1
|
Wang H, Song M, Xu J, Liu Z, Peng M, Qin H, Wang S, Wang Z, Liu K. Long-Acting Strategies for Antibody Drugs: Structural Modification, Controlling Release, and Changing the Administration Route. Eur J Drug Metab Pharmacokinet 2024; 49:295-316. [PMID: 38635015 DOI: 10.1007/s13318-024-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Because of their high specificity, high affinity, and targeting, antibody drugs have been widely used in the treatment of many diseases and have become the most favored new drugs for research in the world. However, some antibody drugs (such as small-molecule antibody fragments) have a short half-life and need to be administered frequently, and are often associated with injection-site reactions and local toxicities during use. Increasing attention has been paid to the development of antibody drugs that are long-acting and have fewer side effects. This paper reviews existing strategies to achieve long-acting antibody drugs, including modification of the drug structure, the application of drug delivery systems, and changing their administration route. Among these, microspheres have been studied extensively regarding their excellent tolerance at the injection site, controllable loading and release of drugs, and good material safety. Subcutaneous injection is favored by most patients because it can be quickly self-administered. Subcutaneous injection of microspheres is expected to become the focus of developing long-lasting antibody drug strategies in the near future.
Collapse
Affiliation(s)
- Hao Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Mengdi Song
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Jiaqi Xu
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Zhenjing Liu
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Mingyue Peng
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Haoqiang Qin
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Shaoqian Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Ziyang Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Kehai Liu
- College of Food, Shanghai Ocean University, 999 Hucheng Ring Road, Nanhui New Town, Pudong New Area, Shanghai, 201306, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China.
| |
Collapse
|
2
|
Fu WN, Du Y, Gong ZY. Application of optical coherence tomography angiography in the assessment of diabetic macular edema staging and laser photocoagulation efficacy. Photodiagnosis Photodyn Ther 2024; 46:104055. [PMID: 38508440 DOI: 10.1016/j.pdpdt.2024.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE This study aimed to analyze the effect of optical coherence tomography angiography (OCTA) on diabetic macular edema (DME) staging and assess the efficacy of laser photocoagulation. METHODS Eighty-six patients (141 eyes) with suspected DME who visited our hospital from August 2019 to March 2022 were selected and underwent fundus angiography and OCTA. The two examination methods were compared in terms of their efficacy in macular edema staging. Subsequently, the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of OCTA in diagnosing DME were assessed using fundus angiography as the gold standard. In patients with clinically significant macular edema (CSME) treated with laser photocoagulation, the central concave non-perfused zone (FAZ), vascular density (VD), central macular retinal thickness (CRT), whole retinal blood flow density (FD-300), superficial capillary plexus (SCP), and deep capillary plexus (DCP) were measured using the OCTA 3 mm × 3 mm mode before treatment, at 3 months after treatment, and at 6 months after treatment. SCP, deep capillary plexus (DCP), blood flow density (VD), best corrected visual acuity (BCVA), and central retinal thickness (CRT) were recorded before treatment, 3 months after treatment, and 6 months after treatment. The correlation between BCVA and pre-treatment OCTA parameters at 6 months after treatment was analyzed using Pearson's correlation. RESULTS Fundus angiography was performed in 86 patients (141 eyes) with suspected DME. Of the 141 eyes, 44 had no leakage, 52 had diffuse edema, 40 had focal macular edema, and 5 had eyes ischemia. A total of 97 eyes showed CSME on fundus angiography. Using fundus angiography as the gold standard, OCTA exhibited a sensitivity of 97.94 %, a specificity of 63.64 %, and an accuracy of 87.23 % in diagnosing CSME. The Kappa value between OCTA and fundus angiography was 0.674. The receiver operating characteristic curve revealed that the area under the curve (AUC) of OCTA in diagnosing CSME was 0.808 (95 % confidence interval: 0.717-0.899). The BCVA was higher, while the CRT was lower in CSME patients at 3 and 6 months after treatment (P<0.05). No significant difference was observed in the OCTA parameters in CSME patients at 3 months after treatment compared with that before treatment (P>0.05). Similarly, no significant difference was found in the FD300 of CSME patients at 6 months after treatment compared with that before treatment (P>0.05). However, the FAZ area, DCP-VD (overall, central concave, and paracentral concave), and SCP-VD (overall, central concave, and paracentral concave) were higher in CSME patients at 6 months after treatment compared with that before treatment (P<0.05). Pearson's correlation showed that BCVA was positively correlated with pre-treatment FAZ area, DCP-VD, and SCP-VD (r>0, P<0.05), and negatively associated with CRT (r<0, P<0.05). CONCLUSION OCTA exhibited high sensitivity and specificity in diagnosis and staging DME. It adeptly captures the microvascular and visual changes in the central macular recess before and after laser photocoagulation therapy, which can quantitatively guide the follow-up treatment of DME.
