alfonso JF, Quirós LM, Merayo-Lloves J. Small fiber neuropathy in the cornea of Covid-19 patients associated with the generation of ocular surface disease. Ocul Surf 2021; 23:40-48. [PMID: 34781021 PMCID: PMC8588585 DOI: 10.1016/j.jtos.2021.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Purpose To describe the association between Sars-CoV-2 infection and small fiber neuropathy in the cornea identified by in vivo corneal confocal microscopy. Methods Twenty-three patients who had overcome COVID-19 were recruited to this observational retrospective study. Forty-six uninfected volunteers were also recruited and studied as a control group. All subjects were examined under in vivo confocal microscopy to obtain images of corneal subbasal nerve fibers in order to study the presence of neuroma-like structures, axonal beadings and dendritic cells. The Ocular Surface Disease Index (OSDI) questionnaire and Schirmer tear test were used as indicators of Dry Eye Disease (DED) and ocular surface pathology. Results Twenty-one patients (91.31%) presented alterations of the corneal subbasal plexus and corneal tissue consistent with small fiber neuropathy. Images from healthy subjects did not indicate significant nerve fiber or corneal tissue damage. Eight patients reported increased sensations of ocular dryness after COVID-19 infection and had positive DED indicators. Beaded axons were found in 82.60% of cases, mainly in patients reporting ocular irritation symptoms. Neuroma-like images were found in 65.22% patients, more frequently in those with OSDI scores >13. Dendritic cells were found in 69.56% of patients and were more frequent in younger asymptomatic patients. The presence of morphological alterations in patients up to 10 months after recovering from Sars-CoV-2 infection points to the chronic nature of the neuropathy. Conclusions Sars-CoV-2 infection may be inducing small fiber neuropathy in the ocular surface, sharing symptomatology and morphological landmarks with DED and diabetic neuropathy.
Collapse
Affiliation(s)
| | | | | | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Luis Fernández-Vega Cueto
- Instituto Oftalmológico Fernández-Vega, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - José F Alfonso
- Instituto Oftalmológico Fernández-Vega, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Department of Surgery and Medical-Surgical Specialties, Universidad de Oviedo, Oviedo, Spain
| | - Luis M Quirós
- Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Department of Functional Biology, Universidad de Oviedo, Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Oftalmológico Fernández-Vega, Oviedo, Spain; Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Department of Surgery and Medical-Surgical Specialties, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
9
|
Kaiserova M, Kastelikova A, Grambalova Z, Otruba P, Zapletalova J, Mensikova K, Rosales R, Kanovsky P. Temperature sensation in Parkinson's disease measured by quantitative sensory testing: a single-center, case-control study. Int J Neurosci 2021:1-6. [PMID: 34666599 DOI: 10.1080/00207454.2021.1991922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The pathophysiology of abnormal temperature sensation in Parkinson's disease (PD) remains unclear. Abnormal thermal detection does not seem to depend on the dopaminergic deficit, suggesting that other systems play a role in these changes, probably both central and peripheral. METHODS We measured thermal detection thresholds (TDT) using quantitative sensory testing (QST) in 28 patients with PD and compared them with 15 healthy controls. RESULTS Of 28 patients, 21% had increased TDT according to the normative data. TDT were higher on the dominant side. No correlation between TDT and disease duration, severity of motor impairment, and dopaminergic therapy was observed. 50% of the patients had difficulty differentiating between warm and cold stimuli, as TDT were within the normal range in most of these patients. CONCLUSIONS Twenty-one percent of the patients in our study had increased TDT according to the normative data. Abnormal thermal detection was more pronounced on the dominant side. Abnormal differentiation between the thermal stimuli suggest impaired central processing of thermal information.
Collapse
Affiliation(s)
- Michaela Kaiserova
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Anetta Kastelikova
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Zuzana Grambalova
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Pavel Otruba
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Jana Zapletalova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Katerina Mensikova
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Raymond Rosales
- The Neuroscience Institute, Department of Neurology and Psychiatry, University of Santo Tomas University Hospital, Manila, Philippines
| | - Petr Kanovsky
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| |
Collapse
|
10
|
Ma C, Zhang W, Cao M. Role of the Peripheral Nervous System in PD Pathology, Diagnosis, and Treatment. Front Neurosci 2021; 15:598457. [PMID: 33994915 PMCID: PMC8119739 DOI: 10.3389/fnins.2021.598457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Studies on Parkinson disease (PD) have mostly focused on the central nervous system—specifically, on the loss of mesencephalic dopaminergic neurons and associated motor dysfunction. However, the peripheral nervous system (PNS) is gaining prominence in PD research, with increasing clinical attention being paid to non-motor symptoms. Researchers found abnormal deposition of α-synuclein and neuroinflammation in the PNS. Attempts have been made to use these pathological changes during the clinical diagnosis of PD. Animal studies demonstrated that combined transplantation of autologous peripheral nerves and cells with tyrosine hydroxylase activity can reduce dopaminergic neuronal damage, and similar effects were observed in some clinical trials. In this review, we will systematically explain PNS performance in PD pathology and its clinical diagnostic research, describe PNS experimental results [especially Schwann cell (SC) transplantation in the treatment of PD animal models] and the results of clinical trials, and discuss future directions. The mechanism by which SCs produce such a therapeutic effect and the safety of transplantation therapy are briefly described.
