1
|
Wang X, Shao H, Zhang G, Zhang H, Yan J, Zhu Y, Zhang J, Wang W, Yang Z, Tang C. Rapid Fabrication of Antilunar Dust Aluminum Surface by Nanosecond Laser Etching. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45678-45686. [PMID: 39147724 DOI: 10.1021/acsami.4c08100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Although a dust-repellent surface is desirable for lunar exploration missions, its fabrication process is complicated and time-consuming. Herein, we report a simple and fast method to fabricate a lunar dust-repellent surface by texturing on an Al substrate via nanosecond laser etching. The laser-induced photothermal effect can rapidly create hierarchical papillary structures on 25 × 25 mm Al substrates (within 30 s). Both atomic force microscopy (AFM) and in situ scanning electron microscopy (SEM) reveal that such structures enable a reduced contact area between the Al substrate and lunar dust and thus reduced adhesion. The reduced dust adhesion force of Al substrates facilitates improving their antidust performance. By optimizing processing parameters, the Al substrate etched with a laser scanning spacing of 80 μm exhibits a lower dust adhesion force (9.58 nN) due to the smallest contact area with dust. Accordingly, its static antilunar dust performance (dust coverage of 1.95%) is significantly improved compared to the pristine Al substrate (dust coverage of 12.98%). Besides, the accumulated dust on the laser-etched Al substrates with low surface adhesion force is easily cleaned up by flipping and gravity (the dust residual rates are less than 17%). The Al substrate with excellent antidust ability presents good potential for lunar exploration missions.
Collapse
Affiliation(s)
- Xiao Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, P. R. China
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, P. R. China
| | - Hong Shao
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, P. R. China
| | - Guangyi Zhang
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Haiyan Zhang
- Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou 730000, P. R. China
| | - Junyu Yan
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, P. R. China
| | - Yingmin Zhu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, P. R. China
| | - Ji Zhang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, P. R. China
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, P. R. China
| | - Zhan Yang
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, P. R. China
| |
Collapse
|
2
|
Saleem A, Awan T, Akhtar MF. A comprehensive review on endocrine toxicity of gaseous components and particulate matter in smog. Front Endocrinol (Lausanne) 2024; 15:1294205. [PMID: 38352708 PMCID: PMC10863453 DOI: 10.3389/fendo.2024.1294205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Smog is a form of extreme air pollution which comprises of gases such as ozone, sulfur dioxide, nitrogen and carbon oxides, and solid particles including particulate matter (PM2.5 and PM10). Different types of smog include acidic, photochemical, and Polish. Smog and its constituents are hazardaous to human, animals, and plants. Smog leads to plethora of morbidities such as cancer, endocrine disruption, and respiratory and cardiovascular disorders. Smog components alter the activity of various hormones including thyroid, pituitary, gonads and adrenal hormones by altering regulatory genes, oxidation status and the hypothalamus-pituitary axis. Furthermore, these toxicants are responsible for the development of metabolic disorders, teratogenicity, insulin resistance, infertility, and carcinogenicity of endocrine glands. Avoiding fossil fuel, using renewable sources of energy, and limiting gaseous discharge from industries can be helpful to avoid endocrine disruption and other toxicities of smog. This review focuses on the toxic implications of smog and its constituents on endocrine system, their toxicodynamics and preventive measures to avoid hazardous health effects.
Collapse
Affiliation(s)
- Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tanzeela Awan
- Department of Pharmacy, The Women University Multan, Multan, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| |
Collapse
|
3
|
Peters A, Herr C, Bolte G, Heutelbeck A, Hornberg C, Kraus T, Lakes T, Matzarakis A, Novak D, Reifegerste D, Traidl-Hoffmann C, Zeeb H, Schneider A, Hoffmann B. [Health protection and climate change require ambitious limit values for air pollutants in Europe : Opinion on the revision of the Directive on Air Quality and Clean Air for Europe of the Environmental Public Health commission of the Robert Koch Institute and the Federal Environment Agency]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023; 66:1030-1034. [PMID: 37603135 PMCID: PMC10465619 DOI: 10.1007/s00103-023-03755-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/22/2023]
Abstract
Based on scientific findings, the World Health Organization (WHO) has recommended stricter guideline values for air quality in 2021. Significant reductions in the annual mean values of particulate matter (particle size 2.5 µm or smaller, PM2.5) and long-term exposure to nitrogen dioxide (NO2) and ozone (O3) were put forward. The risk of mortality already increases above the WHO guideline values, as shown in studies investigating low concentrations of air pollutants. In Germany, the 2021 WHO guideline values for PM2.5 and NO2 were clearly exceeded in 2022.In this position paper we give the following recommendations for the European Air Quality Directive: (1) set binding limit values according to WHO 2021, (2) apply the limit values to the whole of Europe, (3) continue and expand the established country-based monitoring networks, (4) expand air quality measurements for ultrafine particles and soot particles, and (5) link air pollution control and climate protection measures.Stricter limits for air pollutants require societal and political changes in areas such as mobility, energy use and generation, and urban and spatial planning. Implementation according to WHO 2021 would lead to a net economic benefit of 38 billion euros per year.Ambitious limit values for air pollutants also have an impact on climate change mitigation and its health impacts. The Environmental Public Health commission concludes that more ambitious limit values are crucial to enable effective health protection in Germany and calls for air pollutant limit values in line with the 2021 WHO recommendations to become binding in Europe.
Collapse
Affiliation(s)
- Annette Peters
- Institut für Epidemiologie, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Deutschland.