Collapse
Affiliation(s)
- Wei-Na Fu
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
| | - Yan Du
- Department of Ophthalmology, The First People's Hospital of Jiangxia District, Wuhan 430200, Hubei Province, China
| | - Zhi-Yong Gong
- Department of Ophthalmology, Hanchuan Aier Eye Hospital, Hanchuan 432000, Hubei Province, China.
| |
Collapse
|
3
|
Wu KY, Akbar D, Giunta M, Kalevar A, Tran SD. Hydrogels in Ophthalmology: Novel Strategies for Overcoming Therapeutic Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 17:86. [PMID: 38203940 PMCID: PMC10780040 DOI: 10.3390/ma17010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The human eye's intricate anatomical and physiological design necessitates tailored approaches for managing ocular diseases. Recent advancements in ophthalmology underscore the potential of hydrogels as a versatile therapeutic tool, owing to their biocompatibility, adaptability, and customizability. This review offers an exploration of hydrogel applications in ophthalmology over the past five years. Emphasis is placed on their role in optimized drug delivery for the posterior segment and advancements in intraocular lens technology. Hydrogels demonstrate the capacity for targeted, controlled, and sustained drug release in the posterior segment of the eye, potentially minimizing invasive interventions and enhancing patient outcomes. Furthermore, in intraocular lens domains, hydrogels showcase potential in post-operative drug delivery, disease sensing, and improved biocompatibility. However, while their promise is immense, most hydrogel-based studies remain preclinical, necessitating rigorous clinical evaluations. Patient-specific factors, potential complications, and the current nascent stage of research should inform their clinical application. In essence, the incorporation of hydrogels into ocular therapeutics represents a seminal convergence of material science and medicine, heralding advancements in patient-centric care within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
4
|
Rafael D, Guerrero M, Marican A, Arango D, Sarmento B, Ferrer R, Durán-Lara EF, Clark SJ, Schwartz S. Delivery Systems in Ocular Retinopathies: The Promising Future of Intravitreal Hydrogels as Sustained-Release Scaffolds. Pharmaceutics 2023; 15:1484. [PMID: 37242726 PMCID: PMC10220769 DOI: 10.3390/pharmaceutics15051484] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Slow-release delivery systems are needed to ensure long-term sustained treatments for retinal diseases such as age-related macular degeneration and diabetic retinopathy, which are currently treated with anti-angiogenic agents that require frequent intraocular injections. These can cause serious co-morbidities for the patients and are far from providing the adequate drug/protein release rates and required pharmacokinetics to sustain prolonged efficacy. This review focuses on the use of hydrogels, particularly on temperature-responsive hydrogels as delivery vehicles for the intravitreal injection of retinal therapies, their advantages and disadvantages for intraocular administration, and the current advances in their use to treat retinal diseases.
Collapse
Affiliation(s)
- Diana Rafael
- Drug Delivery & Targeting, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), 20 ICTS Nanbiosis, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Marcelo Guerrero
- Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.G.); (A.M.); (E.F.D.-L.)
