1
|
Wong WK, Ren Y, Leung FKC. Photothermal-chemotherapy: the emerging supramolecular photothermal molecules and the recent advances. NANOPHOTOTHERAPY 2025:463-499. [DOI: 10.1016/b978-0-443-13937-6.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Osaki T, Ueda M, Hirohara S, Obata M. Micelle-encapsulated IR783 for enhanced photothermal therapy in mouse breast cancer. Photodiagnosis Photodyn Ther 2024; 49:104340. [PMID: 39322051 DOI: 10.1016/j.pdpdt.2024.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Photothermal therapy, an emerging cancer treatment, selectively eliminates lesions using photothermal compounds that convert light into heat. IR783, a near-infrared fluorescent heptamethine cyanine dye, has been used to achieve selective hyperthermic effects in target tissues via near-infrared irradiation. To implement IR783 as a photothermal agent, IR783 biodistribution must be calibrated to achieve a constant and uniform concentration in target cells. Accordingly, we developed micelle-encapsulated IR783 (IR783 micelles) and evaluated their effectiveness as photothermal drugs. METHODS In vitro, the photothermic effects of free IR783 and IR783 micelle solutions induced by near-infrared light irradiation were analyzed. Additionally, we investigated the mechanism of cell death mediated by photothermal therapy using free IR783 and IR783 micelles in mouse breast cancer (EMT6) cells. In vivo, the efficacy of photothermal therapy with both free IR783 and IR783 micelles was examined in EMT6-bearing mice. RESULTS In vitro, the temperature of free and micelle-encapsulated IR783 solutions increased after near-infrared irradiation. Near-infrared irradiation with free IR783 and IR783 micelles induced cytotoxicity in cancer cells by generating heat. In vivo, IR783 micelles elicited more preferential tumor tissue uptake and enhanced the antitumor effects of photothermal therapy at a lower light dose relative to free IR783. CONCLUSIONS Overall, these results suggest that IR783 micelles could accumulate in mouse breast cancer tissues and exhibit enhanced antitumor effects when used as a photothermal therapy, with superior effects obtained at 2.1 W/cm2 (252 J/cm2) compared with that of free IR783.
Collapse
Affiliation(s)
- Tomohiro Osaki
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Mana Ueda
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Shiho Hirohara
- Department of Chemical and Biological Engineering, National Institute of Technology (KOSEN), Ube College, 2-14-1 Tokiwadai, Ube 755-8555, Japan
| | - Makoto Obata
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| |
Collapse
|
3
|
Dehghankhold M, Ahmadi F, Nezafat N, Abedi M, Iranpour P, Dehghanian A, Koohi-Hosseinabadi O, Akbarizadeh AR, Sobhani Z. A versatile theranostic magnetic polydopamine iron oxide NIR laser-responsive nanosystem containing doxorubicin for chemo-photothermal therapy of melanoma. BIOMATERIALS ADVANCES 2024; 159:213797. [PMID: 38368693 DOI: 10.1016/j.bioadv.2024.213797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Theranostics nanoparticles (NPs) have recently received much attention in cancer imaging and treatment. This study aimed to develop a multifunctional nanosystem for the targeted delivery of photothermal and chemotherapy agents. Fe3O4 NPs were modified with polydopamine, bovine serum albumin, and loaded with DOX via a thermal-cleavable Azo linker (Fe3O4@PDA@BSA-DOX). The size of Fe3O4@PDA@BSA NPs was approximately 98 nm under the desired conditions. Because of the ability of Fe3O4 and PDA to convert light into heat, the temperature of Fe3O4@PDA@BSA NPs increased to approximately 47 °C within 10 min when exposed to an 808 nm NIR laser with a power density of 1.5 W/cm2. The heat generated by the NIR laser leads to the breaking of AZO linker and drug release. In vivo and in vitro results demonstrated that prepared NPs under laser irradiation successfully eradicated tumor cells without any significant toxicity effect. Moreover, the Fe3O4@PDA@BSA NPs exhibited the potential to function as a contrasting agent. These NPs could accumulate in tumors with the help of an external magnet, resulting in a significant enhancement in the quality of magnetic resonance imaging (MRI). The prepared novel multifunctional NPs seem to be an efficient system for imaging and combination therapy in melanoma.
Collapse
Affiliation(s)
- Mahvash Dehghankhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooya Iranpour
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Dehghanian
- Molecular Pathology and Cytogenetics Division, Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amin Reza Akbarizadeh
- Drug and Food Control Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sobhani
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Drug and Food Control Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Shramova EI, Deyev SM, Proshkina GM. A Vector Nanoplatform for the Bioimaging of Deep-Seated Tumors. Acta Naturae 2024; 16:72-81. [PMID: 39188260 PMCID: PMC11345090 DOI: 10.32607/actanaturae.27425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 08/28/2024] Open
Abstract
Today, in preclinical studies, optical bioimaging based on luminescence and fluorescence is indispensable in studying the development of neoplastic transformations, the proliferative activity of the tumor, its metastatic potential, as well as the therapeutic effect of antitumor agents. In order to expand the capabilities of optical imaging, sensors based on the bioluminescence resonance energy transfer (BRET) mechanism and, therefore, independent of an external light source are being developed. A targeted nanoplatform based on HER2-specific liposomes whose internal environment contains a genetically encoded BRET sensor was developed in this study to visualize deep-seated tumors characterized by overexpression of human epidermal growth factor receptor type 2 (HER2). The BRET sensor is a hybrid protein consisting of the highly catalytic luciferase NanoLuc (an energy donor) and a LSSmKate1 red fluorescent protein with a large Stokes shift (an energy acceptor). During the bioimaging of disseminated intraperitoneal tumors formed by HER2-positive SKOV3.ip1cells of serous ovarian cystadenocarcinoma, it was shown that the developed system is applicable in detecting deep-seated tumors of a certain molecular profile. The developed system can become an efficient platform for optimizing preclinical studies of novel targeted drugs.