- Lehrstuhl für Epidemiologie, Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Medizinische Fakultät, Ludwig-Maximilians-Universität München, München, Deutschland.
| | - Caroline Herr
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, München, Deutschland
| | - Gabriele Bolte
- Institut für Public Health und Pflegeforschung, Abteilung Sozialepidemiologie, Universität Bremen, Bremen, Deutschland
| | - Astrid Heutelbeck
- Institut für Arbeits‑, Sozial- und Umweltmedizin, Universitätsklinikum Jena, Jena, Deutschland
| | - Claudia Hornberg
- Medizinische Fakultät OWL, Universität Bielefeld, Bielefeld, Deutschland
| | - Thomas Kraus
- Institut für Arbeits‑, Sozial- und Umweltmedizin, Uniklinik RWTH Aachen, Aachen, Deutschland
| | - Tobia Lakes
- Geographisches Institut, Angewandte Geoinformationsverarbeitung, Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Andreas Matzarakis
- Zentrum für Medizin-Meteorologische Forschung, Deutscher Wetterdienst, Freiburg, Deutschland
| | - Dennis Novak
- Instituts- und Poliklinik für Arbeits‑, Sozial- und Umweltmedizin, Ludwig-Maximilians-Universität Klinikum, München, Deutschland
| | - Doreen Reifegerste
- Fakultät für Gesundheitswissenschaften, Universität Bielefeld, Bielefeld, Deutschland
| | - Claudia Traidl-Hoffmann
- Medizinische Fakultät - Lehrstuhl für Umweltmedizin, Universitätsklinikum Augsburg, Augsburg, Deutschland
| | - Hajo Zeeb
- Leibniz-Institut für Präventionsforschung und Epidemiologie - BIPS und Universität Bremen, Bremen, Deutschland
| | - Alexandra Schneider
- Institut für Epidemiologie, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Deutschland
| | - Barbara Hoffmann
- Institut für Arbeits‑, Sozial- und Umweltmedizin, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| |
Collapse
|
4
|
Shi Y, Du Z, Zhang J, Han F, Chen F, Wang D, Liu M, Zhang H, Dong C, Sui S. Construction and evaluation of hourly average indoor PM 2.5 concentration prediction models based on multiple types of places. Front Public Health 2023; 11:1213453. [PMID: 37637795 PMCID: PMC10447970 DOI: 10.3389/fpubh.2023.1213453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Background People usually spend most of their time indoors, so indoor fine particulate matter (PM2.5) concentrations are crucial for refining individual PM2.5 exposure evaluation. The development of indoor PM2.5 concentration prediction models is essential for the health risk assessment of PM2.5 in epidemiological studies involving large populations. Methods In this study, based on the monitoring data of multiple types of places, the classical multiple linear regression (MLR) method and random forest regression (RFR) algorithm of machine learning were used to develop hourly average indoor PM2.5 concentration prediction models. Indoor PM2.5 concentration data, which included 11,712 records from five types of places, were obtained by on-site monitoring. Moreover, the potential predictor variable data were derived from outdoor monitoring stations and meteorological databases. A ten-fold cross-validation was conducted to examine the performance of all proposed models. Results The final predictor variables incorporated in the MLR model were outdoor PM2.5 concentration, type of place, season, wind direction, surface wind speed, hour, precipitation, air pressure, and relative humidity. The ten-fold cross-validation results indicated that both models constructed had good predictive performance, with the determination coefficients (R2) of RFR and MLR were 72.20 and 60.35%, respectively. Generally, the RFR model had better predictive performance than the MLR model (RFR model developed using the same predictor variables as the MLR model, R2 = 71.86%). In terms of predictors, the importance results of predictor variables for both types of models suggested that outdoor PM2.5 concentration, type of place, season, hour, wind direction, and surface wind speed were the most important predictor variables. Conclusion In this research, hourly average indoor PM2.5 concentration prediction models based on multiple types of places were developed for the first time. Both the MLR and RFR models based on easily accessible indicators displayed promising predictive performance, in which the machine learning domain RFR model outperformed the classical MLR model, and this result suggests the potential application of RFR algorithms for indoor air pollutant concentration prediction.
Collapse
Affiliation(s)
- Yewen Shi
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zhiyuan Du
- Department of Environmental Health, Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Jianghua Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Fengchan Han
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Feier Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Duo Wang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Mengshuang Liu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Hao Zhang
- Department of Environmental Health, Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Chunyang Dong
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Shaofeng Sui
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
5
|
Park J, Park Y, Yoo JL, Yue G, Yu J. Can the perceived risk of particulate matter change people's desires and behavior intentions? Front Public Health 2022; 10:1035174. [PMID: 36466525 PMCID: PMC9709442 DOI: 10.3389/fpubh.2022.1035174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Particulate matter (PM) is a hazardous airborne pollutant that encompasses all airborne particles with diameters ranging from 0.001 to 100 μm. It is composed of total suspended particles (TSPs), consisting of two main particle sizes: PM10 and PM2.5. PM poses various threats to human health because of its rapid mobility and its ability to spread over a wide area. In particular, it has long-term negative effects on such organs as the lungs and heart. China and South Korea, located in Northeast Asia, are representative of the countries at risk of PM, and their populations live with an awareness that the harms of PM go beyond physical risks. Therefore, based on previous studies, this study classifies the perceived PM risks into physical, psychological, financial, functional, and time risks. It has tried to verify the effect of this risk perception on the behavior intention of Chinese and Koreans and examine the moderating effect according to the difference in nationality. The study's conceptual model was constructed by applying Ajzen's proven theory of planned action. Utilizing AMOS 22.0 and SPSS 22.0, an analysis was performed. Following this analysis, it was determined that there was a significant causal relationship between perceived PM risk and behavioral attitudes, subjective norms, and perceived behavioral control. Additionally, it was discovered that perceived PM risk significantly impacted desire and behavioral intention. These findings demonstrate that when persons are exposed to high concentrations of PM, they perceive a variety of risks that go beyond the merely physical, and they can form different attitudes depending on their nationality. This study greatly contributes to the theoretical and practical implications by presenting more diverse perspectives on PM risk.