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Adolfo Marican
- Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.G.); (A.M.); (E.F.D.-L.)
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, Vall d’Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Group of Molecular Oncology, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação, Saúde Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
| | - Roser Ferrer
- Clinical Biochemistry Group, Vall d’Hebron Hospital, 08035 Barcelona, Spain;
| | - Esteban F. Durán-Lara
- Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.G.); (A.M.); (E.F.D.-L.)
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Simon J. Clark
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Simo Schwartz
- Drug Delivery & Targeting, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
- Clinical Biochemistry Group, Vall d’Hebron Hospital, 08035 Barcelona, Spain;
| |
Collapse
|
5
|
Wu KY, Joly-Chevrier M, Akbar D, Tran SD. Overcoming Treatment Challenges in Posterior Segment Diseases with Biodegradable Nano-Based Drug Delivery Systems. Pharmaceutics 2023; 15:1094. [PMID: 37111579 PMCID: PMC10142934 DOI: 10.3390/pharmaceutics15041094] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Posterior segment eye diseases present a challenge in treatment due to the complex structures in the eye that serve as robust static and dynamic barriers, limiting the penetration, residence time, and bioavailability of topical and intraocular medications. This hinders effective treatment and requires frequent dosing, such as the regular use of eye drops or visits to the ophthalmologist for intravitreal injections, to manage the disease. Moreover, the drugs must be biodegradable to minimize toxicity and adverse reactions, as well as small enough to not affect the visual axis. The development of biodegradable nano-based drug delivery systems (DDSs) can be the solution to these challenges. First, they can stay in ocular tissues for longer periods of time, reducing the frequency of drug administration. Second, they can pass through ocular barriers, offering higher bioavailability to targeted tissues that are otherwise inaccessible. Third, they can be made up of polymers that are biodegradable and nanosized. Hence, therapeutic innovations in biodegradable nanosized DDS have been widely explored for ophthalmic drug delivery applications. In this review, we will present a concise overview of DDSs utilized in the treatment of ocular diseases. We will then examine the current therapeutic challenges faced in the management of posterior segment diseases and explore how various types of biodegradable nanocarriers can enhance our therapeutic arsenal. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 was conducted. Through the advances in biodegradable materials, combined with a better understanding of ocular pharmacology, the nano-based DDSs have rapidly evolved, showing great promise to overcome challenges currently encountered by clinicians.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | | | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
6
|
Jin Q, Yu C, Xu L, Zhang G, Ju J, Hou R. Combined light-cured and sacrificial hydrogels for fabrication of small-diameter bionic vessels by 3D bioprinting. Technol Health Care 2023:THC220393. [PMID: 36872804 DOI: 10.3233/thc-220393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND Bionic grafts can replace autologous tissue through tissue engineering in cases of cardiovascular disease. However, small-diameter vessel grafts remain challenging to precellularize. OBJECTIVE Bionic small-diameter vessels with endothelial and smooth muscle cells (SMCs) manufactured with a novel approach. METHODS A 1-mm-diameter bionic blood vessel was constructed by combining light-cured hydrogel gelatin-methacryloyl (GelMA) with sacrificial hydrogel Pluronic F127. Mechanical properties of GelMA (Young's modulus and tensile stress) were tested. Cell viability and proliferation were detected using Live/dead staining and CCK-8 assays, respectively. The histology and function of the vessels were observed using hematoxylin and eosin and immunofluorescence staining. RESULTS GelMA and Pluronic were printed together using extrusion. The temporary Pluronic support was removed by cooling during GelMA crosslinking, yielding a hollow tubular construct. A bionic bilayer vascular structure was fabricated by loading SMCs into the GelMA bioink, followed by perfusion with endothelial cells. In the structure, both cell types maintained good cell viability. The vessel showed good histological morphology and function. CONCLUSION Using light-cured and sacrificial hydrogels, we formed a small ca bionic vessel with a small caliber containing SMCs and endothelial cells, demonstrating an innovative approach for construction of bionic vascular tissues.