Collapse
Affiliation(s)
- E. I. Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, Moscow, 117997 Russian Federation
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, Moscow, 117997 Russian Federation
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991 Russian Federation
- National Research Centre “Kurchatov Institute”, Moscow, 123098 Russian Federation
| | - G. M. Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, Moscow, 117997 Russian Federation
| |
Collapse
|
5
|
Gilyadova AV, Ishchenko AA, Samoilova SV, Shiryaev AA, Novruzaliyeva MF, Efendiev KT, Alekseeva PM, Loschenov VB, Reshetov IV. Comparative study of treatment efficacy in severe intraepithelial squamous cell lesions and preinvasive cervical cancer by conization and chlorin e6-mediated fluorescence-assisted systemic photodynamic therapy. Photodiagnosis Photodyn Ther 2024; 46:104060. [PMID: 38521149 DOI: 10.1016/j.pdpdt.2024.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Cervical cancer (CC) occupies a leading position in incidence among young women of reproductive age. In this connection, it is urgent to search for the most effective approaches to the diagnosis and treatment of this pathology. The purpose of the study was to evaluate the effectiveness of the PDT method using Cе6 with the control of the photobleaching using video and spectral fluorescence diagnostic methods, to develop the method of fluorescence-assisted systemic photodynamic therapy mediated with chlorin e6 for treatment CIN 3 and CIS. MATERIALS AND METHODS A randomized comparative clinical study was conducted involving 94 women aged 18 to 49 years with histologically verified severe intraepithelial squamous cell lesions of the cervix or preinvasive cervical cancer. The patients were included in 2 groups: in the first group conization of the cervix was performed with curettage of the remaining part of the cervical canal; patients in the second group underwent the chlorin e6-mediated fluorescence-assisted systemic photodynamic therapy. RESULTS The absolute majority of patients in the main group after the first course of chlorin e6-mediated fluorescence-assisted systemic photodynamic therapy showed normalization of cytological parameters and colposcopic picture, while women from the comparison group showed signs of cervical lesions statistically significantly more often. These changes corresponded to the dynamics of the proliferation markers expression in the cells of intraepithelial squamous cell lesions. Also, patients of the second group who were planning a pregnancy had better reproductive outcomes after treatment compared to those of the first group. CONCLUSION In general, higher clinical efficacy and safety of the use of the chlorin e6-mediated fluorescence-assisted systemic photodynamic therapy in the treatment of intraepithelial squamous cell lesions and preinvasive cervical cancer have been established compared to the use of standard treatment methods.
Collapse
Affiliation(s)
- A V Gilyadova
- Department of Oncology, Radiotherapy and Reconstructive Surgery, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, ul. Bolshaya Pirogovskaya 6, Moscow 119435, Russia; National Medical Research Center Treatment and Rehabilitation Center, Ministry of Health of the Russian Federation, Ivankovskoe highway 3, Moscow 125367 Russia.
| | - A A Ishchenko
- National Medical Research Center Treatment and Rehabilitation Center, Ministry of Health of the Russian Federation, Ivankovskoe highway 3, Moscow 125367 Russia.