Collapse
Affiliation(s)
- Junghyun Park
- College of Hospitality and Tourism Management, Sejong University, Seoul, South Korea
| | - Yunmi Park
- Department of Aviation Service, Cheongju University, Cheongju-si, South Korea
| | - Jae Leame Yoo
- Department of Aeronautical Science and Flight Operation, Cheongju University, Cheongju-si, South Korea
| | - Gong Yue
- Business School Tourism and Hospitality Management, Xuzhou University of Technology, Xuzhou, China
| | - Jongsik Yu
- Department of Hotel and Foodservice Management, Cheongju University, Cheongju-si, South Korea,*Correspondence: Jongsik Yu
| |
Collapse
|
6
|
Lee SJ, Kim TW, Park TH, Lee IH, Jang EC, Kwon SC, Lee HJ, Choi JH, Lee JB. Thermotherapy as an alternative to exercise for metabolic health in obese postmenopausal women: focus on circulating irisin level. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:501-509. [PMID: 36302624 PMCID: PMC9614401 DOI: 10.4196/kjpp.2022.26.6.501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023]
Abstract
Irisin is a myokine caused by exercise that improves insulin resistance and weight loss. However, under unfavorable conditions such as air pollution, and during the pandemic, outdoor activities are uncomfortable. Therefore, in this study, the effect of heat therapy (half bath 42 ± 0.5°C for 30 min) on irisin circulation levels as an exercise alternative for middle-aged obese women after menopause was investigated. Subjects were 33 women aged 49.54 ± 6.04 years, with parameters of height, 160.12 ± 4.33 cm, weight, 69.71 ± 7.52 kg, body surface area 1.73 ± 0.13 m2, body mass index, 27.19 ± 3.40 kg/m2. The results suggest that circulating irisin levels showed a significant increase after one-time thermotherapy (TH-1). However, the increase in circulating irisin levels after 15 treatments (TH-15, 5 days/week, 3 weeks) was significantly varied. The level of adiponectin, which increases fatty oxidation to reduce fatty deposition, increased significantly at TH-1, but further increased at TH-15, which was significantly different from the level of TH-1. In addition, the basic serum free fatty acid (FFA) level was significantly increased at TH-15 compared to TH-1. Significant differences were also found in the lipid profile (body mass index, waist circumference, and % body fat). Thermotherapy can significantly increase the tympanic temperature and induce changes in circulating irisin and adiponectin levels. Thus, it resulted in positive changes in FFA and lipid profiles. Therefore, repeated thermotherapy is effective in increasing circulating irisin levels in postmenopausal obese women.
Collapse
Affiliation(s)
- Seung-Jea Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea,Department of Medical Sciences, Soonchunhyang University, Asan 31238, Korea
| | - Tae-Wook Kim
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Tae-Hwan Park
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - In-Ho Lee
- Department of Occupational and Environmental Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
| | - Eun-Chul Jang
- Department of Occupational and Environmental Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
| | - Soon-Chan Kwon
- Department of Occupational and Environmental Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
| | - Hye-Jin Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea,Department of Medical Sciences, Soonchunhyang University, Asan 31238, Korea
| | - Jeong-Hwan Choi
- Department of Medical Sciences, Soonchunhyang University, Asan 31238, Korea
| | - Jeong-Beom Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea,Department of Medical Sciences, Soonchunhyang University, Asan 31238, Korea,Correspondence Jeong-Beom Lee, E-mail:
| |
Collapse
|
7
|
Li H, Cai M, Li H, Qian ZM, Stamatakis K, McMillin SE, Zhang Z, Hu Q, Lin H. Is dietary intake of antioxidant vitamins associated with reduced adverse effects of air pollution on diabetes? Findings from a large cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114182. [PMID: 36270037 PMCID: PMC9626446 DOI: 10.1016/j.ecoenv.2022.114182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 05/12/2023]
Abstract
INTRODUCTION It remains unknown whether higher dietary intake of antioxidant vitamins could reduce the harmful effects of air pollution on incident diabetes mellitus. METHODS A total of 156,490 participants free of diabetes mellitus in the UK Biobank data were included in this analysis. Antioxidant vitamin intake was measured using a 24-h food intake questionnaire, and results were categorized as sufficient or insufficient according to the British Recommended Nutrient Intake. Exposure to fine particles (PM2.5), thoracic particles (PM10), nitrogen dioxide (NO2), and nitrogen oxide (NOx) was estimated using land use regression models at participants' residences. Incident diabetes mellitus was identified using health administrative datasets. Cox regression models were used to assess the associations. RESULTS A total of 4271 incident diabetes mellitus cases were identified during a median follow-up of 11.7 years. Compared with participants with insufficient intake of antioxidant vitamins, those with sufficient consumption had a weaker association between air pollution (PM2.5, PM10 and NO2) and diabetes mellitus [sufficient vs. insufficient: HR = 1.12 (95 % CI: 0.87, 1.45) vs. 1.69 (95 % CI: 1.42, 2.02) for PM2.5, 1.00 (95 % CI: 0.88, 1.14) vs. 1.21 (95 % CI: 1.10, 1.34) for PM10, and 1.01 (95 % CI: 0.98, 1.04) vs. 1.05 (95 % CI: 1.03, 1.07) for NO2 (all p for comparison < 0.05)]. Among different antioxidant vitamins, we observed stronger effects for vitamin C and E. CONCLUSION Our study suggests that ambient air pollution is one important risk factor of diabetes mellitus, and sufficient intake of antioxidant vitamins may reduce such adverse effects of air pollution on diabetes mellitus.