Collapse
Affiliation(s)
- Chengxiao Ma
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wen Zhang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
11
|
Andréasson M, Lagali N, Badian RA, Utheim TP, Scarpa F, Colonna A, Allgeier S, Bartschat A, Köhler B, Mikut R, Reichert KM, Solders G, Samuelsson K, Zetterberg H, Blennow K, Svenningsson P. Parkinson's disease with restless legs syndrome-an in vivo corneal confocal microscopy study. NPJ Parkinsons Dis 2021; 7:4. [PMID: 33402694 PMCID: PMC7785738 DOI: 10.1038/s41531-020-00148-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Small fiber neuropathy (SFN) has been suggested as a trigger of restless legs syndrome (RLS). An increased prevalence of peripheral neuropathy has been demonstrated in Parkinson's disease (PD). We aimed to investigate, in a cross-sectional manner, whether SFN is overrepresented in PD patients with concurrent RLS relative to PD patients without RLS, using in vivo corneal confocal microscopy (IVCCM) and quantitative sensory testing (QST) as part of small fiber assessment. Study participants comprised of age- and sex-matched PD patients with (n = 21) and without RLS (n = 21), and controls (n = 13). Diagnosis of RLS was consolidated with the sensory suggested immobilization test. Assessments included nerve conduction studies (NCS), Utah Early Neuropathy Scale (UENS), QST, and IVCCM, with automated determination of corneal nerve fiber length (CNFL) and branch density (CNBD) from wide-area mosaics of the subbasal nerve plexus. Plasma neurofilament light (p-NfL) was determined as a measure of axonal degeneration. No significant differences were found between groups when comparing CNFL (p = 0.81), CNBD (p = 0.92), NCS (p = 0.82), and QST (minimum p = 0.54). UENS scores, however, differed significantly (p = 0.001), with post-hoc pairwise testing revealing higher scores in both PD groups relative to controls (p = 0.018 and p = 0.001). Analysis of all PD patients (n = 42) revealed a correlation between the duration of L-dopa therapy and CNBD (ρ = -0.36, p = 0.022), and p-NfL correlated with UENS (ρ = 0.35, p = 0.026) and NCS (ρ = -0.51, p = 0.001). Small and large fiber neuropathy do not appear to be associated with RLS in PD. Whether peripheral small and/or large fiber pathology associates with central neurodegeneration in PD merits further longitudinal studies.
Collapse
Grants
- Received funding from Hofgren’s fond, NEURO Sweden, for the present study
- Massachusetts Department of Fish and Game (DFG)
- Parts of the work were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project 273371152
- HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Research Council (#681712), Swedish State Support for Clinical Research (#ALFGBG-720931), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), and the UK Dementia Research Institute at UCL. KB is supported by the Swedish Research Council (#2017-00915), the Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615), the Swedish Alzheimer Foundation (#AF-742881), Hjärnfonden, Sweden (#FO2017-0243), the Swedish State under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986), and European Union Joint Program for Neurodegenerative Disorders (JPND2019-466-236).
- Received funding from Region Stockholm ALF programme
Collapse
Affiliation(s)
- Mattias Andréasson
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Neil Lagali
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Reza A Badian
- Unit of Regenerative Medicine, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | | | - Fabio Scarpa
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Alessia Colonna
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Stephan Allgeier
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Andreas Bartschat
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Bernd Köhler
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Klaus-Martin Reichert
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Göran Solders
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Kristin Samuelsson
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UCL Institute of Neurology, Department of Neurodegenerative Disease, Queen Square, London, UK
- UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Per Svenningsson
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Potential use of corneal confocal microscopy in the diagnosis of Parkinson's disease associated neuropathy. Transl Neurodegener 2020; 9:28. [PMID: 32611440 PMCID: PMC7330988 DOI: 10.1186/s40035-020-00204-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disease affecting about 2–3% of population above the age of 65. In recent years, Parkinson’s research has mainly focused on motor and non-motor symptoms while there are limited studies on neurodegeneration which is associated with balance problems and increased incidence of falls. Corneal confocal microscopy (CCM) is a real-time, non-invasive, in vivo ophthalmic imaging technique for quantifying nerve damage in peripheral neuropathies and central neurodegenerative disorders. CCM has shown significantly lower corneal nerve fiber density (CNFD) in patients with PD compared to healthy controls. Reduced CNFD is associated with decreased intraepidermal nerve fiber density in PD. This review provides an overview of the ability of CCM to detect nerve damage associated with PD.
Collapse
|