Collapse
Affiliation(s)
- Qianheng Jin
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China.,Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chenghao Yu
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China.,Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lei Xu
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China
| | - Guangliang Zhang
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China
| | - Jihui Ju
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China
| | - Ruixing Hou
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery. Int J Pharm 2023; 631:122484. [PMID: 36509221 DOI: 10.1016/j.ijpharm.2022.122484] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
To date, hydrogels have opened new prospects for potential applications for drug delivery. The thermo-sensitive hydrogels have the great potential to provide more effective and controllable release of therapeutic/bioactive agents in response to changes in temperature. PLGA is a safe FDA-approved copolymer with good biocompatibility and biodegradability. Recently, PLGA-based formulation have attracted a lot of interest for thermo-sensitive hydrogels. Thermo-sensitive PLGA-based hydrogels provide the delivery system with good spatial and temporal control, and have been widely applied in drug delivery. This review is focused on the recent progression of the thermo-sensitive and biodegradable PLGA-based hydrogels that have been reported for smart drug delivery to the different organs. Eventually, future perspectives and challenges of thermo-sensitive PLGA-based hydrogels are discussed briefly.
Collapse
|
8
|
Hu P, Tao L. Comparison of the clinical effects between digital keratoplasty and traditional orthokeratology lenses for correcting juvenile myopia. Technol Health Care 2023; 31:2021-2029. [PMID: 37092197 PMCID: PMC10741369 DOI: 10.3233/thc-220893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/09/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Various methods exist to intervene with and control myopia, including bifocal lenses, multifocal lenses, pirenzepine, atropine, soft gas-permeable contact lenses and aberration control frame lenses, each with its own advantages and disadvantages. OBJECTIVE To compare the clinical effectiveness of digital keratoplasty lenses and traditional orthokeratology (OK) lenses in correcting juvenile myopia. METHODS Sixty-one patients (122 eyes) with an average age of 10.43 ± 1.71 years and with myopia were enrolled from January 2021 to January 2022 in the treatment centre of our hospital. The patients were randomly divided into two groups. Group I (the experimental group) consisted of 30 patients who were treated with digital corneal shaping (MCT) lenses, while group II (the control group) consisted of 31 patients who were treated with traditional OK lenses. Clinical indicators, such as visual acuity, ocular axis, intraocular pressure, degree of central positioning, naked visual acuity and first-order spotting, were statistically analysed before and after fitting. RESULTS The naked eye vision of patients using MCT lenses was significantly improved compared with patients who used traditional OK lenses (0.95 ± 0.28 > 0.58 ± 0.25; p< 0.05). Moreover, the risk of primary spot staining was reduced (p< 0.05), intraocular pressure was lower (p< 0.05) and the centre position reached 100% in patients wearing MCT lenses, suggesting that wearing MCT lenses may be more beneficial than wearing traditional OK lenses. CONCLUSION Compared with traditional OK lenses, MCT lenses reduce the degree of myopia, have significant effects and have the added advantages of safety and reliability.