| | - S V Samoilova
- Department of Oncology, Radiotherapy and Reconstructive Surgery, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, ul. Bolshaya Pirogovskaya 6, Moscow 119435, Russia
| | - A A Shiryaev
- Department of Oncology, Radiotherapy and Reconstructive Surgery, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, ul. Bolshaya Pirogovskaya 6, Moscow 119435, Russia
| | - M F Novruzaliyeva
- Department of Oncology, Radiotherapy and Reconstructive Surgery, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, ul. Bolshaya Pirogovskaya 6, Moscow 119435, Russia
| | - K T Efendiev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow 119991 Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow 115409 Russia
| | - P M Alekseeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow 119991 Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow 115409 Russia
| | - V B Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow 119991 Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow 115409 Russia
| | - I V Reshetov
- Department of Oncology, Radiotherapy and Reconstructive Surgery, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, ul. Bolshaya Pirogovskaya 6, Moscow 119435, Russia
| |
Collapse
|
6
|
Nag S, Mitra O, Tripathi G, Adur I, Mohanto S, Nama M, Samanta S, Gowda BHJ, Subramaniyan V, Sundararajan V, Kumarasamy V. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives. Photodiagnosis Photodyn Ther 2024; 45:103959. [PMID: 38228257 DOI: 10.1016/j.pdpdt.2023.103959] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
Breast cancer (BC) remains an enigmatic fatal modality ubiquitously prevalent in different parts of the world. Contemporary medicines face severe challenges in remediating and healing breast cancer. Due to its spatial specificity and nominal invasive therapeutic regime, photothermal therapy (PTT) has attracted much scientific attention down the lane. PTT utilizes a near-infrared (NIR) light source to irradiate the tumor target intravenously or non-invasively, which is converted into heat energy over an optical fibre. Dynamic progress in nanomaterial synthesis was achieved with specialized visual, physicochemical, biological, and pharmacological features to make up for the inadequacies and expand the horizon of PTT. Numerous nanomaterials have substantial NIR absorption and can function as efficient photothermal transducers. It is achievable to limit the wavelength range of an absorbance peak for specific nanomaterials by manipulating their synthesis, enhancing the precision and quality of PTT. Along the same lines, various nanomaterials are conjugated with a wide range of surface-modifying chemicals, including polymers and antibodies, which may modify the persistence of the nanomaterial and diminish toxicity concerns. In this article, we tend to put forth specific insights and fundamental conceptualizations on pre-existing PTT and its advances upon conjugation with different biocompatible nanomaterials working in synergy to combat breast cancer, encompassing several strategies like immunotherapy, chemotherapy, photodynamic therapy, and radiotherapy coupled with PTT. Additionally, the role or mechanisms of nanoparticles, as well as possible alternatives to PTT, are summarized as a distinctive integral aspect in this article.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Integrative Multiomics Lab, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences (JCSMHS), Monash University Malaysia, Bandar Sunway 47500 Selangor Darul Ehsan, Malaysia.
| | - Oishi Mitra
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Integrative Multiomics Lab, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Garima Tripathi
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Israrahmed Adur
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Muskan Nama
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Souvik Samanta
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences (JCSMHS), Monash University Malaysia, Bandar Sunway 47500 Selangor Darul Ehsan, Malaysia.
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Krivetskaya AA, Kustov DM, Levkin VV, Osminin SV, Kharnas SS, Eventeva EV, Vetshev FP, Komarov RN, Linkov KG, Savelieva TA, Loschenov VB. Evaluation of tissue blood supply during esophagectomy using fluorescent diagnostics and diffuse scattering spectroscopy in visible region. Photodiagnosis Photodyn Ther 2024; 45:103937. [PMID: 38103583 DOI: 10.1016/j.pdpdt.2023.103937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND The success of the surgical treatment of a tumor or obstruction of the esophagus with subsequent anastomosis application depends on the level of blood supply to the stitched tissues. Intraoperative assessment of blood flow is widely used in medicine and can be used as a diagnostic method that affects the outcome of surgery and reduces the frequency of postoperative complications for the patient. METHODS In this work, the assessment of blood supply during esophageal resection operations was carried out using two techniques sequentially: fluorescent diagnostics with indocyanine green and measurement of hemoglobin oxygen saturation by diffuse scattering spectroscopy in the visible wavelength range. The first method was used to assess the integrity of the vascular network structure in the area of anastomosis and blood flow through the sutured tissues, the second one - for local assessment of hemoglobin oxygen saturation in the investigated area. RESULTS Conducted clinical study involved the participation of nine patients with malignant neoplasms (six cases) or esophageal obstruction (three cases). The presence of postoperative complications was compared with the measurement results. Anastomosis failure was observed in only one patient. According to the results of the study, with the use of the investigated method of assessing blood supply, there is a tendency towards a decrease in the frequency of anastomosis leaks (11.1 % compared with 21.4 %). CONCLUSIONS Therefore, fluorescent diagnostics with indocyanine green and measurement of hemoglobin oxygen saturation using diffuse scattering spectroscopy were affirmed as methods that allow increasing the safety of surgical procedures by assessing the risk of postoperative complications, including anastomosis failures.
Collapse
Affiliation(s)
- Anna A Krivetskaya
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia; Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409, Moscow, Russia.