Collapse
Affiliation(s)
- Haopeng Li
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Miao Cai
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Haitao Li
- Department of Social Medicine and Health Service Management, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63104, USA
| | - Katie Stamatakis
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63104, USA
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA
| | - Zilong Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Qiansheng Hu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Hualiang Lin
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
8
|
Kim DH, Lee H, Hwangbo H, Kim SY, Ji SY, Kim MY, Park SK, Park SH, Kim MY, Kim GY, Cheong J, Nam SW, Choi YH. Particulate matter 2.5 promotes inflammation and cellular dysfunction via reactive oxygen species/p38 MAPK pathway in primary rat corneal epithelial cells. Cutan Ocul Toxicol 2022; 41:273-284. [PMID: 36097682 DOI: 10.1080/15569527.2022.2122489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Numerous studies have linked particulate matter 2.5 (PM2.5) to ocular surface diseases, but few studies have been conducted on the biological effect of PM2.5 on the cornea. The objective of the present study was to evaluate the harmful effect of PM2.5 on primary rat corneal epithelial cells (RCECs) in vitro and identify the toxic mechanism involved. MATERIALS AND METHODS Primary cultured RCECs were characterized by pan-cytokeratin (CK) staining. In PM2.5-exposed RCECs, cell viability, microarray gene expression, inflammatory cytokine levels, mitochondrial damage, DNA double-strand break and signaling pathway were investigated. RESULTS Exposure to PM2.5 induced cytotoxicity and morphological changes in RCECs. In addition, PM2.5 markedly up-regulated pro-inflammatory mediators but down-regulated the wound healing-related transforming growth factor-β. Furthermore, PM2.5 promoted mitochondrial reactive oxygen species (ROS) production and mediated cellular damage to mitochondria and DNA, whereas these cellular alterations induced by PM2.5 were markedly suppressed by a potential ROS scavenger. Noteworthy, removal of ROS selectively down-regulated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and the activation of the nuclear factor-κB (NF-κB) p65 in PM2.5-stimulated cells. Additionally, SB203580, a p38 MAPK inhibitor, markedly suppressed these PM2.5-mediated cellular dysfunctions. CONCLUSIONS Taken together, our findings show that PM2.5 can promote the ROS/p38 MAPK/NF-κB signaling pathway and lead to mitochondrial damage and DNA double-strand break, which is ultimately caused inflammation and cytotoxicity in RCECs. These findings indicate that the ROS/p38 MAPK/NF-κB signaling pathway is one mechanism involved in PM2.5-induced ocular surface disorders.
Collapse
Affiliation(s)
- Da Hye Kim
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Molecular Biology, xxxx, Busan 46241, Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Convergence Medicine, xxxx, Yangsan 50612, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Biochemistry, xxxx, Busan 47227, Republic of Korea
| | - So Young Kim
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Biochemistry, xxxx, Busan 47227, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Biochemistry, xxxx, Busan 47227, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Biochemistry, xxxx, Busan 47227, Republic of Korea
| | - Seh-Kwang Park
- Research and Development Department, xxxx., Busan 47195, Republic of Korea.,xxxx, Seoul 05551, Republic of Korea
| | - Sung-Ho Park
- Research and Development Department, xxxx., Busan 47195, Republic of Korea.,xxxx, Seoul 05551, Republic of Korea
| | - Mi-Young Kim
- Research and Development Department, xxxx., Busan 47195, Republic of Korea.,xxxx, Seoul 05551, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, xxxx, Jeju 63243, Republic of Korea
| | - Jaehun Cheong
- Department of Molecular Biology, xxxx, Busan 46241, Republic of Korea
| | - Soo-Wan Nam
- Department of Smart Bio-Health, xxxx, Busan 47340, Republic of Korea.,Department of Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering, College of Engineering, xxxx, Busan 47340, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Biochemistry, xxxx, Busan 47227, Republic of Korea.,Department of Smart Bio-Health, xxxx, Busan 47340, Republic of Korea.,Core-Facility Center for Tissue Regeneration, xxxx, Busan 47340, Republic of Korea
| |
Collapse
|
9
|
DFT Study on the Combined Catalytic Removal of N2O, NO, and NO2 over Binuclear Cu-ZSM-5. Catalysts 2022. [DOI: 10.3390/catal12040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The large amount of nitrogen oxides (N2O, NO, NO2, etc.) contained in the flue gas of industrial adipic acid production will seriously damage the environment. A designed binuclear Cu-ZSM-5 catalyst can be applied to decompose N2O and reduce NO and NO2, purifying the air environment. Using the density functional theory method, the catalytic decomposition mechanisms of N2O, NOX-NH3-SCR, and NOX-assisted N2O decomposition is simulated over the Cu-ZSM-5 model. The results indicate that N2O can be catalytically decomposed over the binuclear Cu active site in the sinusoidal channel. The speed-limiting step is the second N2O molecule activation process. After the decomposition of the first N2O molecule, a stable extra-frame [Cu-O-Cu]2+ structure will generate. The subsequent discussion proved that the NOX-NH3-SCR reaction can be realized over the [Cu-O-Cu]2+ active site. In addition, it proved that the decomposition reaction of NO and NO2 can be carried out over the [Cu-O-Cu]2+ active site, and NO can greatly reduce the energy barrier for the conversion of the active site from [Cu-O-Cu]2+ to the binuclear Cu form, while NO2 can be slightly reduced. Through discussion, it is found that the binuclear Cu-ZSM-5 can realize the combined removal of N2O and NOX from adipic acid flue gas, hoping to provide a theoretical basis for the development of a dual-functional catalyst.
Collapse
|
10
|
Olmedo-Suárez MÁ, Ramírez-Díaz I, Pérez-González A, Molina-Herrera A, Coral-García MÁ, Lobato S, Sarvari P, Barreto G, Rubio K. Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules 2022; 12:513. [PMID: 35454102 PMCID: PMC9032613 DOI: 10.3390/biom12040513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, including pollutants and lifestyle, constitute a significant role in severe, chronic pathologies with an essential societal, economic burden. The measurement of all environmental exposures and assessing their correlation with effects on individual health is defined as the exposome, which interacts with our unique characteristics such as genetics, physiology, and epigenetics. Epigenetics investigates modifications in the expression of genes that do not depend on the underlying DNA sequence. Some studies have confirmed that environmental factors may promote disease in individuals or subsequent progeny through epigenetic alterations. Variations in the epigenetic machinery cause a spectrum of different disorders since these mechanisms are more sensitive to the environment than the genome, due to the inherent reversible nature of the epigenetic landscape. Several epigenetic mechanisms, including modifications in DNA (e.g., methylation), histones, and noncoding RNAs can change genome expression under the exogenous influence. Notably, the role of long noncoding RNAs in epigenetic processes has not been well explored in the context of exposome-induced tumorigenesis. In the present review, our scope is to provide relevant evidence indicating that epigenetic alterations mediate those detrimental effects caused by exposure to environmental toxicants, focusing mainly on a multi-step regulation by diverse noncoding RNAs subtypes.