Collapse
Affiliation(s)
- Pan Hu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Ophthalmology, Hefei Bright Eye Hospital, Hefei, Anhui, China
| | - Liming Tao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
9
|
Doescher C, Thai A, Cha E, Cheng PV, Agrawal DK, Thankam FG. Intelligent Hydrogels in Myocardial Regeneration and Engineering. Gels 2022; 8:576. [PMID: 36135287 PMCID: PMC9498403 DOI: 10.3390/gels8090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Myocardial infarction (MI) causes impaired cardiac function due to the loss of cardiomyocytes following an ischemic attack. Intelligent hydrogels offer promising solutions for post-MI cardiac tissue therapy to aid in structural support, contractility, and targeted drug therapy. Hydrogels are porous hydrophilic matrices used for biological scaffolding, and upon the careful alteration of ideal functional groups, the hydrogels respond to the chemistry of the surrounding microenvironment, resulting in intelligent hydrogels. This review delves into the perspectives of various intelligent hydrogels and evidence from successful models of hydrogel-assisted treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Finosh G. Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
10
|
Acevedo-Jake A, Shi S, Siddiqui Z, Sanyal S, Schur R, Kaja S, Yuan A, Kumar VA. Preclinical Efficacy of Pro- and Anti-Angiogenic Peptide Hydrogels to Treat Age-Related Macular Degeneration. Bioengineering (Basel) 2021; 8:190. [PMID: 34940343 PMCID: PMC8698576 DOI: 10.3390/bioengineering8120190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
Pro-angiogenic and anti-angiogenic peptide hydrogels were evaluated against the standard of care wet age-related macular degeneration (AMD) therapy, Aflibercept (Eylea®). AMD was modeled in rats (laser-induced choroidal neovascularization (CNV) model), where the contralateral eye served as the control. After administration of therapeutics, vasculature was monitored for 14 days to evaluate leakiness. Rats were treated with either a low or high concentration of anti-angiogenic peptide hydrogel (0.02 wt% 8 rats, 0.2 wt% 6 rats), or a pro-angiogenic peptide hydrogel (1.0 wt% 7 rats). As controls, six rats were treated with commercially available Aflibercept and six with sucrose solution (vehicle control). Post lasering, efficacy was determined over 14 days via fluorescein angiography (FA) and spectral-domain optical coherence tomography (SD-OCT). Before and after treatment, the average areas of vascular leak per lesion were evaluated as well as the overall vessel leakiness. Unexpectedly, treatment with pro-angiogenic peptide hydrogel showed significant, immediate improvement in reducing vascular leak; in the short term, the pro-angiogenic peptide performed better than anti-angiogenic peptide hydrogel and was comparable to Aflibercept. After 14 days, both the pro-angiogenic and anti-angiogenic peptide hydrogels show a trend of improvement, comparable to Aflibercept. Based on our results, both anti-angiogenic and pro-angiogenic peptide hydrogels may prove good therapeutics in the future to treat wet AMD over a longer-term treatment period.
Collapse
Affiliation(s)
- Amanda Acevedo-Jake
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (A.A.-J.); (Z.S.)
| | - Siyu Shi
- Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (A.A.-J.); (Z.S.)
| | - Sreya Sanyal
- Department of Biology, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Rebecca Schur
- Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA; (R.S.); (A.Y.)
| | - Simon Kaja
- Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland;
- Department of Ophthalmology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Alex Yuan
- Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA; (R.S.); (A.Y.)
| | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (A.A.-J.); (Z.S.)
- Department of Biology, New Jersey Institute of Technology, Newark, NJ 07102, USA;
- Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ 07102, USA
| |
Collapse
|
11
|
Silva M, Peng T, Zhao X, Li S, Farhan M, Zheng W. Recent trends in drug-delivery systems for the treatment of diabetic retinopathy and associated fibrosis. Adv Drug Deliv Rev 2021; 173:439-460. [PMID: 33857553 DOI: 10.1016/j.addr.2021.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy is a frequent microvascular complication of diabetes and a major cause of visual impairment. In advanced stages, the abnormal neovascularization can lead to fibrosis and subsequent tractional retinal detachment and blindness. The low bioavailability of the drugs at the target site imposed by the anatomic and physiologic barriers within the eye, requires long term treatments with frequent injections that often compromise patient's compliance and increase the risk of developing more complications. In recent years, much effort has been put towards the development of new drug delivery platforms aiming to enhance their permeation, to prolong their retention time at the target site and to provide a sustained release with reduced toxicity and improved efficacy. This review provides an overview of the etiology and pathophysiology of diabetic retinopathy and current treatments. It addresses the specific challenges associated to the different ocular delivery routes and provides a critical review of the most recent developments made in the drug delivery field.