| | - Daniil M Kustov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia
| | - Vladimir V Levkin
- Department of Faculty Surgery No. 1, I.M. Sechenov First Moscow State Medical University, 119992, Moscow, Russia
| | - Sergey V Osminin
- Department of Faculty Surgery No. 1, I.M. Sechenov First Moscow State Medical University, 119992, Moscow, Russia
| | - Sergey S Kharnas
- Department of Faculty Surgery No. 1, I.M. Sechenov First Moscow State Medical University, 119992, Moscow, Russia
| | - Evgenia V Eventeva
- Department of Faculty Surgery No. 1, I.M. Sechenov First Moscow State Medical University, 119992, Moscow, Russia
| | - Fedor P Vetshev
- Department of Faculty Surgery No. 1, I.M. Sechenov First Moscow State Medical University, 119992, Moscow, Russia
| | - Roman N Komarov
- Department of Faculty Surgery No. 1, I.M. Sechenov First Moscow State Medical University, 119992, Moscow, Russia
| | - Kirill G Linkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia
| | - Tatiana A Savelieva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia; Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409, Moscow, Russia
| | - Victor B Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia; Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409, Moscow, Russia
| |
Collapse
|
8
|
Yoshinaga M, Rocha WR. New Hybrid Compound Candidate as Photothermal Agent Based on DPP Derivatives and Toluidine Blue: A Theoretical Perspective. Photochem Photobiol 2023; 99:1429-1437. [PMID: 36890687 DOI: 10.1111/php.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/05/2023] [Indexed: 03/10/2023]
Abstract
In this article, the synthesis of a new hybrid compound, candidate as photothermal agent, is proposed, based on TDPP (3,6-di(thiophene-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) and toluidine blue. Electronic structure calculations at the DFT, TD-DFT and CCSD level of theories were performed to obtain ground and excited states molecular structures, photophysical properties and absorption spectrum of the hybrid and the starting compounds. Additionally, ADMET calculations were performed to predict the pharmacokinetic, metabolic and toxicity properties of the proposed compound. The results showed that the proposed compound is a strong candidate for photothermal agent since (1) it absorbs close to the near-infrared region, (2) it has low fluorescence and intersystem crossing rate constants, (3) it has accessible conical intersection with low energy barrier, (4) the compound shows lower toxicity than the well know compound toluidine blue, which is used in photodynamic therapy, (5) the compound does not show carcinogenic potential, and (6) it obeys the Lipinski's rule of five, used as a reference for the design of new pharmaceuticals.
Collapse
Affiliation(s)
- Mariana Yoshinaga
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Willian R Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Gallo J, Villasante A. Recent Advances in Biomimetic Nanocarrier-Based Photothermal Therapy for Cancer Treatment. Int J Mol Sci 2023; 24:15484. [PMID: 37895165 PMCID: PMC10607206 DOI: 10.3390/ijms242015484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Nanomedicine presents innovative solutions for cancer treatment, including photothermal therapy (PTT). PTT centers on the design of photoactivatable nanoparticles capable of absorbing non-toxic near-infrared light, generating heat within target cells to induce cell death. The successful transition from benchside to bedside application of PTT critically depends on the core properties of nanoparticles responsible for converting light into heat and the surface properties for precise cell-specific targeting. Precisely targeting the intended cells remains a primary challenge in PTT. In recent years, a groundbreaking approach has emerged to address this challenge by functionalizing nanocarriers and enhancing cell targeting. This strategy involves the creation of biomimetic nanoparticles that combine desired biocompatibility properties with the immune evasion mechanisms of natural materials. This review comprehensively outlines various strategies for designing biomimetic photoactivatable nanocarriers for PTT, with a primary focus on its application in cancer therapy. Additionally, we shed light on the hurdles involved in translating PTT from research to clinical practice, along with an overview of current clinical applications.
Collapse
Affiliation(s)
- Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal;
| | - Aranzazu Villasante
- Nanobioengineering Lab, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Demirel O, Gundogdu SO, Yuce S, Unal H. Indocyanine Green-Loaded Halloysite Nanotubes as Photothermal Agents. ACS OMEGA 2023; 8:37908-37917. [PMID: 37867660 PMCID: PMC10586301 DOI: 10.1021/acsomega.3c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Photothermal nanoparticles with light-to-heat conversion properties have gained interest in recent years and have been used in a variety of applications. Herein, indocyanine green (ICG), which is commonly employed as a photothermal agent suffering from low photostability, was loaded into halloysite nanotubes (HNTs) resulting in photothermal HNT-ICG nanohybrids. The photothermal heating patterns of the prepared photothermal nanohybrids as a result of near-infrared (NIR) irradiation were carefully examined. The nanohybrids reached a temperature of 216 °C in 2 min under NIR light, and in contrast to free NIR, the ICG loaded into HNTs remained stable over 10 heating and cooling cycles. Moreover, HNT-ICG nanohybrids incorporated into polyacrylonitrile (PAN) were electrospun into nanofibers for use as photothermal nanofibers, and composite nanofibers, which heat up to 79.3 °C under 2 min of NIR irradiation, were obtained. To demonstrate the potential of the PAN/HNT-ICG nanofibers as light-activated antibacterial nanofibers, their NIR light-activated killing activity on Staphylococcus aureus (S. aureus) cells has been explored. The composite nanofibers reduced the number of bacteria on their surface by 7log upon 10 min of NIR irradiation. Encapsulation of ICG in HNTs as a carrier has been demonstrated as an effective way to stabilize ICG and incorporate it into materials and coatings without compromising its functionality.