Collapse
Affiliation(s)
- Miguel Ángel Olmedo-Suárez
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Decanato de Ciencias de la Salud, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Sagrario Lobato
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
11
|
Seasonal Variations in the Daily Mortality Associated with Exposure to Particles, Nitrogen Dioxide, and Ozone in Stockholm, Sweden, from 2000 to 2016. ATMOSPHERE 2021. [DOI: 10.3390/atmos12111481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urban air pollutant emissions and concentrations vary throughout the year due to various factors, e.g., meteorological conditions and human activities. In this study, seasonal variations in daily mortality associated with increases in the concentrations of PM10 (particulate matter), PM2.5–10 (coarse particles), BC (black carbon), NO2 (nitrogen dioxide), and O3 (ozone) were calculated for Stockholm during the period from 2000 to 2016. The excess risks in daily mortality are presented in single and multi-pollutant models during the whole year and divided into four different seasons, i.e., winter (December–February), spring (March–May), summer (June–August), and autumn (September–November). The excess risks in the single-pollutant models associated with an interquartile range (IQR) increase for a lag 02 during the whole year were 0.8% (95% CI: 0.1–1.4) for PM10, 1.1% (95% CI: 0.4–1.8) for PM2.5–10, 0.5% (95% CI: −0.5–1.5) for BC, −1.5% (95% CI: −0.5–−2.5) for NO2, and 1.9% (95% CI: 1.0–2.9) for O3. When divided into different seasons, the excess risks for PM10 and PM2.5–10 showed a clear pattern, with the strongest associations during spring and autumn, but with weaker associations during summer and winter, indicating increased risks associated with road dust particles during these seasons. For BC, which represents combustion-generated particles, the pattern was not very clear, but the strongest positive excess risks were found during autumn. The excess risks for NO2 were negative during all seasons, and in several cases even statistically significantly negative, indicating that NO2 in itself was not harmful at the concentrations prevailing during the measurement period (mean values < 20 µg m−3). For O3, the excess risks were statistically significantly positive during “all year” in both the single and the multi-pollutant models. The excess risks for O3 in the single-pollutant models were also statistically significantly positive during all seasons.
Collapse
|
12
|
Chao L, Lu M, An Z, Li J, Li Y, Zhao Q, Wang Y, Liu Y, Wu W, Song J. Short-term effect of NO 2 on outpatient visits for dermatologic diseases in Xinxiang, China: a time-series study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1-11. [PMID: 33559783 PMCID: PMC7871127 DOI: 10.1007/s10653-021-00831-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/23/2021] [Indexed: 05/10/2023]
Abstract
OBJECTIVES As the largest organ of the human body, the skin is the major exposure route of NO2. However, the evidence for a relationship between NO2 exposure and dermatologic diseases (DMs) is limited. This time-series study was conducted to assess the short-term effect of nitrogen dioxide (NO2) exposure on DMs outpatient visits in Xinxiang, China. METHODS Daily recordings of NO2 concentrations, meteorological data, and the outpatient visits data for DMs were collected in Xinxiang from January 1st, 2015, to December 31st, 2018. The analysis method used was based on the generalized additive model (GAM) with quasi-Poisson regression to investigate the relationship between NO2 exposure and DMs outpatient visits. Several covariates, such as long-term trends, seasonality, and weather conditions were controlled. RESULTS A total of 164,270 DMs outpatients were recorded. A 10 μg/m3 increase in NO2 concentrations during the period was associated with a 1.86% increase in DMs outpatient visits (95% confidence intervals [Cl]: 1.06-2.66%). The effect was stronger (around 6 times) in the cool seasons than in warmer seasons and younger patients (< 15 years of age) appeared to be more vulnerable. CONCLUSIONS The findings of this study indicate that short-term exposure to NO2 increases the risk of DMs in Xinxiang, China, especially in the cool seasons. Policymakers should implement more stringent air quality standards to improve air quality.
Collapse
Affiliation(s)
- Ling Chao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Mengxue Lu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yuchun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Qian Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yinbiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yue Liu
- Chinese Center for Disease Control and Prevention, National Institute of Environmental Health, Beijing, 100021, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
13
|
Breitner S, Steckling-Muschack N, Markevych I, Zhao T, Mertes H, Nowak D, Heinrich J. The Burden of COPD Due to Ozone Exposure in Germany. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:491-496. [PMID: 34158151 DOI: 10.3238/arztebl.m2021.0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/09/2021] [Accepted: 06/01/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The chronic effects of ozone have only rarely been investigated in disease burden studies to date. Our goal was to determine this disease burden in Germany over the period 2007-2016, with particular attention to estimation based on effect estimates adjusted for particulate matter (PM2.5) and nitrogen dioxide (NO2). METHODS The nationwide, high-spatial-resolution (2 km × 2 km), population-based exposure to ozone in the summer months ("summer ozone") was calculated on the basis of modeled ozone data and population counts in Germany. Next, risk estimates derived from cohort studies were used to quantify the burden of chronic obstructive pulmonary disease (COPD). Data on population counts, life expectancy, and mortality in Germany were used to reflect the situation across the country as accurately as possible. RESULTS The estimates of years of life lost (YLL) due to summer ozone ranged from 18.33 per 100 000 people (95% confidence interval [14.02; 22.08]) in 2007 to 35.77 per 100 000 people [27.45; 42.98] in 2015. These findings indicate that ozone affects the COPD burden independently of other harmful components of the air. No clear secular trend in the COPD burden can be seen over the period 2007 to 2016. CONCLUSION Long-term exposure to ozone contributes to the COPD burden among the general population in Germany. As climate change may lead to a rise in the ozone concentration, more intensive research is required on the effects of ozone on health.