Collapse
Affiliation(s)
- Marta Silva
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Tangming Peng
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Xia Zhao
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Shuai Li
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Mohd Farhan
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Wenhua Zheng
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau.
| |
Collapse
|
12
|
Thacker M, Tseng CL, Lin FH. Substitutes and Colloidal System for Vitreous Replacement and Drug Delivery: Recent Progress and Future Prospective. Polymers (Basel) 2020; 13:E121. [PMID: 33396863 PMCID: PMC7796247 DOI: 10.3390/polym13010121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/10/2023] Open
Abstract
Vitreoretinal surgeries for ocular diseases such as complicated retinal detachment, diabetic retinopathy, macular holes and ocular trauma has led to the development of various tamponades over the years in search for an ideal vitreous substitute. Current clinically used tamponade agents such as air, perfluorocarbons, silicone oil and expansile gases serve only as a short-term solution and harbors various disadvantages. However, an ideal long-term substitute is yet to be discovered and recent research emphasizes on the potential of polymeric hydrogels as an ideal vitreous substitute. This review highlights the recent progress in the field of vitreous substitution. Suitability and adverse effects of various tamponade agents in present day clinical use and biomaterials in the experimental phase have been outlined and discussed. In addition, we introduced the anatomy and functions of the native vitreous body and the pathological conditions which require vitreous replacement.
Collapse
Affiliation(s)
- Minal Thacker
- Graduate Institute of Biomedical Engineering, National Taiwan University, Daan District, Taipei 10051, Taiwan;
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Feng-Huei Lin
- Graduate Institute of Biomedical Engineering, National Taiwan University, Daan District, Taipei 10051, Taiwan;
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| |
Collapse
|
13
|
Jemni-Damer N, Guedan-Duran A, Fuentes-Andion M, Serrano-Bengoechea N, Alfageme-Lopez N, Armada-Maresca F, Guinea GV, Pérez-Rigueiro J, Rojo F, Gonzalez-Nieto D, Kaplan DL, Panetsos F. Biotechnology and Biomaterial-Based Therapeutic Strategies for Age-Related Macular Degeneration. Part I: Biomaterials-Based Drug Delivery Devices. Front Bioeng Biotechnol 2020; 8:549089. [PMID: 33224926 PMCID: PMC7670958 DOI: 10.3389/fbioe.2020.549089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
Age-related Macular Degeneration (AMD) is an up-to-date untreatable chronic neurodegenerative eye disease of multifactorial origin, and the main causes of blindness in over 65 years old people. It is characterized by a slow progression and the presence of a multitude of factors, highlighting those related to diet, genetic heritage and environmental conditions, present throughout each of the stages of the illness. Current therapeutic approaches, mainly consisting of intraocular drug delivery, are only used for symptoms relief and/or to decelerate the progression of the disease. Furthermore, they are overly simplistic and ignore the complexity of the disease and the enormous differences in the symptomatology between patients. Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, the development of biomaterials-based approaches for a personalized and controlled delivery of therapeutic drugs and biomolecules represents the main challenge for the defeat of this neurodegenerative disease. Here we present a critical review of the available and under development AMD therapeutic approaches, from a biomaterials and biotechnological point of view. We highlight benefits and limitations and we forecast forthcoming alternatives based on novel biomaterials and biotechnology methods. In the first part we expose the physiological and clinical aspects of the disease, focusing on the multiple factors that give origin to the disorder and highlighting the contribution of these factors to the triggering of each step of the disease. Then we analyze available and under development biomaterials-based drug-delivery devices (DDD), taking into account the anatomical and functional characteristics of the healthy and ill retinal tissue.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Atocha Guedan-Duran
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - María Fuentes-Andion
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Nora Serrano-Bengoechea
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Silk Biomed SL, Madrid, Spain
| | - Nuria Alfageme-Lopez
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Silk Biomed SL, Madrid, Spain
| | | | - Gustavo V Guinea