Collapse
Affiliation(s)
- Oyku Demirel
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research Center, Sabanci
University, Istanbul 34956, Turkey
| | - Selin Oyku Gundogdu
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research Center, Sabanci
University, Istanbul 34956, Turkey
| | - Sena Yuce
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research Center, Sabanci
University, Istanbul 34956, Turkey
| | - Hayriye Unal
- SUNUM
Nanotechnology Research Center, Sabanci
University, Istanbul 34956, Turkey
| |
Collapse
|
11
|
Shramova EI, Frolova AY, Filimonova VP, Deyev SM, Proshkina GM. System for Self-excited Targeted Photodynamic Therapy Based on the Multimodal Protein DARP-NanoLuc-SOPP3. Acta Naturae 2023; 15:100-110. [PMID: 38234600 PMCID: PMC10790359 DOI: 10.32607/actanaturae.27331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Despite the significant potential of photodynamic therapy (PDT) as a minimally invasive treatment modality, the use of this method in oncology has remained limited due to two serious problems: 1) limited penetration of the excitation light in tissues, which makes it impossible to affect deep-seated tumors and 2) use of chemical photosensitizers that slowly degrade in the body and cause photodermatoses and hyperthermia in patients. To solve these problems, we propose a fully biocompatible targeted system for PDT that does not require an external light source. The proposed system is based on bioluminescent resonance energy transfer (BRET) from the oxidized form of the luciferase substrate to the photosensitizing protein SOPP3. The BRET-activated system is composed of the multimodal protein DARP-NanoLuc-SOPP3, which contains a BRET pair NanoLuc-SOPP3 and a targeting module DARPin. The latter provides the interaction of the multimodal protein with tumors overexpressing tumor-associated antigen HER2 (human epidermal growth factor receptor type II). In vitro experiments in a 2D monolayer cell culture and a 3D spheroid model have confirmed HER2-specific photo-induced cytotoxicity of the system without the use of an external light source; in addition, experiments in animals with subcutaneous HER2-positive tumors have shown selective accumulation of DARP-NanoLuc-SOPP3 on the tumor site. The fully biocompatible system for targeted BRET-induced therapy proposed in this work makes it possible to overcome the following limitations: 1) the need to use an external light source and 2) the side phototoxic effect from aberrant accumulation of chemical photosensitizers. The obtained results demonstrate that the fully protein-based self-excited BRET system has a high potential for targeted PDT.
Collapse
Affiliation(s)
- E. I. Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, Moscow, 117997 Russian Federation
| | - A. Yu. Frolova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, Moscow, 117997 Russian Federation
| | - V. P. Filimonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, Moscow, 117997 Russian Federation
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, Moscow, 117997 Russian Federation
- ”Biomarker” Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008 Russian Federation
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991 Russian Federation
| | - G. M. Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, Moscow, 117997 Russian Federation
| |
Collapse
|
12
|
Guo S, Gu D, Yang Y, Tian J, Chen X. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. J Nanobiotechnology 2023; 21:348. [PMID: 37759287 PMCID: PMC10523653 DOI: 10.1186/s12951-023-02111-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Near-infrared (NIR) organic small molecule dyes (OSMDs) are effective photothermal agents for photothermal therapy (PTT) due to their advantages of low cost and toxicity, good biodegradation, and strong NIR absorption over a wide wavelength range. Nevertheless, OSMDs have limited applicability in PTT due to their low photothermal conversion efficiency and inadequate destruction of tumor regions that are nonirradiated by NIR light. However, they can also act as photosensitizers (PSs) to produce reactive oxygen species (ROS), which can be further eradicated by using ROS-related therapies to address the above limitations of PTT. In this review, the synergistic mechanism, composition, and properties of photodynamic therapy (PDT)-PTT nanoplatforms were comprehensively discussed. In addition, some specific strategies for further improving the combined PTT and PDT based on OSMDs for cancer to completely eradicate cancer cells were outlined. These strategies include performing image-guided co-therapy, enhancing tumor infiltration, increasing H2O2 or O2 in the tumor microenvironment, and loading anticancer drugs onto nanoplatforms to enable combined therapy with phototherapy and chemotherapy. Meanwhile, the intriguing prospects and challenges of this treatment modality were also summarized with a focus on the future trends of its clinical application.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
13
|
Sun D, Wu S, Martin JP, Tayutivutikul K, Du G, Combs C, Darland DC, Zhao JX. Streamlined synthesis of potential dual-emissive fluorescent silicon quantum dots (SiQDs) for cell imaging. RSC Adv 2023; 13:26392-26405. [PMID: 37671347 PMCID: PMC10476025 DOI: 10.1039/d3ra03669c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/27/2023] [Indexed: 09/07/2023] Open
Abstract
One of the current challenges of working with nanomaterials in bioapplications is having a tool that is biocompatible (non-toxic) and produces stable, intense fluorescence for bioimaging. To address these challenges, we have developed a streamlined and one-pot synthetic route for silicon-based quantum dots (SiQDs) using a hydrothermal method. Part of our unique approach for designing the SiQDs was to incorporate (3-aminopropyl) triethoxysilane (APTES), which is an amphipathic molecule with hydroxyl and amine functional groups available for modification. In order to reduce the toxicity of APTES, we chose glucose as a reducing agent for the reaction. The resulting SiQDs produced potent, stable, potential dual-emissive fluorescence emission peaks in the visible and near-infrared (NIR) ranges. Both peaks could be used as distinguishing fluorescence signals for bioimaging, separately or in combination. The physical and optical properties of the SiQDs were determined under a range of environmental conditions. The morphology, surface composition, and electronic structure of the SiQDs were characterized using high resolution-transmission electronic microscopy (HR-TEM), energy dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The stability of the SiQDs was evaluated under a wide range of pHs. The biocompatibility and imaging potential of the SiQDs were tested in microvascular endothelial cells (MVEC), neural stem cells (NSC), and RAW 264.7 macrophage cells. The images obtained revealed different subcellular localizations, particularly during cell division, with distinct fluorescence intensities. The results demonstrated that SiQDs are a promising, non-toxic labeling tool for a variety of cell types, with the added advantage of having dual emission peaks both in visible and NIR ranges for bioimaging.