Collapse
|
14
|
Sales-Lérida D, Bello AJ, Sánchez-Alzola A, Martínez-Jiménez PM. An Approximation for Metal-Oxide Sensor Calibration for Air Quality Monitoring Using Multivariable Statistical Analysis. SENSORS 2021; 21:s21144781. [PMID: 34300517 PMCID: PMC8309700 DOI: 10.3390/s21144781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Good air quality is essential for both human beings and the environment in general. The three most harmful air pollutants are nitrogen dioxide (NO2), ozone (O3) and particulate matter. Due to the high cost of monitoring stations, few examples of this type of infrastructure exist, and the use of low-cost sensors could help in air quality monitoring. The cost of metal-oxide sensors (MOS) is usually below EUR 10 and they maintain small dimensions, but their use in air quality monitoring is only valid through an exhaustive calibration process and subsequent precision analysis. We present an on-field calibration technique, based on the least squares method, to fit regression models for low-cost MOS sensors, one that has two main advantages: it can be easily applied by non-expert operators, and it can be used even with only a small amount of calibration data. In addition, the proposed method is adaptive, and the calibration can be refined as more data becomes available. We apply and evaluate the technique with a real dataset from a particular area in the south of Spain (Granada city). The evaluation results show that, despite the simplicity of the technique and the low quantity of data, the accuracy obtained with the low-cost MOS sensors is high enough to be used for air quality monitoring.
Collapse
Affiliation(s)
- Diego Sales-Lérida
- Department of Automation Engineering, Electronics and Computer Architecture and Networks, University of Cádiz, 11519 Cádiz, Spain;
- Correspondence:
| | - Alfonso J. Bello
- Department of Statistic and Operations Research, University of Cádiz, 11510 Cádiz, Spain; (A.J.B.); (A.S.-A.)
| | - Alberto Sánchez-Alzola
- Department of Statistic and Operations Research, University of Cádiz, 11510 Cádiz, Spain; (A.J.B.); (A.S.-A.)
| | - Pedro Manuel Martínez-Jiménez
- Department of Automation Engineering, Electronics and Computer Architecture and Networks, University of Cádiz, 11519 Cádiz, Spain;
| |
Collapse
|
15
|
Cambronero-Urena A, Choi S, Choi S, Kim KK, Kim EM. Polyhexamethylene guanidine phosphate, chloromethylisothiazolinone, and particulate matter are dispensable for stress granule formation in human airway epithelial cells. Anim Cells Syst (Seoul) 2021; 25:146-151. [PMID: 34262657 PMCID: PMC8253204 DOI: 10.1080/19768354.2021.1931442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Environmental risk factors are recognized as threats to public health. Stress granules (SGs) are non-membranous assemblies of mRNAs and proteins expressed in response to various stressors to promote cell survival. In this study, SG formation was examined to confirm the effects of polyhexamethylene guanidine phosphate (PHMG), chloromethylisothiazolinone (CMIT), and particulate matter (PM10) in airway epithelial cells, A549, HPAEpiC, and BEAS-2B cells. SGs were not observed after CMIT, PHMG, and PM10 treatments, as determined by immunofluorescence microscopy. Moreover, there was no change in the phosphorylation of the translation initiation factor eIF2αfollowing treatment with PHMG, CMIT, and PM10. Taken together, our findings might help determine the biological hazards of these materials.
Collapse
Affiliation(s)
| | - Sunkyung Choi
- Department of Biochemistry, Chungnam National University, Daejeon, South Korea
| | - Seri Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon, South Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| |
Collapse
|
16
|
Fong KC, Bell ML. Do fine particulate air pollution (PM 2.5) exposure and its attributable premature mortality differ for immigrants compared to those born in the United States? ENVIRONMENTAL RESEARCH 2021; 196:110387. [PMID: 33129853 PMCID: PMC8079555 DOI: 10.1016/j.envres.2020.110387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 05/30/2023]
Abstract
In the United States (US), immigrants constitute a considerable and growing proportion of the general population. Compared to the US-born, immigrants have differential health risks, and it is unclear if environmental exposures contribute. In this work, we estimated disparities between immigrants and the US-born in fine particulate matter (PM2.5) exposure and attributable premature mortality, including by region of origin and time since immigration. With PM2.5 estimates from a validated model at ~1 km2 spatial resolution and residential Census tract population data, we calculated the annual area-weighted average PM2.5 exposure for immigrants overall, the US-born, and immigrants separately by geographic region of origin and time since immigration. We then calculated the premature mortality attributed to PM2.5 for each population group, assessing disparities by immigrant status in PM2.5 exposure and attributable premature mortality in the US as a whole and in each US county to evevaluate spatial heterogeneity. Overall, immigrants were exposed to slightly higher PM2.5 (0.36 μg/m3, 3.8%) than the US-born. This exposure difference translates to 2.11 more premature deaths attributable to PM2.5 per 100,000 in population for immigrants compared to the US-born in 2010. Immigrant - US-born disparities in PM2.5 and attributable premature mortality were more severe among immigrants originating from Asia, Africa, and Latin America than those from Europe, Oceania, and North America. Disparities between immigrant groups by time since immigration were comparatively small. Sensitivity analyses using 2000 data and a non-linear set of PM2.5 attributable mortality coefficients identified similar patterns. Our findings suggest that environmental exposure disparities, such as in PM2.5, may contribute to immigrant health disparities in the US.