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Pérez-Rigueiro
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco Rojo
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Fivos Panetsos
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Silk Biomed SL, Madrid, Spain
| |
Collapse
|
14
|
Bisht R, Nirmal S, Agrawal R, Jain GK, Nirmal J. Injectable in-situ gel depot system for targeted delivery of biologics to the retina. J Drug Target 2020; 29:46-59. [PMID: 32729731 DOI: 10.1080/1061186x.2020.1803886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In current clinical settings, frequent intravitreal (IVT) injections of anti-vascular endothelial growth factors are used due to their short in-vivo half-life and rapid clearance from the back of the eye. The IVT injections are associated with pain, risk of infection, retinal detachment, and financial burden. Biologics molecules can undergo physical, chemical, and enzymatic degradation during formulation development and in the biological environment. Moreover, the complex ocular structures also act as a rate-limiting barrier for these biologics. Thus, delivering stable and clinically relevant biologics concentration to the back of the eye is still a challenge. Compare to other drug delivery platforms, injectable in-situ gelling depot systems (IISGDs) have emerged as an effective system for biologics delivery. In this review, we have discussed various biologics used in ocular therapeutics and their associated challenges. Different routes of delivery and associated tissue barriers are also discussed. Different types of IISGDs developed to date for biologics delivery to the back of the eye were also covered. To conclude, various critical parameters related to the formulation development process and injectable depot systems that need careful consideration and further investigations were highlighted.
Collapse
Affiliation(s)
- Rohit Bisht
- Department of Pharmacy, Translational Pharmaceutics Research Laboratory, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, Telangana, India
| | - Sonali Nirmal
- School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Incozen Therapeutics Pvt. Ltd., Hyderabad, Telangana, India (Current affiliation)
| | - Rupesh Agrawal
- School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore.,National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Gaurav K Jain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Jayabalan Nirmal
- Department of Pharmacy, Translational Pharmaceutics Research Laboratory, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, Telangana, India
| |
Collapse
|
15
|
Liang T, Wu J, Li F, Huang Z, Pi Y, Miao G, Ren W, Liu T, Jiang Q, Guo L. Drug-loading three-dimensional scaffolds based on hydroxyapatite-sodium alginate for bone regeneration. J Biomed Mater Res A 2020; 109:219-231. [PMID: 32490561 DOI: 10.1002/jbm.a.37018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/03/2020] [Accepted: 04/19/2020] [Indexed: 12/29/2022]
Abstract
Bone tissue engineering is a promising approach for tackling clinical challenges. Osteoprogenitor cells, osteogenic factors, and osteoinductive/osteoconductive scaffolds are employed in bone tissue engineering. However, scaffold materials remain limited due to their source, low biocompatibility, and so on. In this study, a composite hydrogel scaffold composed of hydroxyapatite (HA) and sodium alginate (SA) was manufactured using three-dimensional printing. Naringin (NG) and calcitonin-gene-related peptide (CGRP) were used as osteogenic factors in the fabrication of drug-loaded scaffolds. Investigation using animal experiments, as well as scanning electron microscopy, cell counting kit-8 testing, alkaline phosphatase staining, and alizarin red-D staining of bone marrow mesenchymal stem cell culture showed that the three scaffolds displayed similar physicochemical properties and that the HA/SA/NG and HA/SA/CGRP scaffolds displayed better osteogenesis than that of the HA/SA scaffold. Thus, the HA/SA scaffold could be a biocompatible material with potential applications in bone regeneration. Meanwhile, NG and CGRP doping could result in better and more positive proliferation and differentiation.
Collapse
Affiliation(s)
- Tingting Liang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingwen Wu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fuyao Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhu Huang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yixing Pi
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guohou Miao
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen Ren
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tiantao Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianzhou Jiang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lvhua Guo
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|