Collapse
Affiliation(s)
- Di Sun
- Department of Chemistry, University of North Dakota Grand Forks ND 58202 USA
| | - Steven Wu
- Department of Chemistry, University of North Dakota Grand Forks ND 58202 USA
- Department of Chemistry, University of South Dakota Vermillion SD 57069 USA
| | - Jeremy P Martin
- Department of Biology, University of North Dakota Grand Forks ND 58202 USA
| | | | - Guodong Du
- Department of Chemistry, University of North Dakota Grand Forks ND 58202 USA
| | - Colin Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota Grand Forks ND 58202 USA
| | - Diane C Darland
- Department of Biology, University of North Dakota Grand Forks ND 58202 USA
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota Grand Forks ND 58202 USA
| |
Collapse
|
14
|
Heptamethine Cyanine-Loaded Nanomaterials for Cancer Immuno-Photothermal/Photodynamic Therapy: A Review. Pharmaceutics 2022; 14:pharmaceutics14051015. [PMID: 35631600 PMCID: PMC9144181 DOI: 10.3390/pharmaceutics14051015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
The development of strategies capable of eliminating metastasized cancer cells and preventing tumor recurrence is an exciting and extremely important area of research. In this regard, therapeutic approaches that explore the synergies between nanomaterial-mediated phototherapies and immunostimulants/immune checkpoint inhibitors have been yielding remarkable results in pre-clinical cancer models. These nanomaterials can accumulate in tumors and trigger, after irradiation of the primary tumor with near infrared light, a localized temperature increase and/or reactive oxygen species. These effects caused damage in cancer cells at the primary site and can also (i) relieve tumor hypoxia, (ii) release tumor-associated antigens and danger-associated molecular patterns, and (iii) induced a pro-inflammatory response. Such events will then synergize with the activity of immunostimulants and immune checkpoint inhibitors, paving the way for strong T cell responses against metastasized cancer cells and the creation of immune memory. Among the different nanomaterials aimed for cancer immuno-phototherapy, those incorporating near infrared-absorbing heptamethine cyanines (Indocyanine Green, IR775, IR780, IR797, IR820) have been showing promising results due to their multifunctionality, safety, and straightforward formulation. In this review, combined approaches based on phototherapies mediated by heptamethine cyanine-loaded nanomaterials and immunostimulants/immune checkpoint inhibitor actions are analyzed, focusing on their ability to modulate the action of the different immune system cells, eliminate metastasized cancer cells, and prevent tumor recurrence.
Collapse
|
15
|
Zhang Y, Ning R, Wang W, Zhou Y, Chen Y. Synthesis of Fe3O4/PDA Nanocomposites for Osteosarcoma Magnetic Resonance Imaging and Photothermal Therapy. Front Bioeng Biotechnol 2022; 10:844540. [PMID: 35356774 PMCID: PMC8959548 DOI: 10.3389/fbioe.2022.844540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Osteosarcomas commonly develop in the metaphysis of the long diaphysis, resulting in pronounced malignancy and high rates of early pulmonary metastasis. At present, osteosarcoma patients exhibit relatively poor survival rates owing these metastases and to the emergence of tumor chemoresistance. As such, there is an urgent need to identify other approaches to treating affected patients. Herein, we synthesized Fe3O4@PDA nanocomposites that exhibited excellent biocompatibility and low toxicity in human and animal model systems. The resultant nanoparticles were able to improve T2 magnetic resonance imaging and to enhance the signal-to-noise ratio associated with osteosarcoma tumors in animal models. Moreover, we were able to successfully leverage these Fe3O4@PDA particles as a photothermal agent capable of significantly inhibiting the growth of tumors and preventing their metastasis to the lung compartment. Together, these results highlight a novel therapeutic platform that has the potential to guide both the more effective diagnosis and treatment of osteosarcoma patients in clinical applications.
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Human Anatomy, West China School of Basic Medicine & Forensic Medicine, Sichuan University, Chengdu, China
- Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yifei Zhang, ; Yao Chen,
| | - Rende Ning
- Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yejin Zhou
- Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Chen
- Department of Human Anatomy, West China School of Basic Medicine & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Yifei Zhang, ; Yao Chen,
| |
Collapse
|
16
|
Photodynamic therapy for precancer diseases and cervical cancer (review of literature). BIOMEDICAL PHOTONICS 2022. [DOI: 10.24931/2413-9432-2021-10-4-59-67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The paper presents the results of literature data analysis on the main directions of precancerous diseases of the cervix uteri and cervical cancer treatment. Side effects following surgery or radiation treatment can lead to structural deformities, scarring, hyperpigmentation, systemic side effects, and destruction of normal tissue. In addition, the use of traditional methods of treatment can cause multidrug resistance, which will lead to ineffective treatment and the development of a relapse of the disease. To avoid toxicity and reduce side effects, alternative treatment strategies have been proposed. Photodynamic therapy (PDT) is a promising organ-preserving highly selective method for treating cervical neoplasia, which includes two stages: the introduction of a photosensitizer and local exposure to directed light radiation. A number of studies have demonstrated the high clinical efficacy of this method in the treatment of patients with cervical neoplasia and carriage of human papillomavirus infection without adverse consequences for fertility. The use of PDT contributes to the successful outcome of the treatment of pathological foci on the mucous membrane of the cervix, the effectiveness and safety of the method is ensured by the selective effect on tissues. In the course of treatment, normal surrounding tissues are not damaged, there is no gross scarring and stenosis of the cervical canal, thereby PDT allows maintaining the normal anatomical and functional characteristics of the cervix.