Collapse
Affiliation(s)
- Kelvin C Fong
- Yale School of the Environment, Yale University, New Haven, CT, USA.
| | - Michelle L Bell
- Yale School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
17
|
Cardiorespiratory Effects of Indoor Ozone Exposure Associated with Changes in Metabolic Profiles among Children: A Repeated-Measure Panel Study. ACTA ACUST UNITED AC 2021; 2:100087. [PMID: 34557741 PMCID: PMC8454695 DOI: 10.1016/j.xinn.2021.100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/31/2021] [Indexed: 12/12/2022]
Abstract
Ozone is one of the major gaseous pollutants associated with short-term adverse cardiopulmonary effects, even at concentrations below the current indoor air quality limits. However, the underlying biological mechanisms of cardiorespiratory changes with exposure to ozone remain unclear. To further explore molecular linkages between indoor ozone exposure and relevant cardiorespiratory effects, a repeated-measure panel study including 46 schoolchildren was conducted and real-time exposure measurements including ozone were performed inside classrooms every weekday during the study period. Repeated health measurements and urine sample collection were conducted in each participant. Ultra-high-performance liquid chromatography/tandem mass spectrometry and meet-in-metabolite approach were used in metabolomics analysis. Methods including mixed-effect models were adopted to identify metabolites associated with ozone exposure or health indices. Nine metabolites were found to be associated with ozone after mixed-effect model analysis, which are mainly involved in amino acid and bile acid metabolism. Boys may have a greater decrease in bile acid and RNA related metabolites. Four of the nine ozone-related metabolites were also associated with cardiorespiratory function indices. Furthermore, 26.67% of the positive association between ozone and heart rate was mediated by cholestane-3,7,12,25-tetrol-3-glucuronide. Exposure to ozone below the current indoor standards was associated with the deteriorated cardiovascular function by disturbing bile acid and endogenous nitric oxide-related oxidation and inflammation, and associated with the exacerbated airway inflammation by reducing GPx-related anti-oxidation. The results provide metabolic evidence of the cardiorespiratory effects of indoor ozone exposure. Indoor ozone pollution should be controlled further, and more attention should be paid to preventing its adverse health effects, especially in children. Indoor O3 exposure far below the indoor air quality limits disturbed amino acid and bile acid metabolism of children Exposure to indoor O3 at low concentrations was associated with the deteriorated HRV, BP by affecting bile acid- and endogenous NO-related oxidation and inflammation Exposure to indoor O3 at low concentrations was associated with the aggravated airway inflammation by reducing GPx-related anti-oxidation The cardiorespiratory effects of low-level ozone exposure indoors in children require additional attention Indoor ozone pollution should be controlled further and the current indoor ozone standards should be revised
Collapse
|
18
|
Urban Aerosol Particulate Matter Promotes Necrosis and Autophagy via Reactive Oxygen Species-Mediated Cellular Disorders that are Accompanied by Cell Cycle Arrest in Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2021; 10:antiox10020149. [PMID: 33498524 PMCID: PMC7909535 DOI: 10.3390/antiox10020149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Urban particulate matter (UPM) is recognized as a grave public health problem worldwide. Although a few studies have linked UPM to ocular surface diseases, few studies have reported on retinal dysfunction. Thus, the aim of the present study was to evaluate the influence of UPM on the retina and identify the main mechanism of UPM toxicity. In this study, we found that UPM significantly induced cytotoxicity with morphological changes in ARPE-19 human retinal pigment epithelial (RPE) cells and increased necrosis and autophagy but not apoptosis. Furthermore, UPM significantly increased G2/M arrest and simultaneously induced alterations in cell cycle regulators. In addition, DNA damage and mitochondrial dysfunction were remarkably enhanced by UPM. However, the pretreatment with the potent reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) effectively suppressed UPM-mediated cytotoxicity, necrosis, autophagy, and cell cycle arrest. Moreover, NAC markedly restored UPM-induced DNA damage and mitochondrial dysfunction. Meanwhile, UPM increased the expression of mitophagy-regulated proteins, but NAC had no effect on mitophagy. Taken together, although further studies are needed to identify the role of mitophagy in UPM-induced RPE injury, the present study provides the first evidence that ROS-mediated cellular damage through necrosis and autophagy is one of the mechanisms of UPM-induced retinal disorders.
Collapse
|
19
|
Dimakakou E, Johnston HJ, Streftaris G, Cherrie JW. Is Environmental and Occupational Particulate Air Pollution Exposure Related to Type-2 Diabetes and Dementia? A Cross-Sectional Analysis of the UK Biobank. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249581. [PMID: 33371391 PMCID: PMC7767456 DOI: 10.3390/ijerph17249581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/02/2023]
Abstract
Human exposure to particulate air pollution (e.g., PM2.5) can lead to adverse health effects, with compelling evidence that it can increase morbidity and mortality from respiratory and cardiovascular disease. More recently, there has also been evidence that long-term environmental exposure to particulate air pollution is associated with type-2 diabetes mellitus (T2DM) and dementia. There are many occupations that may expose workers to airborne particles and that some exposures in the workplace are very similar to environmental particulate pollution. We conducted a cross-sectional analysis of the UK Biobank cohort to verify the association between environmental particulate air pollution (PM2.5) exposure and T2DM and dementia, and to investigate if occupational exposure to particulates that are similar to those found in environmental air pollution could increase the odds of developing these diseases. The UK Biobank dataset comprises of over 500,000 participants from all over the UK. Environmental exposure variables were used from the UK Biobank. To estimate occupational exposure both the UK Biobank’s data and information from a job exposure matrix, specifically developed for UK Biobank (Airborne Chemical Exposure–Job Exposure Matrix (ACE JEM)), were used. The outcome measures were participants with T2DM and dementia. In appropriately adjusted models, environmental exposure to PM2.5 was associated with an odds ratio (OR) of 1.02 (95% CI 1.00 to 1.03) per unit exposure for developing T2DM, while PM2.5 was associated with an odds ratio of 1.06 (95% CI 0.96 to 1.16) per unit exposure for developing dementia. These environmental results align with existing findings in the published literature. Five occupational exposures (dust, fumes, diesel, mineral, and biological dust in the most recent job estimated with the ACE JEM) were investigated and the risks for most exposures for T2DM and for all the exposures for dementia were not significantly increased in the adjusted models. This was confirmed in a subgroup of participants where a full occupational history was available allowed an estimate of workplace exposures. However, when not adjusting for gender, some of the associations become significant, which suggests that there might be a bias between the occupational assessments for men and women. The results of the present study do not provide clear evidence of an association between occupational exposure to particulate matter and T2DM or dementia.