Collapse
|
17
|
Phototheranostics of Cervical Neoplasms with Chlorin e6 Photosensitizer. Cancers (Basel) 2022; 14:cancers14010211. [PMID: 35008375 PMCID: PMC8750251 DOI: 10.3390/cancers14010211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Neoplasms of the cervix are the most common types of oncological pathology. Photodynamic therapy with intravenous administration of the photosensitizer chlorin e6 shows high efficiency in the treatment of precancerous lesions of the cervix with complete eradication of the human papillomavirus. The treatment method can reduce deaths from cervical cancer and preserve fertility in patients. Spectral and video fluorescence diagnostics allows intraoperatively assessing the degree of photosensitizer accumulation and photobleaching and visualizing the boundaries of pathologically altered tissues. Abstract (1) Purpose: Improving the treatment effectiveness of intraepithelial neoplasia of the cervix associated with human papillomavirus infection, based on the application of the method of photodynamic therapy with simultaneous laser excitation of fluorescence to clarify the boundaries of cervical neoplasms. (2) Methods: Examination and treatment of 52 patients aged 22 to 53 years with morphologically and cytologically confirmed mild to severe intraepithelial cervix neoplasia, preinvasive, micro-invasive, and squamous cell cervix carcinoma. All patients were carriers of human papillomavirus infection. The patients underwent photodynamic therapy with simultaneous laser excitation of fluorescence. The combined use of video and spectral fluorescence diagnostics for cervical neoplasms made it possible to control the photodynamic therapy process at all stages of the procedure. Evaluation of the photodynamic therapy of intraepithelial cervical neoplasms was carried out with colposcopic examination, cytological conclusion, and morphological verification of the biopsy material after the photodynamic therapy course. The success of human papillomavirus therapy was assessed based on the results of the polymerase chain reaction. (3) Results. The possibility of simultaneous spectral fluorescence diagnostics and photodynamic therapy using a laser source with a wavelength of 660 nm has been established, making it possible to assess the fluorescence index in real-time and control the photobleaching of photosensitizers in the irradiated area. The treatment of all 52 patients was successful after the first photodynamic therapy procedure. According to the PCR test of the discharge from the cervical canal, the previously identified HPV types were not observed in 48 patients. Previously identified HPV types were absent after repeated PDT in four patients (CIN III (n = 2), CIS (n = 2)). In 80.8% of patients, regression of the lesion was noted. (4) Conclusions. The high efficiency of photodynamic therapy with intravenous photosensitizer administration of chlorin e6 has been demonstrated both in relation to eradication therapy of human papillomavirus and in relation to the treatment of intraepithelial lesions of the cervix.
Collapse
|
18
|
Madamsetty VS, Tavakol S, Moghassemi S, Dadashzadeh A, Schneible JD, Fatemi I, Shirvani A, Zarrabi A, Azedi F, Dehshahri A, Aghaei Afshar A, Aghaabbasi K, Pardakhty A, Mohammadinejad R, Kesharwani P. Chitosan: A versatile bio-platform for breast cancer theranostics. J Control Release 2021; 341:733-752. [PMID: 34906606 DOI: 10.1016/j.jconrel.2021.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer is considered one of the utmost neoplastic diseases globally, with a high death rate of patients. Over the last decades, many approaches have been studied to early diagnose and treat it, such as chemotherapy, hormone therapy, immunotherapy, and MRI and biomarker tests; do not show the optimal efficacy. These existing approaches are accompanied by severe side effects, thus recognizing these challenges, a great effort has been done to find out the new remedies for breast cancer. Main finding: Nanotechnology opened a new horizon to the treatment of breast cancer. Many nanoparticulate platforms for the diagnosis of involved biomarkers and delivering antineoplastic drugs are under either clinical trials or just approved by the Food and Drug Administration (FDA). It is well known that natural phytochemicals are successfully useful to treat breast cancer because these natural compounds are safer, available, cheaper, and have less toxic effects. Chitosan is a biocompatible and biodegradable polymer. Further, it has outstanding features, like chemical functional groups that can easily modify our interest with an exceptional choice of promising applications. Abundant studies were directed to assess the chitosan derivative-based nanoformulation's abilities in delivering varieties of drugs. However, the role of chitosan in diagnostics and theranostics not be obligated. The present servey will discuss the application of chitosan as an anticancer drug carrier such as tamoxifen, doxorubicin, paclitaxel, docetaxel, etc. and also, its role as a theranostics (i.e. photo-responsive and thermo-responsive) moieties. The therapeutic and theranostic potential of chitosan in cancer is promising and it seems that to have a good potential to get to the clinic.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - John D Schneible
- NC State University, Department of Chemical and Biomolecular Engineering, 911 Partners Way, Raleigh 27695, USA
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolsamad Shirvani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
19
|
Rudenko N, Fursova K, Shepelyakovskaya A, Karatovskaya A, Brovko F. Antibodies as Biosensors' Key Components: State-of-the-Art in Russia 2020-2021. SENSORS 2021; 21:s21227614. [PMID: 34833687 PMCID: PMC8624206 DOI: 10.3390/s21227614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
The recognition of biomolecules is crucial in key areas such as the timely diagnosis of somatic and infectious diseases, food quality control, and environmental monitoring. This determines the need to develop highly sensitive display devices based on the achievements of modern science and technology, characterized by high selectivity, high speed, low cost, availability, and small size. Such requirements are met by biosensor systems—devices for reagent-free analysis of compounds that consist of a biologically sensitive element (receptor), a transducer, and a working solution. The diversity of biological material and methods for its immobilization on the surface or in the volume of the transducer and the use of nanotechnologies have led to the appearance of an avalanche-like number of different biosensors, which, depending on the type of biologically sensitive element, can be divided into three groups: enzyme, affinity, and cellular/tissue. Affinity biosensors are one of the rapidly developing areas in immunoassay, where the key point is to register the formation of an antigen–antibody complex. This review analyzes the latest work by Russian researchers concerning the production of molecules used in various immunoassay formats as well as new fundamental scientific data obtained as a result of their use.