Collapse
Affiliation(s)
- Eirini Dimakakou
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Riccarton, Edinburgh EH14-4AS, UK; (H.J.J.); (J.W.C.)
- Correspondence:
| | - Helinor J. Johnston
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Riccarton, Edinburgh EH14-4AS, UK; (H.J.J.); (J.W.C.)
| | - George Streftaris
- Maxwell Institute for Mathematical Sciences, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14-4AS, UK;
| | - John W. Cherrie
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Riccarton, Edinburgh EH14-4AS, UK; (H.J.J.); (J.W.C.)
- Institute of Occupational Medicine (IOM), Riccarton, Edinburgh EH14-4AP, UK
| |
Collapse
|
20
|
Pacheco H, Díaz-López S, Jarre E, Pacheco H, Méndez W, Zamora-Ledezma E. NO 2 levels after the COVID-19 lockdown in Ecuador: A trade-off between environment and human health. URBAN CLIMATE 2020; 34:100674. [PMID: 32834965 PMCID: PMC7392595 DOI: 10.1016/j.uclim.2020.100674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/17/2020] [Accepted: 07/20/2020] [Indexed: 05/04/2023]
Abstract
The negative effects on human health, along with the fatalities caused by the new coronavirus, have led governments worldwide to take strict measures. However, a reduction in air pollution has been found in many regions on a global scale. This study is focused on how the COVID-19 pandemic is impacting on the air quality in Ecuador, one of the most alarming cases of COVID-19 contagion in Latin America, occupying the first place as regards deaths per capita. The spatio-temporal variations in NO2 concentrations in 12 highly populated cities were evaluated by comparing the NO2 tropospheric concentrations before (2019) and after (2020) the COVID-19 lockdown. The atmospheric data was collected from the TROPOMI on the Sentinel-5P satellite of the European Space Agency. A reduction in NO2 concentrations (-13%) was observed as a consequence of the COVID-19 lockdown in Ecuador. However, this reduction occurred to the greatest extent in the cases of Guayaquil (-23.4%) and Quito (-22.4%), the two most highly populated cities. Linking NO2 levels to confirmed cases/deaths of COVID-19, a strong correlation between air NO2 concentrations and the cases/mortality caused by coronavirus (r = 0.91; p<0.001) was observed. This work highlights the crucial role played by air quality as regards human health.
Collapse
Affiliation(s)
- Henry Pacheco
- Facultad de Ingeniería Agrícola, Universidad Técnica de Manabí, Lodana 13132, Manabí, Ecuador
| | - Stephanie Díaz-López
- Centro de Ciencias Atmosféricas y Biogeoquímica, Instituto Venezolano de Investigaciones Científicas, Altos de Pipe 1020-A, Miranda, Venezuela
| | - Emilio Jarre
- Facultad de Ingeniería Agrícola, Universidad Técnica de Manabí, Lodana 13132, Manabí, Ecuador
| | - Henyerlin Pacheco
- Escuela de Medicina, Universidad Técnica de Manabí, Portoviejo 130105, Manabí, Ecuador
| | - Williams Méndez
- Departamento de Construcciones Civiles, Universidad Técnica de Manabí, Portoviejo 130105, Manabí, Ecuador
| | - Ezequiel Zamora-Ledezma
- Facultad de Ingeniería Agrícola, Universidad Técnica de Manabí, Lodana 13132, Manabí, Ecuador
| |
Collapse
|
21
|
Williams J, Petrik L, Wichmann J. PM 2.5 chemical composition and geographical origin of air masses in Cape Town, South Africa. AIR QUALITY, ATMOSPHERE, & HEALTH 2020; 14:431-442. [PMID: 33042291 PMCID: PMC7539287 DOI: 10.1007/s11869-020-00947-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 05/03/2023]
Abstract
PM2.5 in the indoor and outdoor environment has been linked in epidemiology studies to the symptoms, hospital admissions and development of numerous health outcomes including death. The study was conducted during April 2017 and April 2018. PM2.5 samples were collected over 24 h and every third day. The mean PM2.5 level was 13.4 μg m-3 (range: 1.17-39.1 μg m-3). PM2.5 levels exceeded the daily World Health Organization air quality guideline (25 μg m-3) on 14 occasions. The mean soot level was 1.38 m-1 × 10-5 (range: 0 to 5.38 m-1 × 10-5). Cl-, NO3 -, SO4 2-, Al, Ca, Fe, Mg, Na and Zn were detected in the PM2.5 samples. The geographical origin of air masses that passed Cape Town was estimated using the Hybrid Single Particle Lagrangian Integrated Trajectory software. Four air masses were identified in the cluster analysis: Atlantic-Ocean-WSW, Atlantic-Ocean-SW, Atlantic-Ocean-SSW and Indian-Ocean. The population of Cape Town may experience various health outcomes from the outdoor exposure to PM2.5 and the chemical composition of PM2.5.
Collapse
Affiliation(s)
- John Williams
- Environmental and Nano Sciences Group, Department of Chemical Sciences, University of the Western Cape, Cape Town, South Africa
| | - Leslie Petrik
- Environmental and Nano Sciences Group, Department of Chemical Sciences, University of the Western Cape, Cape Town, South Africa
| | - Janine Wichmann
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
22
|
Ritz B. In Reply. DEUTSCHES ARZTEBLATT INTERNATIONAL 2020; 117:288. [PMID: 32519948 PMCID: PMC7370960 DOI: 10.3238/arztebl.2020.0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Beate Ritz
- *Epidemiology, Environmental Health, and Neurology University of California, Los Angeles, USA
| |
Collapse
|
23
|
|
24
|
Wjst M. Environmental Science or Environmental Activism? DEUTSCHES ARZTEBLATT INTERNATIONAL 2020; 117:287. [PMID: 32519947 DOI: 10.3238/arztebl.2020.0287b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|