Collapse
|
20
|
Qin D, Zhang L, Zhu H, Chen J, Wu D, Bouakaz A, Wan M, Feng Y. A Highly Efficient One-for-All Nanodroplet for Ultrasound Imaging-Guided and Cavitation-Enhanced Photothermal Therapy. Int J Nanomedicine 2021; 16:3105-3119. [PMID: 33967577 PMCID: PMC8096805 DOI: 10.2147/ijn.s301734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Photothermal therapy (PTT) has attracted considerable attention for cancer treatment as it is highly controllable and minimally invasive. Various multifunctional nanosystems have been fabricated in an "all-in-one" form to guide and enhance PTT by integrating imaging and therapeutic functions. However, the complex fabrication of nanosystems and their high cost limit its clinical translation. MATERIALS AND METHODS Herein, a high efficient "one-for-all" nanodroplet with a simple composition but owning multiple capabilities was developed to achieve ultrasound (US) imaging-guided and cavitation-enhanced PTT. Perfluoropentane (PFP) nanodroplet with a polypyrrole (PPy) shell (PFP@PPy nanodroplet) was synthesized via ultrasonic emulsification and in situ oxidative polymerization. After characterization of the morphology, its photothermal effect, phase transition performance, as well as its capabilities of enhancing US imaging and acoustic cavitation were examined. Moreover, the antitumor efficacy of the combined therapy with PTT and acoustic cavitation via the PFP@PPy nanodroplets was studied both in vitro and in vivo. RESULTS The nanodroplets exhibited good stability, high biocompatibility, broad optical absorption over the visible and near-infrared (NIR) range, excellent photothermal conversion with an efficiency of 60.1% and activatable liquid-gas phase transition performance. Upon NIR laser and US irradiation, the phase transition of PFP cores into microbubbles significantly enhanced US imaging and acoustic cavitation both in vitro and in vivo. More importantly, the acoustic cavitation enhanced significantly the antitumor efficacy of PTT as compared to PTT alone thanks to the cavitation-mediated cell destruction, which demonstrated a substantial increase in cell detachment, 81.1% cell death in vitro and 99.5% tumor inhibition in vivo. CONCLUSION The PFP@PPy nanodroplet as a "one-for-all" theranostic agent achieved highly efficient US imaging-guided and cavitation-enhanced cancer therapy, and has considerable potential to provide cancer theranostics in the future.
Collapse
Affiliation(s)
- Dui Qin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People’s Republic of China
| | - Lei Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Hongrui Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Junjie Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Daocheng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, F-37032, France
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yi Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
21
|
Guryev EL, Shanwar S, Zvyagin A, Deyev SM, Balalaeva IV. Photoluminescent Nanomaterials for Medical Biotechnology. Acta Naturae 2021; 13:16-31. [PMID: 34377553 PMCID: PMC8327149 DOI: 10.32607/actanaturae.11180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Creation of various photoluminescent nanomaterials has significantly expanded the arsenal of approaches used in modern biomedicine. Their unique photophysical properties can significantly improve the sensitivity and specificity of diagnostic methods, increase therapy effectiveness, and make a theranostic approach to treatment possible through the application of nanoparticle conjugates with functional macromolecules. The most widely used nanomaterials to date are semiconductor quantum dots; gold nanoclusters; carbon dots; nanodiamonds; semiconductor porous silicon; and up-conversion nanoparticles. This paper considers the promising groups of photoluminescent nanomaterials that can be used in medical biotechnology: in particular, for devising agents for optical diagnostic methods, sensorics, and various types of therapy.
Collapse
Affiliation(s)
- E. L. Guryev
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
| | - S. Shanwar
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
| | - A.V. Zvyagin
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia
| | - I. V. Balalaeva
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
| |
Collapse
|